1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/CodeGen/LexicalScopes.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

338 lines
12 KiB
C++

//===- LexicalScopes.cpp - Collecting lexical scope info ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements LexicalScopes analysis.
//
// This pass collects lexical scope information and maps machine instructions
// to respective lexical scopes.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "lexicalscopes"
/// reset - Reset the instance so that it's prepared for another function.
void LexicalScopes::reset() {
MF = nullptr;
CurrentFnLexicalScope = nullptr;
LexicalScopeMap.clear();
AbstractScopeMap.clear();
InlinedLexicalScopeMap.clear();
AbstractScopesList.clear();
}
/// initialize - Scan machine function and constuct lexical scope nest.
void LexicalScopes::initialize(const MachineFunction &Fn) {
reset();
// Don't attempt any lexical scope creation for a NoDebug compile unit.
if (Fn.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
DICompileUnit::NoDebug)
return;
MF = &Fn;
SmallVector<InsnRange, 4> MIRanges;
DenseMap<const MachineInstr *, LexicalScope *> MI2ScopeMap;
extractLexicalScopes(MIRanges, MI2ScopeMap);
if (CurrentFnLexicalScope) {
constructScopeNest(CurrentFnLexicalScope);
assignInstructionRanges(MIRanges, MI2ScopeMap);
}
}
/// extractLexicalScopes - Extract instruction ranges for each lexical scopes
/// for the given machine function.
void LexicalScopes::extractLexicalScopes(
SmallVectorImpl<InsnRange> &MIRanges,
DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
// Scan each instruction and create scopes. First build working set of scopes.
for (const auto &MBB : *MF) {
const MachineInstr *RangeBeginMI = nullptr;
const MachineInstr *PrevMI = nullptr;
const DILocation *PrevDL = nullptr;
for (const auto &MInsn : MBB) {
// Check if instruction has valid location information.
const DILocation *MIDL = MInsn.getDebugLoc();
if (!MIDL) {
PrevMI = &MInsn;
continue;
}
// If scope has not changed then skip this instruction.
if (MIDL == PrevDL) {
PrevMI = &MInsn;
continue;
}
// Ignore DBG_VALUE and similar instruction that do not contribute to any
// instruction in the output.
if (MInsn.isMetaInstruction())
continue;
if (RangeBeginMI) {
// If we have already seen a beginning of an instruction range and
// current instruction scope does not match scope of first instruction
// in this range then create a new instruction range.
InsnRange R(RangeBeginMI, PrevMI);
MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL);
MIRanges.push_back(R);
}
// This is a beginning of a new instruction range.
RangeBeginMI = &MInsn;
// Reset previous markers.
PrevMI = &MInsn;
PrevDL = MIDL;
}
// Create last instruction range.
if (RangeBeginMI && PrevMI && PrevDL) {
InsnRange R(RangeBeginMI, PrevMI);
MIRanges.push_back(R);
MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL);
}
}
}
/// findLexicalScope - Find lexical scope, either regular or inlined, for the
/// given DebugLoc. Return NULL if not found.
LexicalScope *LexicalScopes::findLexicalScope(const DILocation *DL) {
DILocalScope *Scope = DL->getScope();
if (!Scope)
return nullptr;
// The scope that we were created with could have an extra file - which
// isn't what we care about in this case.
Scope = Scope->getNonLexicalBlockFileScope();
if (auto *IA = DL->getInlinedAt()) {
auto I = InlinedLexicalScopeMap.find(std::make_pair(Scope, IA));
return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr;
}
return findLexicalScope(Scope);
}
/// getOrCreateLexicalScope - Find lexical scope for the given DebugLoc. If
/// not available then create new lexical scope.
LexicalScope *LexicalScopes::getOrCreateLexicalScope(const DILocalScope *Scope,
const DILocation *IA) {
if (IA) {
// Skip scopes inlined from a NoDebug compile unit.
if (Scope->getSubprogram()->getUnit()->getEmissionKind() ==
DICompileUnit::NoDebug)
return getOrCreateLexicalScope(IA);
// Create an abstract scope for inlined function.
getOrCreateAbstractScope(Scope);
// Create an inlined scope for inlined function.
return getOrCreateInlinedScope(Scope, IA);
}
return getOrCreateRegularScope(Scope);
}
/// getOrCreateRegularScope - Find or create a regular lexical scope.
LexicalScope *
LexicalScopes::getOrCreateRegularScope(const DILocalScope *Scope) {
assert(Scope && "Invalid Scope encoding!");
Scope = Scope->getNonLexicalBlockFileScope();
auto I = LexicalScopeMap.find(Scope);
if (I != LexicalScopeMap.end())
return &I->second;
// FIXME: Should the following dyn_cast be DILexicalBlock?
LexicalScope *Parent = nullptr;
if (auto *Block = dyn_cast<DILexicalBlockBase>(Scope))
Parent = getOrCreateLexicalScope(Block->getScope());
I = LexicalScopeMap.emplace(std::piecewise_construct,
std::forward_as_tuple(Scope),
std::forward_as_tuple(Parent, Scope, nullptr,
false)).first;
if (!Parent) {
assert(cast<DISubprogram>(Scope)->describes(&MF->getFunction()));
assert(!CurrentFnLexicalScope);
CurrentFnLexicalScope = &I->second;
}
return &I->second;
}
/// getOrCreateInlinedScope - Find or create an inlined lexical scope.
LexicalScope *
LexicalScopes::getOrCreateInlinedScope(const DILocalScope *Scope,
const DILocation *InlinedAt) {
assert(Scope && "Invalid Scope encoding!");
Scope = Scope->getNonLexicalBlockFileScope();
std::pair<const DILocalScope *, const DILocation *> P(Scope, InlinedAt);
auto I = InlinedLexicalScopeMap.find(P);
if (I != InlinedLexicalScopeMap.end())
return &I->second;
LexicalScope *Parent;
if (auto *Block = dyn_cast<DILexicalBlockBase>(Scope))
Parent = getOrCreateInlinedScope(Block->getScope(), InlinedAt);
else
Parent = getOrCreateLexicalScope(InlinedAt);
I = InlinedLexicalScopeMap
.emplace(std::piecewise_construct, std::forward_as_tuple(P),
std::forward_as_tuple(Parent, Scope, InlinedAt, false))
.first;
return &I->second;
}
/// getOrCreateAbstractScope - Find or create an abstract lexical scope.
LexicalScope *
LexicalScopes::getOrCreateAbstractScope(const DILocalScope *Scope) {
assert(Scope && "Invalid Scope encoding!");
Scope = Scope->getNonLexicalBlockFileScope();
auto I = AbstractScopeMap.find(Scope);
if (I != AbstractScopeMap.end())
return &I->second;
// FIXME: Should the following isa be DILexicalBlock?
LexicalScope *Parent = nullptr;
if (auto *Block = dyn_cast<DILexicalBlockBase>(Scope))
Parent = getOrCreateAbstractScope(Block->getScope());
I = AbstractScopeMap.emplace(std::piecewise_construct,
std::forward_as_tuple(Scope),
std::forward_as_tuple(Parent, Scope,
nullptr, true)).first;
if (isa<DISubprogram>(Scope))
AbstractScopesList.push_back(&I->second);
return &I->second;
}
/// constructScopeNest
void LexicalScopes::constructScopeNest(LexicalScope *Scope) {
assert(Scope && "Unable to calculate scope dominance graph!");
SmallVector<LexicalScope *, 4> WorkStack;
WorkStack.push_back(Scope);
unsigned Counter = 0;
while (!WorkStack.empty()) {
LexicalScope *WS = WorkStack.back();
const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
bool visitedChildren = false;
for (auto &ChildScope : Children)
if (!ChildScope->getDFSOut()) {
WorkStack.push_back(ChildScope);
visitedChildren = true;
ChildScope->setDFSIn(++Counter);
break;
}
if (!visitedChildren) {
WorkStack.pop_back();
WS->setDFSOut(++Counter);
}
}
}
/// assignInstructionRanges - Find ranges of instructions covered by each
/// lexical scope.
void LexicalScopes::assignInstructionRanges(
SmallVectorImpl<InsnRange> &MIRanges,
DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
LexicalScope *PrevLexicalScope = nullptr;
for (const auto &R : MIRanges) {
LexicalScope *S = MI2ScopeMap.lookup(R.first);
assert(S && "Lost LexicalScope for a machine instruction!");
if (PrevLexicalScope && !PrevLexicalScope->dominates(S))
PrevLexicalScope->closeInsnRange(S);
S->openInsnRange(R.first);
S->extendInsnRange(R.second);
PrevLexicalScope = S;
}
if (PrevLexicalScope)
PrevLexicalScope->closeInsnRange();
}
/// getMachineBasicBlocks - Populate given set using machine basic blocks which
/// have machine instructions that belong to lexical scope identified by
/// DebugLoc.
void LexicalScopes::getMachineBasicBlocks(
const DILocation *DL, SmallPtrSetImpl<const MachineBasicBlock *> &MBBs) {
assert(MF && "Method called on a uninitialized LexicalScopes object!");
MBBs.clear();
LexicalScope *Scope = getOrCreateLexicalScope(DL);
if (!Scope)
return;
if (Scope == CurrentFnLexicalScope) {
for (const auto &MBB : *MF)
MBBs.insert(&MBB);
return;
}
SmallVectorImpl<InsnRange> &InsnRanges = Scope->getRanges();
for (auto &R : InsnRanges)
MBBs.insert(R.first->getParent());
}
/// dominates - Return true if DebugLoc's lexical scope dominates at least one
/// machine instruction's lexical scope in a given machine basic block.
bool LexicalScopes::dominates(const DILocation *DL, MachineBasicBlock *MBB) {
assert(MF && "Unexpected uninitialized LexicalScopes object!");
LexicalScope *Scope = getOrCreateLexicalScope(DL);
if (!Scope)
return false;
// Current function scope covers all basic blocks in the function.
if (Scope == CurrentFnLexicalScope && MBB->getParent() == MF)
return true;
bool Result = false;
for (auto &I : *MBB) {
if (const DILocation *IDL = I.getDebugLoc())
if (LexicalScope *IScope = getOrCreateLexicalScope(IDL))
if (Scope->dominates(IScope))
return true;
}
return Result;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LexicalScope::dump(unsigned Indent) const {
raw_ostream &err = dbgs();
err.indent(Indent);
err << "DFSIn: " << DFSIn << " DFSOut: " << DFSOut << "\n";
const MDNode *N = Desc;
err.indent(Indent);
N->dump();
if (AbstractScope)
err << std::string(Indent, ' ') << "Abstract Scope\n";
if (!Children.empty())
err << std::string(Indent + 2, ' ') << "Children ...\n";
for (unsigned i = 0, e = Children.size(); i != e; ++i)
if (Children[i] != this)
Children[i]->dump(Indent + 2);
}
#endif