1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/CodeGen/MachineCombiner.cpp
Andrew V. Tischenko 78f7599134 Compile time decreasing in the case we're dealing with Machine Combiner.
Before this patch compile time was about 21s (see below). After this patch
we have less than 2s (see bellow).

  Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz

    DAGCombiner - trunk
        time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
        real  0m1.685s

    DAGCombiner + Speed patch
        time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
        real  0m1.655s

    MachineCombiner w/o Speed patch
        time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
        real  0m21.614s

    MachineCombiner + Speed patch
        time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
        real  0m1.593s

The test spill_fdiv.ll  is attached to D29627
D29627 should be closed.

llvm-svn: 294936
2017-02-13 09:43:37 +00:00

499 lines
20 KiB
C++

//===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The machine combiner pass uses machine trace metrics to ensure the combined
// instructions does not lengthen the critical path or the resource depth.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-combiner"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineTraceMetrics.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
using namespace llvm;
STATISTIC(NumInstCombined, "Number of machineinst combined");
namespace {
class MachineCombiner : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MCSchedModel SchedModel;
MachineRegisterInfo *MRI;
MachineLoopInfo *MLI; // Current MachineLoopInfo
MachineTraceMetrics *Traces;
MachineTraceMetrics::Ensemble *MinInstr;
TargetSchedModel TSchedModel;
/// True if optimizing for code size.
bool OptSize;
public:
static char ID;
MachineCombiner() : MachineFunctionPass(ID) {
initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "Machine InstCombiner"; }
private:
bool doSubstitute(unsigned NewSize, unsigned OldSize);
bool combineInstructions(MachineBasicBlock *);
MachineInstr *getOperandDef(const MachineOperand &MO);
unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
MachineTraceMetrics::Trace BlockTrace);
unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
MachineTraceMetrics::Trace BlockTrace);
bool
improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
MachineCombinerPattern Pattern);
bool preservesResourceLen(MachineBasicBlock *MBB,
MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs);
void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
};
}
char MachineCombiner::ID = 0;
char &llvm::MachineCombinerID = MachineCombiner::ID;
INITIALIZE_PASS_BEGIN(MachineCombiner, "machine-combiner",
"Machine InstCombiner", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
INITIALIZE_PASS_END(MachineCombiner, "machine-combiner", "Machine InstCombiner",
false, false)
void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<MachineTraceMetrics>();
AU.addPreserved<MachineTraceMetrics>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
MachineInstr *DefInstr = nullptr;
// We need a virtual register definition.
if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
DefInstr = MRI->getUniqueVRegDef(MO.getReg());
// PHI's have no depth etc.
if (DefInstr && DefInstr->isPHI())
DefInstr = nullptr;
return DefInstr;
}
/// Computes depth of instructions in vector \InsInstr.
///
/// \param InsInstrs is a vector of machine instructions
/// \param InstrIdxForVirtReg is a dense map of virtual register to index
/// of defining machine instruction in \p InsInstrs
/// \param BlockTrace is a trace of machine instructions
///
/// \returns Depth of last instruction in \InsInstrs ("NewRoot")
unsigned
MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
MachineTraceMetrics::Trace BlockTrace) {
SmallVector<unsigned, 16> InstrDepth;
assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
"Missing machine model\n");
// For each instruction in the new sequence compute the depth based on the
// operands. Use the trace information when possible. For new operands which
// are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
for (auto *InstrPtr : InsInstrs) { // for each Use
unsigned IDepth = 0;
DEBUG(dbgs() << "NEW INSTR ";
InstrPtr->print(dbgs(), TII);
dbgs() << "\n";);
for (const MachineOperand &MO : InstrPtr->operands()) {
// Check for virtual register operand.
if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
continue;
if (!MO.isUse())
continue;
unsigned DepthOp = 0;
unsigned LatencyOp = 0;
DenseMap<unsigned, unsigned>::iterator II =
InstrIdxForVirtReg.find(MO.getReg());
if (II != InstrIdxForVirtReg.end()) {
// Operand is new virtual register not in trace
assert(II->second < InstrDepth.size() && "Bad Index");
MachineInstr *DefInstr = InsInstrs[II->second];
assert(DefInstr &&
"There must be a definition for a new virtual register");
DepthOp = InstrDepth[II->second];
LatencyOp = TSchedModel.computeOperandLatency(
DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
} else {
MachineInstr *DefInstr = getOperandDef(MO);
if (DefInstr) {
DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
LatencyOp = TSchedModel.computeOperandLatency(
DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
}
}
IDepth = std::max(IDepth, DepthOp + LatencyOp);
}
InstrDepth.push_back(IDepth);
}
unsigned NewRootIdx = InsInstrs.size() - 1;
return InstrDepth[NewRootIdx];
}
/// Computes instruction latency as max of latency of defined operands.
///
/// \param Root is a machine instruction that could be replaced by NewRoot.
/// It is used to compute a more accurate latency information for NewRoot in
/// case there is a dependent instruction in the same trace (\p BlockTrace)
/// \param NewRoot is the instruction for which the latency is computed
/// \param BlockTrace is a trace of machine instructions
///
/// \returns Latency of \p NewRoot
unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
MachineTraceMetrics::Trace BlockTrace) {
assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
"Missing machine model\n");
// Check each definition in NewRoot and compute the latency
unsigned NewRootLatency = 0;
for (const MachineOperand &MO : NewRoot->operands()) {
// Check for virtual register operand.
if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
continue;
if (!MO.isDef())
continue;
// Get the first instruction that uses MO
MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
RI++;
MachineInstr *UseMO = RI->getParent();
unsigned LatencyOp = 0;
if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
LatencyOp = TSchedModel.computeOperandLatency(
NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
UseMO->findRegisterUseOperandIdx(MO.getReg()));
} else {
LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
}
NewRootLatency = std::max(NewRootLatency, LatencyOp);
}
return NewRootLatency;
}
/// The combiner's goal may differ based on which pattern it is attempting
/// to optimize.
enum class CombinerObjective {
MustReduceDepth, // The data dependency chain must be improved.
Default // The critical path must not be lengthened.
};
static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
// TODO: If C++ ever gets a real enum class, make this part of the
// MachineCombinerPattern class.
switch (P) {
case MachineCombinerPattern::REASSOC_AX_BY:
case MachineCombinerPattern::REASSOC_AX_YB:
case MachineCombinerPattern::REASSOC_XA_BY:
case MachineCombinerPattern::REASSOC_XA_YB:
return CombinerObjective::MustReduceDepth;
default:
return CombinerObjective::Default;
}
}
/// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
/// The new code sequence ends in MI NewRoot. A necessary condition for the new
/// sequence to replace the old sequence is that it cannot lengthen the critical
/// path. The definition of "improve" may be restricted by specifying that the
/// new path improves the data dependency chain (MustReduceDepth).
bool MachineCombiner::improvesCriticalPathLen(
MachineBasicBlock *MBB, MachineInstr *Root,
MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
MachineCombinerPattern Pattern) {
assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
"Missing machine model\n");
// NewRoot is the last instruction in the \p InsInstrs vector.
unsigned NewRootIdx = InsInstrs.size() - 1;
MachineInstr *NewRoot = InsInstrs[NewRootIdx];
// Get depth and latency of NewRoot and Root.
unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
DEBUG(dbgs() << "DEPENDENCE DATA FOR " << Root << "\n";
dbgs() << " NewRootDepth: " << NewRootDepth << "\n";
dbgs() << " RootDepth: " << RootDepth << "\n");
// For a transform such as reassociation, the cost equation is
// conservatively calculated so that we must improve the depth (data
// dependency cycles) in the critical path to proceed with the transform.
// Being conservative also protects against inaccuracies in the underlying
// machine trace metrics and CPU models.
if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth)
return NewRootDepth < RootDepth;
// A more flexible cost calculation for the critical path includes the slack
// of the original code sequence. This may allow the transform to proceed
// even if the instruction depths (data dependency cycles) become worse.
unsigned NewRootLatency = getLatency(Root, NewRoot, BlockTrace);
unsigned RootLatency = 0;
for (auto I : DelInstrs)
RootLatency += TSchedModel.computeInstrLatency(I);
unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
DEBUG(dbgs() << " NewRootLatency: " << NewRootLatency << "\n";
dbgs() << " RootLatency: " << RootLatency << "\n";
dbgs() << " RootSlack: " << RootSlack << "\n";
dbgs() << " NewRootDepth + NewRootLatency = "
<< NewRootDepth + NewRootLatency << "\n";
dbgs() << " RootDepth + RootLatency + RootSlack = "
<< RootDepth + RootLatency + RootSlack << "\n";);
unsigned NewCycleCount = NewRootDepth + NewRootLatency;
unsigned OldCycleCount = RootDepth + RootLatency + RootSlack;
return NewCycleCount <= OldCycleCount;
}
/// helper routine to convert instructions into SC
void MachineCombiner::instr2instrSC(
SmallVectorImpl<MachineInstr *> &Instrs,
SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
for (auto *InstrPtr : Instrs) {
unsigned Opc = InstrPtr->getOpcode();
unsigned Idx = TII->get(Opc).getSchedClass();
const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
InstrsSC.push_back(SC);
}
}
/// True when the new instructions do not increase resource length
bool MachineCombiner::preservesResourceLen(
MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs) {
if (!TSchedModel.hasInstrSchedModel())
return true;
// Compute current resource length
//ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
SmallVector <const MachineBasicBlock *, 1> MBBarr;
MBBarr.push_back(MBB);
unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
// Deal with SC rather than Instructions.
SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
instr2instrSC(InsInstrs, InsInstrsSC);
instr2instrSC(DelInstrs, DelInstrsSC);
ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
// Compute new resource length.
unsigned ResLenAfterCombine =
BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
DEBUG(dbgs() << "RESOURCE DATA: \n";
dbgs() << " resource len before: " << ResLenBeforeCombine
<< " after: " << ResLenAfterCombine << "\n";);
return ResLenAfterCombine <= ResLenBeforeCombine;
}
/// \returns true when new instruction sequence should be generated
/// independent if it lengthens critical path or not
bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
if (OptSize && (NewSize < OldSize))
return true;
if (!TSchedModel.hasInstrSchedModelOrItineraries())
return true;
return false;
}
static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
SmallVector<MachineInstr *, 16> InsInstrs,
SmallVector<MachineInstr *, 16> DelInstrs,
MachineTraceMetrics *Traces) {
for (auto *InstrPtr : InsInstrs)
MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
for (auto *InstrPtr : DelInstrs)
InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
++NumInstCombined;
Traces->invalidate(MBB);
Traces->verifyAnalysis();
}
/// Substitute a slow code sequence with a faster one by
/// evaluating instruction combining pattern.
/// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
/// combining based on machine trace metrics. Only combine a sequence of
/// instructions when this neither lengthens the critical path nor increases
/// resource pressure. When optimizing for codesize always combine when the new
/// sequence is shorter.
bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
bool Changed = false;
DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
auto BlockIter = MBB->begin();
// Check if the block is in a loop.
const MachineLoop *ML = MLI->getLoopFor(MBB);
while (BlockIter != MBB->end()) {
auto &MI = *BlockIter++;
DEBUG(dbgs() << "INSTR "; MI.dump(); dbgs() << "\n";);
SmallVector<MachineCombinerPattern, 16> Patterns;
// The motivating example is:
//
// MUL Other MUL_op1 MUL_op2 Other
// \ / \ | /
// ADD/SUB => MADD/MSUB
// (=Root) (=NewRoot)
// The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
// usually beneficial for code size it unfortunately can hurt performance
// when the ADD is on the critical path, but the MUL is not. With the
// substitution the MUL becomes part of the critical path (in form of the
// MADD) and can lengthen it on architectures where the MADD latency is
// longer than the ADD latency.
//
// For each instruction we check if it can be the root of a combiner
// pattern. Then for each pattern the new code sequence in form of MI is
// generated and evaluated. When the efficiency criteria (don't lengthen
// critical path, don't use more resources) is met the new sequence gets
// hooked up into the basic block before the old sequence is removed.
//
// The algorithm does not try to evaluate all patterns and pick the best.
// This is only an artificial restriction though. In practice there is
// mostly one pattern, and getMachineCombinerPatterns() can order patterns
// based on an internal cost heuristic.
if (!TII->getMachineCombinerPatterns(MI, Patterns))
continue;
for (auto P : Patterns) {
SmallVector<MachineInstr *, 16> InsInstrs;
SmallVector<MachineInstr *, 16> DelInstrs;
DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
if (!MinInstr)
MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
Traces->verifyAnalysis();
TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
InstrIdxForVirtReg);
unsigned NewInstCount = InsInstrs.size();
unsigned OldInstCount = DelInstrs.size();
// Found pattern, but did not generate alternative sequence.
// This can happen e.g. when an immediate could not be materialized
// in a single instruction.
if (!NewInstCount)
continue;
bool SubstituteAlways = false;
if (ML && TII->isThroughputPattern(P))
SubstituteAlways = true;
// Substitute when we optimize for codesize and the new sequence has
// fewer instructions OR
// the new sequence neither lengthens the critical path nor increases
// resource pressure.
if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, Traces);
// Eagerly stop after the first pattern fires.
Changed = true;
break;
} else {
// Calculating the trace metrics may be expensive,
// so only do this when necessary.
MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
InstrIdxForVirtReg, P) &&
preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, Traces);
// Eagerly stop after the first pattern fires.
Changed = true;
break;
}
// Cleanup instructions of the alternative code sequence. There is no
// use for them.
MachineFunction *MF = MBB->getParent();
for (auto *InstrPtr : InsInstrs)
MF->DeleteMachineInstr(InstrPtr);
}
InstrIdxForVirtReg.clear();
}
}
return Changed;
}
bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
const TargetSubtargetInfo &STI = MF.getSubtarget();
TII = STI.getInstrInfo();
TRI = STI.getRegisterInfo();
SchedModel = STI.getSchedModel();
TSchedModel.init(SchedModel, &STI, TII);
MRI = &MF.getRegInfo();
MLI = &getAnalysis<MachineLoopInfo>();
Traces = &getAnalysis<MachineTraceMetrics>();
MinInstr = nullptr;
OptSize = MF.getFunction()->optForSize();
DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
if (!TII->useMachineCombiner()) {
DEBUG(dbgs() << " Skipping pass: Target does not support machine combiner\n");
return false;
}
bool Changed = false;
// Try to combine instructions.
for (auto &MBB : MF)
Changed |= combineInstructions(&MBB);
return Changed;
}