mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
a3a41cd01b
Differential Revision: https://reviews.llvm.org/D83202
290 lines
12 KiB
C++
290 lines
12 KiB
C++
//===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements methods to test, set and extract typed bits from packed
|
|
/// unsigned integers.
|
|
///
|
|
/// Why not C++ bitfields?
|
|
/// ----------------------
|
|
/// C++ bitfields do not offer control over the bit layout nor consistent
|
|
/// behavior when it comes to out of range values.
|
|
/// For instance, the layout is implementation defined and adjacent bits may be
|
|
/// packed together but are not required to. This is problematic when storage is
|
|
/// sparse and data must be stored in a particular integer type.
|
|
///
|
|
/// The methods provided in this file ensure precise control over the
|
|
/// layout/storage as well as protection against out of range values.
|
|
///
|
|
/// Usage example
|
|
/// -------------
|
|
/// \code{.cpp}
|
|
/// uint8_t Storage = 0;
|
|
///
|
|
/// // Store and retrieve a single bit as bool.
|
|
/// using Bool = Bitfield::Element<bool, 0, 1>;
|
|
/// Bitfield::set<Bool>(Storage, true);
|
|
/// EXPECT_EQ(Storage, 0b00000001);
|
|
/// // ^
|
|
/// EXPECT_EQ(Bitfield::get<Bool>(Storage), true);
|
|
///
|
|
/// // Store and retrieve a 2 bit typed enum.
|
|
/// // Note: enum underlying type must be unsigned.
|
|
/// enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES };
|
|
/// // Note: enum maximum value needs to be passed in as last parameter.
|
|
/// using Suit = Bitfield::Element<SuitEnum, 1, 2, SuitEnum::SPADES>;
|
|
/// Bitfield::set<Suit>(Storage, SuitEnum::HEARTS);
|
|
/// EXPECT_EQ(Storage, 0b00000101);
|
|
/// // ^^
|
|
/// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::HEARTS);
|
|
///
|
|
/// // Store and retrieve a 5 bit value as unsigned.
|
|
/// using Value = Bitfield::Element<unsigned, 3, 5>;
|
|
/// Bitfield::set<Value>(Storage, 10);
|
|
/// EXPECT_EQ(Storage, 0b01010101);
|
|
/// // ^^^^^
|
|
/// EXPECT_EQ(Bitfield::get<Value>(Storage), 10U);
|
|
///
|
|
/// // Interpret the same 5 bit value as signed.
|
|
/// using SignedValue = Bitfield::Element<int, 3, 5>;
|
|
/// Bitfield::set<SignedValue>(Storage, -2);
|
|
/// EXPECT_EQ(Storage, 0b11110101);
|
|
/// // ^^^^^
|
|
/// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -2);
|
|
///
|
|
/// // Ability to efficiently test if a field is non zero.
|
|
/// EXPECT_TRUE(Bitfield::test<Value>(Storage));
|
|
///
|
|
/// // Alter Storage changes value.
|
|
/// Storage = 0;
|
|
/// EXPECT_EQ(Bitfield::get<Bool>(Storage), false);
|
|
/// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::CLUBS);
|
|
/// EXPECT_EQ(Bitfield::get<Value>(Storage), 0U);
|
|
/// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), 0);
|
|
///
|
|
/// Storage = 255;
|
|
/// EXPECT_EQ(Bitfield::get<Bool>(Storage), true);
|
|
/// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::SPADES);
|
|
/// EXPECT_EQ(Bitfield::get<Value>(Storage), 31U);
|
|
/// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -1);
|
|
/// \endcode
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_BITFIELDS_H
|
|
#define LLVM_ADT_BITFIELDS_H
|
|
|
|
#include <cassert>
|
|
#include <climits> // CHAR_BIT
|
|
#include <cstddef> // size_t
|
|
#include <cstdint> // uintXX_t
|
|
#include <limits> // numeric_limits
|
|
#include <type_traits>
|
|
|
|
namespace llvm {
|
|
|
|
namespace bitfields_details {
|
|
|
|
/// A struct defining useful bit patterns for n-bits integer types.
|
|
template <typename T, unsigned Bits> struct BitPatterns {
|
|
/// Bit patterns are forged using the equivalent `Unsigned` type because of
|
|
/// undefined operations over signed types (e.g. Bitwise shift operators).
|
|
/// Moreover same size casting from unsigned to signed is well defined but not
|
|
/// the other way around.
|
|
using Unsigned = typename std::make_unsigned<T>::type;
|
|
static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size");
|
|
|
|
static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT;
|
|
static_assert(TypeBits >= Bits, "n-bit must fit in T");
|
|
|
|
/// e.g. with TypeBits == 8 and Bits == 6.
|
|
static constexpr Unsigned AllZeros = Unsigned(0); // 00000000
|
|
static constexpr Unsigned AllOnes = ~Unsigned(0); // 11111111
|
|
static constexpr Unsigned Umin = AllZeros; // 00000000
|
|
static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits); // 00111111
|
|
static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000
|
|
static constexpr Unsigned Smax = Umax >> 1U; // 00011111
|
|
static constexpr Unsigned Smin = ~Smax; // 11100000
|
|
static constexpr Unsigned SignExtend = Unsigned(Smin << 1U); // 11000000
|
|
};
|
|
|
|
/// `Compressor` is used to manipulate the bits of a (possibly signed) integer
|
|
/// type so it can be packed and unpacked into a `bits` sized integer,
|
|
/// `Compressor` is specialized on signed-ness so no runtime cost is incurred.
|
|
/// The `pack` method also checks that the passed in `UserValue` is valid.
|
|
template <typename T, unsigned Bits, bool = std::is_unsigned<T>::value>
|
|
struct Compressor {
|
|
static_assert(std::is_unsigned<T>::value, "T is unsigned");
|
|
using BP = BitPatterns<T, Bits>;
|
|
|
|
static T pack(T UserValue, T UserMaxValue) {
|
|
assert(UserValue <= UserMaxValue && "value is too big");
|
|
assert(UserValue <= BP::Umax && "value is too big");
|
|
return UserValue;
|
|
}
|
|
|
|
static T unpack(T StorageValue) { return StorageValue; }
|
|
};
|
|
|
|
template <typename T, unsigned Bits> struct Compressor<T, Bits, false> {
|
|
static_assert(std::is_signed<T>::value, "T is signed");
|
|
using BP = BitPatterns<T, Bits>;
|
|
|
|
static T pack(T UserValue, T UserMaxValue) {
|
|
assert(UserValue <= UserMaxValue && "value is too big");
|
|
assert(UserValue <= T(BP::Smax) && "value is too big");
|
|
assert(UserValue >= T(BP::Smin) && "value is too small");
|
|
if (UserValue < 0)
|
|
UserValue &= ~BP::SignExtend;
|
|
return UserValue;
|
|
}
|
|
|
|
static T unpack(T StorageValue) {
|
|
if (StorageValue >= T(BP::SignBitMask))
|
|
StorageValue |= BP::SignExtend;
|
|
return StorageValue;
|
|
}
|
|
};
|
|
|
|
/// Impl is where Bifield description and Storage are put together to interact
|
|
/// with values.
|
|
template <typename Bitfield, typename StorageType> struct Impl {
|
|
static_assert(std::is_unsigned<StorageType>::value,
|
|
"Storage must be unsigned");
|
|
using IntegerType = typename Bitfield::IntegerType;
|
|
using C = Compressor<IntegerType, Bitfield::Bits>;
|
|
using BP = BitPatterns<StorageType, Bitfield::Bits>;
|
|
|
|
static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT;
|
|
static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask");
|
|
static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask");
|
|
static constexpr StorageType Mask = BP::Umax << Bitfield::Shift;
|
|
|
|
/// Checks `UserValue` is within bounds and packs it between `FirstBit` and
|
|
/// `LastBit` of `Packed` leaving the rest unchanged.
|
|
static void update(StorageType &Packed, IntegerType UserValue) {
|
|
const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue);
|
|
Packed &= ~Mask;
|
|
Packed |= StorageValue << Bitfield::Shift;
|
|
}
|
|
|
|
/// Interprets bits between `FirstBit` and `LastBit` of `Packed` as
|
|
/// an`IntegerType`.
|
|
static IntegerType extract(StorageType Packed) {
|
|
const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift;
|
|
return C::unpack(StorageValue);
|
|
}
|
|
|
|
/// Interprets bits between `FirstBit` and `LastBit` of `Packed` as
|
|
/// an`IntegerType`.
|
|
static StorageType test(StorageType Packed) { return Packed & Mask; }
|
|
};
|
|
|
|
/// `Bitfield` deals with the following type:
|
|
/// - unsigned enums
|
|
/// - signed and unsigned integer
|
|
/// - `bool`
|
|
/// Internally though we only manipulate integer with well defined and
|
|
/// consistent semantics, this excludes typed enums and `bool` that are replaced
|
|
/// with their unsigned counterparts. The correct type is restored in the public
|
|
/// API.
|
|
template <typename T, bool = std::is_enum<T>::value>
|
|
struct ResolveUnderlyingType {
|
|
using type = typename std::underlying_type<T>::type;
|
|
};
|
|
template <typename T> struct ResolveUnderlyingType<T, false> {
|
|
using type = T;
|
|
};
|
|
template <> struct ResolveUnderlyingType<bool, false> {
|
|
/// In case sizeof(bool) != 1, replace `void` by an additionnal
|
|
/// std::conditional.
|
|
using type = std::conditional<sizeof(bool) == 1, uint8_t, void>::type;
|
|
};
|
|
|
|
} // namespace bitfields_details
|
|
|
|
/// Holds functions to get, set or test bitfields.
|
|
struct Bitfield {
|
|
/// Describes an element of a Bitfield. This type is then used with the
|
|
/// Bitfield static member functions.
|
|
/// \tparam T The type of the field once in unpacked form.
|
|
/// \tparam Offset The position of the first bit.
|
|
/// \tparam Size The size of the field.
|
|
/// \tparam MaxValue For enums the maximum enum allowed.
|
|
template <typename T, unsigned Offset, unsigned Size,
|
|
T MaxValue = std::is_enum<T>::value
|
|
? T(0) // coupled with static_assert below
|
|
: std::numeric_limits<T>::max()>
|
|
struct Element {
|
|
using Type = T;
|
|
using IntegerType =
|
|
typename bitfields_details::ResolveUnderlyingType<T>::type;
|
|
static constexpr unsigned Shift = Offset;
|
|
static constexpr unsigned Bits = Size;
|
|
static constexpr unsigned FirstBit = Offset;
|
|
static constexpr unsigned LastBit = Shift + Bits - 1;
|
|
static constexpr unsigned NextBit = Shift + Bits;
|
|
|
|
private:
|
|
template <typename, typename> friend struct bitfields_details::Impl;
|
|
|
|
static_assert(Bits > 0, "Bits must be non zero");
|
|
static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT;
|
|
static_assert(Bits <= TypeBits, "Bits may not be greater than T size");
|
|
static_assert(!std::is_enum<T>::value || MaxValue != T(0),
|
|
"Enum Bitfields must provide a MaxValue");
|
|
static_assert(!std::is_enum<T>::value ||
|
|
std::is_unsigned<IntegerType>::value,
|
|
"Enum must be unsigned");
|
|
static_assert(std::is_integral<IntegerType>::value &&
|
|
std::numeric_limits<IntegerType>::is_integer,
|
|
"IntegerType must be an integer type");
|
|
|
|
static constexpr IntegerType UserMaxValue =
|
|
static_cast<IntegerType>(MaxValue);
|
|
};
|
|
|
|
/// Unpacks the field from the `Packed` value.
|
|
template <typename Bitfield, typename StorageType>
|
|
static typename Bitfield::Type get(StorageType Packed) {
|
|
using I = bitfields_details::Impl<Bitfield, StorageType>;
|
|
return static_cast<typename Bitfield::Type>(I::extract(Packed));
|
|
}
|
|
|
|
/// Return a non-zero value if the field is non-zero.
|
|
/// It is more efficient than `getField`.
|
|
template <typename Bitfield, typename StorageType>
|
|
static StorageType test(StorageType Packed) {
|
|
using I = bitfields_details::Impl<Bitfield, StorageType>;
|
|
return I::test(Packed);
|
|
}
|
|
|
|
/// Sets the typed value in the provided `Packed` value.
|
|
/// The method will asserts if the provided value is too big to fit in.
|
|
template <typename Bitfield, typename StorageType>
|
|
static void set(StorageType &Packed, typename Bitfield::Type Value) {
|
|
using I = bitfields_details::Impl<Bitfield, StorageType>;
|
|
I::update(Packed, static_cast<typename Bitfield::IntegerType>(Value));
|
|
}
|
|
|
|
/// Returns whether the two bitfields share common bits.
|
|
template <typename A, typename B> static constexpr bool isOverlapping() {
|
|
return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit;
|
|
}
|
|
|
|
template <typename A> static constexpr bool areContiguous() { return true; }
|
|
template <typename A, typename B, typename... Others>
|
|
static constexpr bool areContiguous() {
|
|
return A::NextBit == B::FirstBit && areContiguous<B, Others...>();
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_ADT_BITFIELDS_H
|