1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Analysis/CaptureTracking.cpp

398 lines
15 KiB
C++

//===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help determine which pointers are captured.
// A pointer value is captured if the function makes a copy of any part of the
// pointer that outlives the call. Not being captured means, more or less, that
// the pointer is only dereferenced and not stored in a global. Returning part
// of the pointer as the function return value may or may not count as capturing
// the pointer, depending on the context.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
/// The default value for MaxUsesToExplore argument. It's relatively small to
/// keep the cost of analysis reasonable for clients like BasicAliasAnalysis,
/// where the results can't be cached.
/// TODO: we should probably introduce a caching CaptureTracking analysis and
/// use it where possible. The caching version can use much higher limit or
/// don't have this cap at all.
static cl::opt<unsigned>
DefaultMaxUsesToExplore("capture-tracking-max-uses-to-explore", cl::Hidden,
cl::desc("Maximal number of uses to explore."),
cl::init(20));
unsigned llvm::getDefaultMaxUsesToExploreForCaptureTracking() {
return DefaultMaxUsesToExplore;
}
CaptureTracker::~CaptureTracker() {}
bool CaptureTracker::shouldExplore(const Use *U) { return true; }
bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) {
// An inbounds GEP can either be a valid pointer (pointing into
// or to the end of an allocation), or be null in the default
// address space. So for an inbounds GEP there is no way to let
// the pointer escape using clever GEP hacking because doing so
// would make the pointer point outside of the allocated object
// and thus make the GEP result a poison value. Similarly, other
// dereferenceable pointers cannot be manipulated without producing
// poison.
if (auto *GEP = dyn_cast<GetElementPtrInst>(O))
if (GEP->isInBounds())
return true;
bool CanBeNull;
return O->getPointerDereferenceableBytes(DL, CanBeNull);
}
namespace {
struct SimpleCaptureTracker : public CaptureTracker {
explicit SimpleCaptureTracker(bool ReturnCaptures)
: ReturnCaptures(ReturnCaptures), Captured(false) {}
void tooManyUses() override { Captured = true; }
bool captured(const Use *U) override {
if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
return false;
Captured = true;
return true;
}
bool ReturnCaptures;
bool Captured;
};
/// Only find pointer captures which happen before the given instruction. Uses
/// the dominator tree to determine whether one instruction is before another.
/// Only support the case where the Value is defined in the same basic block
/// as the given instruction and the use.
struct CapturesBefore : public CaptureTracker {
CapturesBefore(bool ReturnCaptures, const Instruction *I, const DominatorTree *DT,
bool IncludeI)
: BeforeHere(I), DT(DT),
ReturnCaptures(ReturnCaptures), IncludeI(IncludeI), Captured(false) {}
void tooManyUses() override { Captured = true; }
bool isSafeToPrune(Instruction *I) {
BasicBlock *BB = I->getParent();
// We explore this usage only if the usage can reach "BeforeHere".
// If use is not reachable from entry, there is no need to explore.
if (BeforeHere != I && !DT->isReachableFromEntry(BB))
return true;
// Compute the case where both instructions are inside the same basic
// block.
if (BB == BeforeHere->getParent()) {
// 'I' dominates 'BeforeHere' => not safe to prune.
//
// The value defined by an invoke dominates an instruction only
// if it dominates every instruction in UseBB. A PHI is dominated only
// if the instruction dominates every possible use in the UseBB. Since
// UseBB == BB, avoid pruning.
if (isa<InvokeInst>(BeforeHere) || isa<PHINode>(I) || I == BeforeHere)
return false;
if (!BeforeHere->comesBefore(I))
return false;
// 'BeforeHere' comes before 'I', it's safe to prune if we also
// guarantee that 'I' never reaches 'BeforeHere' through a back-edge or
// by its successors, i.e, prune if:
//
// (1) BB is an entry block or have no successors.
// (2) There's no path coming back through BB successors.
if (BB == &BB->getParent()->getEntryBlock() ||
!BB->getTerminator()->getNumSuccessors())
return true;
SmallVector<BasicBlock*, 32> Worklist;
Worklist.append(succ_begin(BB), succ_end(BB));
return !isPotentiallyReachableFromMany(Worklist, BB, nullptr, DT);
}
// If the value is defined in the same basic block as use and BeforeHere,
// there is no need to explore the use if BeforeHere dominates use.
// Check whether there is a path from I to BeforeHere.
if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
!isPotentiallyReachable(I, BeforeHere, nullptr, DT))
return true;
return false;
}
bool shouldExplore(const Use *U) override {
Instruction *I = cast<Instruction>(U->getUser());
if (BeforeHere == I && !IncludeI)
return false;
if (isSafeToPrune(I))
return false;
return true;
}
bool captured(const Use *U) override {
if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures)
return false;
if (!shouldExplore(U))
return false;
Captured = true;
return true;
}
const Instruction *BeforeHere;
const DominatorTree *DT;
bool ReturnCaptures;
bool IncludeI;
bool Captured;
};
}
/// PointerMayBeCaptured - Return true if this pointer value may be captured
/// by the enclosing function (which is required to exist). This routine can
/// be expensive, so consider caching the results. The boolean ReturnCaptures
/// specifies whether returning the value (or part of it) from the function
/// counts as capturing it or not. The boolean StoreCaptures specified whether
/// storing the value (or part of it) into memory anywhere automatically
/// counts as capturing it or not.
bool llvm::PointerMayBeCaptured(const Value *V,
bool ReturnCaptures, bool StoreCaptures,
unsigned MaxUsesToExplore) {
assert(!isa<GlobalValue>(V) &&
"It doesn't make sense to ask whether a global is captured.");
// TODO: If StoreCaptures is not true, we could do Fancy analysis
// to determine whether this store is not actually an escape point.
// In that case, BasicAliasAnalysis should be updated as well to
// take advantage of this.
(void)StoreCaptures;
SimpleCaptureTracker SCT(ReturnCaptures);
PointerMayBeCaptured(V, &SCT, MaxUsesToExplore);
return SCT.Captured;
}
/// PointerMayBeCapturedBefore - Return true if this pointer value may be
/// captured by the enclosing function (which is required to exist). If a
/// DominatorTree is provided, only captures which happen before the given
/// instruction are considered. This routine can be expensive, so consider
/// caching the results. The boolean ReturnCaptures specifies whether
/// returning the value (or part of it) from the function counts as capturing
/// it or not. The boolean StoreCaptures specified whether storing the value
/// (or part of it) into memory anywhere automatically counts as capturing it
/// or not.
bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures,
bool StoreCaptures, const Instruction *I,
const DominatorTree *DT, bool IncludeI,
unsigned MaxUsesToExplore) {
assert(!isa<GlobalValue>(V) &&
"It doesn't make sense to ask whether a global is captured.");
if (!DT)
return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures,
MaxUsesToExplore);
// TODO: See comment in PointerMayBeCaptured regarding what could be done
// with StoreCaptures.
CapturesBefore CB(ReturnCaptures, I, DT, IncludeI);
PointerMayBeCaptured(V, &CB, MaxUsesToExplore);
return CB.Captured;
}
void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker,
unsigned MaxUsesToExplore) {
assert(V->getType()->isPointerTy() && "Capture is for pointers only!");
if (MaxUsesToExplore == 0)
MaxUsesToExplore = DefaultMaxUsesToExplore;
SmallVector<const Use *, 20> Worklist;
Worklist.reserve(getDefaultMaxUsesToExploreForCaptureTracking());
SmallSet<const Use *, 20> Visited;
auto AddUses = [&](const Value *V) {
unsigned Count = 0;
for (const Use &U : V->uses()) {
// If there are lots of uses, conservatively say that the value
// is captured to avoid taking too much compile time.
if (Count++ >= MaxUsesToExplore)
return Tracker->tooManyUses();
if (!Visited.insert(&U).second)
continue;
if (!Tracker->shouldExplore(&U))
continue;
Worklist.push_back(&U);
}
};
AddUses(V);
while (!Worklist.empty()) {
const Use *U = Worklist.pop_back_val();
Instruction *I = cast<Instruction>(U->getUser());
V = U->get();
switch (I->getOpcode()) {
case Instruction::Call:
case Instruction::Invoke: {
auto *Call = cast<CallBase>(I);
// Not captured if the callee is readonly, doesn't return a copy through
// its return value and doesn't unwind (a readonly function can leak bits
// by throwing an exception or not depending on the input value).
if (Call->onlyReadsMemory() && Call->doesNotThrow() &&
Call->getType()->isVoidTy())
break;
// The pointer is not captured if returned pointer is not captured.
// NOTE: CaptureTracking users should not assume that only functions
// marked with nocapture do not capture. This means that places like
// GetUnderlyingObject in ValueTracking or DecomposeGEPExpression
// in BasicAA also need to know about this property.
if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call,
true)) {
AddUses(Call);
break;
}
// Volatile operations effectively capture the memory location that they
// load and store to.
if (auto *MI = dyn_cast<MemIntrinsic>(Call))
if (MI->isVolatile())
if (Tracker->captured(U))
return;
// Not captured if only passed via 'nocapture' arguments. Note that
// calling a function pointer does not in itself cause the pointer to
// be captured. This is a subtle point considering that (for example)
// the callee might return its own address. It is analogous to saying
// that loading a value from a pointer does not cause the pointer to be
// captured, even though the loaded value might be the pointer itself
// (think of self-referential objects).
for (auto IdxOpPair : enumerate(Call->data_ops())) {
int Idx = IdxOpPair.index();
Value *A = IdxOpPair.value();
if (A == V && !Call->doesNotCapture(Idx))
// The parameter is not marked 'nocapture' - captured.
if (Tracker->captured(U))
return;
}
break;
}
case Instruction::Load:
// Volatile loads make the address observable.
if (cast<LoadInst>(I)->isVolatile())
if (Tracker->captured(U))
return;
break;
case Instruction::VAArg:
// "va-arg" from a pointer does not cause it to be captured.
break;
case Instruction::Store:
// Stored the pointer - conservatively assume it may be captured.
// Volatile stores make the address observable.
if (V == I->getOperand(0) || cast<StoreInst>(I)->isVolatile())
if (Tracker->captured(U))
return;
break;
case Instruction::AtomicRMW: {
// atomicrmw conceptually includes both a load and store from
// the same location.
// As with a store, the location being accessed is not captured,
// but the value being stored is.
// Volatile stores make the address observable.
auto *ARMWI = cast<AtomicRMWInst>(I);
if (ARMWI->getValOperand() == V || ARMWI->isVolatile())
if (Tracker->captured(U))
return;
break;
}
case Instruction::AtomicCmpXchg: {
// cmpxchg conceptually includes both a load and store from
// the same location.
// As with a store, the location being accessed is not captured,
// but the value being stored is.
// Volatile stores make the address observable.
auto *ACXI = cast<AtomicCmpXchgInst>(I);
if (ACXI->getCompareOperand() == V || ACXI->getNewValOperand() == V ||
ACXI->isVolatile())
if (Tracker->captured(U))
return;
break;
}
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::PHI:
case Instruction::Select:
case Instruction::AddrSpaceCast:
// The original value is not captured via this if the new value isn't.
AddUses(I);
break;
case Instruction::ICmp: {
unsigned Idx = (I->getOperand(0) == V) ? 0 : 1;
unsigned OtherIdx = 1 - Idx;
if (auto *CPN = dyn_cast<ConstantPointerNull>(I->getOperand(OtherIdx))) {
// Don't count comparisons of a no-alias return value against null as
// captures. This allows us to ignore comparisons of malloc results
// with null, for example.
if (CPN->getType()->getAddressSpace() == 0)
if (isNoAliasCall(V->stripPointerCasts()))
break;
if (!I->getFunction()->nullPointerIsDefined()) {
auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation();
// Comparing a dereferenceable_or_null pointer against null cannot
// lead to pointer escapes, because if it is not null it must be a
// valid (in-bounds) pointer.
if (Tracker->isDereferenceableOrNull(O, I->getModule()->getDataLayout()))
break;
}
}
// Comparison against value stored in global variable. Given the pointer
// does not escape, its value cannot be guessed and stored separately in a
// global variable.
auto *LI = dyn_cast<LoadInst>(I->getOperand(OtherIdx));
if (LI && isa<GlobalVariable>(LI->getPointerOperand()))
break;
// Otherwise, be conservative. There are crazy ways to capture pointers
// using comparisons.
if (Tracker->captured(U))
return;
break;
}
default:
// Something else - be conservative and say it is captured.
if (Tracker->captured(U))
return;
break;
}
}
// All uses examined.
}