1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/include/llvm/Analysis/AliasAnalysis.h
Bruno Cardoso Lopes 8ce897de05 [CaptureTracker] Provide an ordered basic block to PointerMayBeCapturedBefore
This patch is a follow up from r240560 and is a step further into
mitigating the compile time performance issues in CaptureTracker.

By providing the CaptureTracker with a "cached ordered basic block"
instead of computing it every time, MemDepAnalysis can use this cache
throughout its calls to AA->callCapturesBefore, avoiding to recompute it
for every scanned instruction. In the same testcase used in r240560,
compile time is reduced from 2min to 30s.

This also fixes PR22348.

rdar://problem/19230319
Differential Revision: http://reviews.llvm.org/D11364

llvm-svn: 243750
2015-07-31 14:31:35 +00:00

579 lines
24 KiB
C++

//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations. Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API identifies memory regions with the MemoryLocation class. The pointer
// component specifies the base memory address of the region. The Size specifies
// the maximum size (in address units) of the memory region, or
// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
// identifies the "type" of the memory reference; see the
// TypeBasedAliasAnalysis class for details.
//
// Some non-obvious details include:
// - Pointers that point to two completely different objects in memory never
// alias, regardless of the value of the Size component.
// - NoAlias doesn't imply inequal pointers. The most obvious example of this
// is two pointers to constant memory. Even if they are equal, constant
// memory is never stored to, so there will never be any dependencies.
// In this and other situations, the pointers may be both NoAlias and
// MustAlias at the same time. The current API can only return one result,
// though this is rarely a problem in practice.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
#define LLVM_ANALYSIS_ALIASANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Analysis/MemoryLocation.h"
namespace llvm {
class LoadInst;
class StoreInst;
class VAArgInst;
class DataLayout;
class TargetLibraryInfo;
class Pass;
class AnalysisUsage;
class MemTransferInst;
class MemIntrinsic;
class DominatorTree;
class OrderedBasicBlock;
/// The possible results of an alias query.
///
/// These results are always computed between two MemoryLocation objects as
/// a query to some alias analysis.
///
/// Note that these are unscoped enumerations because we would like to support
/// implicitly testing a result for the existence of any possible aliasing with
/// a conversion to bool, but an "enum class" doesn't support this. The
/// canonical names from the literature are suffixed and unique anyways, and so
/// they serve as global constants in LLVM for these results.
///
/// See docs/AliasAnalysis.html for more information on the specific meanings
/// of these values.
enum AliasResult {
/// The two locations do not alias at all.
///
/// This value is arranged to convert to false, while all other values
/// convert to true. This allows a boolean context to convert the result to
/// a binary flag indicating whether there is the possibility of aliasing.
NoAlias = 0,
/// The two locations may or may not alias. This is the least precise result.
MayAlias,
/// The two locations alias, but only due to a partial overlap.
PartialAlias,
/// The two locations precisely alias each other.
MustAlias,
};
/// Flags indicating whether a memory access modifies or references memory.
///
/// This is no access at all, a modification, a reference, or both
/// a modification and a reference. These are specifically structured such that
/// they form a two bit matrix and bit-tests for 'mod' or 'ref' work with any
/// of the possible values.
enum ModRefInfo {
/// The access neither references nor modifies the value stored in memory.
MRI_NoModRef = 0,
/// The access references the value stored in memory.
MRI_Ref = 1,
/// The access modifies the value stored in memory.
MRI_Mod = 2,
/// The access both references and modifies the value stored in memory.
MRI_ModRef = MRI_Ref | MRI_Mod
};
/// The locations at which a function might access memory.
///
/// These are primarily used in conjunction with the \c AccessKind bits to
/// describe both the nature of access and the locations of access for a
/// function call.
enum FunctionModRefLocation {
/// Base case is no access to memory.
FMRL_Nowhere = 0,
/// Access to memory via argument pointers.
FMRL_ArgumentPointees = 4,
/// Access to any memory.
FMRL_Anywhere = 8 | FMRL_ArgumentPointees
};
/// Summary of how a function affects memory in the program.
///
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum FunctionModRefBehavior {
/// This function does not perform any non-local loads or stores to memory.
///
/// This property corresponds to the GCC 'const' attribute.
/// This property corresponds to the LLVM IR 'readnone' attribute.
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
FMRB_DoesNotAccessMemory = FMRL_Nowhere | MRI_NoModRef,
/// The only memory references in this function (if it has any) are
/// non-volatile loads from objects pointed to by its pointer-typed
/// arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
FMRB_OnlyReadsArgumentPointees = FMRL_ArgumentPointees | MRI_Ref,
/// The only memory references in this function (if it has any) are
/// non-volatile loads and stores from objects pointed to by its
/// pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadWriteArgMem LLVM intrinsic flag.
FMRB_OnlyAccessesArgumentPointees = FMRL_ArgumentPointees | MRI_ModRef,
/// This function does not perform any non-local stores or volatile loads,
/// but may read from any memory location.
///
/// This property corresponds to the GCC 'pure' attribute.
/// This property corresponds to the LLVM IR 'readonly' attribute.
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
FMRB_OnlyReadsMemory = FMRL_Anywhere | MRI_Ref,
/// This indicates that the function could not be classified into one of the
/// behaviors above.
FMRB_UnknownModRefBehavior = FMRL_Anywhere | MRI_ModRef
};
class AliasAnalysis {
protected:
const DataLayout *DL;
const TargetLibraryInfo *TLI;
private:
AliasAnalysis *AA; // Previous Alias Analysis to chain to.
protected:
/// InitializeAliasAnalysis - Subclasses must call this method to initialize
/// the AliasAnalysis interface before any other methods are called. This is
/// typically called by the run* methods of these subclasses. This may be
/// called multiple times.
///
void InitializeAliasAnalysis(Pass *P, const DataLayout *DL);
/// getAnalysisUsage - All alias analysis implementations should invoke this
/// directly (using AliasAnalysis::getAnalysisUsage(AU)).
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
public:
static char ID; // Class identification, replacement for typeinfo
AliasAnalysis() : DL(nullptr), TLI(nullptr), AA(nullptr) {}
virtual ~AliasAnalysis(); // We want to be subclassed
/// getTargetLibraryInfo - Return a pointer to the current TargetLibraryInfo
/// object, or null if no TargetLibraryInfo object is available.
///
const TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
/// getTypeStoreSize - Return the DataLayout store size for the given type,
/// if known, or a conservative value otherwise.
///
uint64_t getTypeStoreSize(Type *Ty);
//===--------------------------------------------------------------------===//
/// \name Alias Queries
/// @{
/// The main low level interface to the alias analysis implementation.
/// Returns an AliasResult indicating whether the two pointers are aliased to
/// each other. This is the interface that must be implemented by specific
/// alias analysis implementations.
virtual AliasResult alias(const MemoryLocation &LocA,
const MemoryLocation &LocB);
/// A convenience wrapper around the primary \c alias interface.
AliasResult alias(const Value *V1, uint64_t V1Size, const Value *V2,
uint64_t V2Size) {
return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
}
/// A convenience wrapper around the primary \c alias interface.
AliasResult alias(const Value *V1, const Value *V2) {
return alias(V1, MemoryLocation::UnknownSize, V2,
MemoryLocation::UnknownSize);
}
/// A trivial helper function to check to see if the specified pointers are
/// no-alias.
bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return alias(LocA, LocB) == NoAlias;
}
/// A convenience wrapper around the \c isNoAlias helper interface.
bool isNoAlias(const Value *V1, uint64_t V1Size, const Value *V2,
uint64_t V2Size) {
return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
}
/// A convenience wrapper around the \c isNoAlias helper interface.
bool isNoAlias(const Value *V1, const Value *V2) {
return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
}
/// A trivial helper function to check to see if the specified pointers are
/// must-alias.
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return alias(LocA, LocB) == MustAlias;
}
/// A convenience wrapper around the \c isMustAlias helper interface.
bool isMustAlias(const Value *V1, const Value *V2) {
return alias(V1, 1, V2, 1) == MustAlias;
}
/// Checks whether the given location points to constant memory, or if
/// \p OrLocal is true whether it points to a local alloca.
virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal = false);
/// A convenience wrapper around the primary \c pointsToConstantMemory
/// interface.
bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
return pointsToConstantMemory(MemoryLocation(P), OrLocal);
}
/// @}
//===--------------------------------------------------------------------===//
/// \name Simple mod/ref information
/// @{
/// Get the ModRef info associated with a pointer argument of a callsite. The
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
/// that these bits do not necessarily account for the overall behavior of
/// the function, but rather only provide additional per-argument
/// information.
virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
/// Return the behavior of the given call site.
virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
/// Return the behavior when calling the given function.
virtual FunctionModRefBehavior getModRefBehavior(const Function *F);
/// Checks if the specified call is known to never read or write memory.
///
/// Note that if the call only reads from known-constant memory, it is also
/// legal to return true. Also, calls that unwind the stack are legal for
/// this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// without worrying about aliasing properties, and many calls have this
/// property (e.g. calls to 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
bool doesNotAccessMemory(ImmutableCallSite CS) {
return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
}
/// Checks if the specified function is known to never read or write memory.
///
/// Note that if the function only reads from known-constant memory, it is
/// also legal to return true. Also, function that unwind the stack are legal
/// for this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// to such functions without worrying about aliasing properties, and many
/// functions have this property (e.g. 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
bool doesNotAccessMemory(const Function *F) {
return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
}
/// Checks if the specified call is known to only read from non-volatile
/// memory (or not access memory at all).
///
/// Calls that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
bool onlyReadsMemory(ImmutableCallSite CS) {
return onlyReadsMemory(getModRefBehavior(CS));
}
/// Checks if the specified function is known to only read from non-volatile
/// memory (or not access memory at all).
///
/// Functions that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
bool onlyReadsMemory(const Function *F) {
return onlyReadsMemory(getModRefBehavior(F));
}
/// Checks if functions with the specified behavior are known to only read
/// from non-volatile memory (or not access memory at all).
static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
return !(MRB & MRI_Mod);
}
/// Checks if functions with the specified behavior are known to read and
/// write at most from objects pointed to by their pointer-typed arguments
/// (with arbitrary offsets).
static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
}
/// Checks if functions with the specified behavior are known to potentially
/// read or write from objects pointed to be their pointer-typed arguments
/// (with arbitrary offsets).
static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
return (MRB & MRI_ModRef) && (MRB & FMRL_ArgumentPointees);
}
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc);
/// getModRefInfo (for call sites) - A convenience wrapper.
ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
uint64_t Size) {
return getModRefInfo(CS, MemoryLocation(P, Size));
}
/// getModRefInfo (for calls) - Return information about whether
/// a particular call modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
return getModRefInfo(ImmutableCallSite(C), Loc);
}
/// getModRefInfo (for calls) - A convenience wrapper.
ModRefInfo getModRefInfo(const CallInst *C, const Value *P, uint64_t Size) {
return getModRefInfo(C, MemoryLocation(P, Size));
}
/// getModRefInfo (for invokes) - Return information about whether
/// a particular invoke modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
return getModRefInfo(ImmutableCallSite(I), Loc);
}
/// getModRefInfo (for invokes) - A convenience wrapper.
ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P, uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo (for loads) - Return information about whether
/// a particular load modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
/// getModRefInfo (for loads) - A convenience wrapper.
ModRefInfo getModRefInfo(const LoadInst *L, const Value *P, uint64_t Size) {
return getModRefInfo(L, MemoryLocation(P, Size));
}
/// getModRefInfo (for stores) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
/// getModRefInfo (for stores) - A convenience wrapper.
ModRefInfo getModRefInfo(const StoreInst *S, const Value *P, uint64_t Size) {
return getModRefInfo(S, MemoryLocation(P, Size));
}
/// getModRefInfo (for fences) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
// Conservatively correct. (We could possibly be a bit smarter if
// Loc is a alloca that doesn't escape.)
return MRI_ModRef;
}
/// getModRefInfo (for fences) - A convenience wrapper.
ModRefInfo getModRefInfo(const FenceInst *S, const Value *P, uint64_t Size) {
return getModRefInfo(S, MemoryLocation(P, Size));
}
/// getModRefInfo (for cmpxchges) - Return information about whether
/// a particular cmpxchg modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc);
/// getModRefInfo (for cmpxchges) - A convenience wrapper.
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
unsigned Size) {
return getModRefInfo(CX, MemoryLocation(P, Size));
}
/// getModRefInfo (for atomicrmws) - Return information about whether
/// a particular atomicrmw modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
/// getModRefInfo (for atomicrmws) - A convenience wrapper.
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
unsigned Size) {
return getModRefInfo(RMW, MemoryLocation(P, Size));
}
/// getModRefInfo (for va_args) - Return information about whether
/// a particular va_arg modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
/// getModRefInfo (for va_args) - A convenience wrapper.
ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P, uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// Check whether or not an instruction may read or write memory (without
/// regard to a specific location).
///
/// For function calls, this delegates to the alias-analysis specific
/// call-site mod-ref behavior queries. Otherwise it delegates to the generic
/// mod ref information query without a location.
ModRefInfo getModRefInfo(const Instruction *I) {
if (auto CS = ImmutableCallSite(I)) {
auto MRB = getModRefBehavior(CS);
if (MRB & MRI_ModRef)
return MRI_ModRef;
else if (MRB & MRI_Ref)
return MRI_Ref;
else if (MRB & MRI_Mod)
return MRI_Mod;
return MRI_NoModRef;
}
return getModRefInfo(I, MemoryLocation());
}
/// Check whether or not an instruction may read or write the specified
/// memory location.
///
/// An instruction that doesn't read or write memory may be trivially LICM'd
/// for example.
///
/// This primarily delegates to specific helpers above.
ModRefInfo getModRefInfo(const Instruction *I, const MemoryLocation &Loc) {
switch (I->getOpcode()) {
case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
case Instruction::AtomicCmpXchg:
return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
case Instruction::AtomicRMW:
return getModRefInfo((const AtomicRMWInst*)I, Loc);
case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
default:
return MRI_NoModRef;
}
}
/// A convenience wrapper for constructing the memory location.
ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
uint64_t Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// Return information about whether a call and an instruction may refer to
/// the same memory locations.
ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
/// Return information about whether two call sites may refer to the same set
/// of memory locations. See the AA documentation for details:
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2);
/// \brief Return information about whether a particular call site modifies
/// or reads the specified memory location \p MemLoc before instruction \p I
/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
/// instruction ordering queries inside the BasicBlock containing \p I.
ModRefInfo callCapturesBefore(const Instruction *I,
const MemoryLocation &MemLoc, DominatorTree *DT,
OrderedBasicBlock *OBB = nullptr);
/// \brief A convenience wrapper to synthesize a memory location.
ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
uint64_t Size, DominatorTree *DT,
OrderedBasicBlock *OBB = nullptr) {
return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
}
/// @}
//===--------------------------------------------------------------------===//
/// \name Higher level methods for querying mod/ref information.
/// @{
/// Check if it is possible for execution of the specified basic block to
/// modify the location Loc.
bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
/// A convenience wrapper synthesizing a memory location.
bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
uint64_t Size) {
return canBasicBlockModify(BB, MemoryLocation(P, Size));
}
/// Check if it is possible for the execution of the specified instructions
/// to mod\ref (according to the mode) the location Loc.
///
/// The instructions to consider are all of the instructions in the range of
/// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
const MemoryLocation &Loc,
const ModRefInfo Mode);
/// A convenience wrapper synthesizing a memory location.
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
const Value *Ptr, uint64_t Size,
const ModRefInfo Mode) {
return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
}
};
/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool isNoAliasCall(const Value *V);
/// isNoAliasArgument - Return true if this is an argument with the noalias
/// attribute.
bool isNoAliasArgument(const Value *V);
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object. This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas
/// ByVal and NoAlias Arguments
/// NoAlias returns (e.g. calls to malloc)
///
bool isIdentifiedObject(const Value *V);
/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
/// at the function-level. Different IdentifiedFunctionLocals can't alias.
/// Further, an IdentifiedFunctionLocal can not alias with any function
/// arguments other than itself, which is not necessarily true for
/// IdentifiedObjects.
bool isIdentifiedFunctionLocal(const Value *V);
} // End llvm namespace
#endif