1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 21:13:02 +02:00
llvm-mirror/lib/IR/Dominators.cpp
Chandler Carruth dad102bcc9 [PM] Change the static object whose address is used to uniquely identify
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.

This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.

However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.

And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.

This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.

We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.

Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!

While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.

Differential Revision: https://reviews.llvm.org/D27031

llvm-svn: 287783
2016-11-23 17:53:26 +00:00

360 lines
12 KiB
C++

//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators. Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed. Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Dominators.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
// Always verify dominfo if expensive checking is enabled.
#ifdef EXPENSIVE_CHECKS
static bool VerifyDomInfo = true;
#else
static bool VerifyDomInfo = false;
#endif
static cl::opt<bool,true>
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
cl::desc("Verify dominator info (time consuming)"));
bool BasicBlockEdge::isSingleEdge() const {
const TerminatorInst *TI = Start->getTerminator();
unsigned NumEdgesToEnd = 0;
for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
if (TI->getSuccessor(i) == End)
++NumEdgesToEnd;
if (NumEdgesToEnd >= 2)
return false;
}
assert(NumEdgesToEnd == 1);
return true;
}
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// Provide public access to DominatorTree information. Implementation details
// can be found in Dominators.h, GenericDomTree.h, and
// GenericDomTreeConstruction.h.
//
//===----------------------------------------------------------------------===//
template class llvm::DomTreeNodeBase<BasicBlock>;
template class llvm::DominatorTreeBase<BasicBlock>;
template void llvm::Calculate<Function, BasicBlock *>(
DominatorTreeBase<
typename std::remove_pointer<GraphTraits<BasicBlock *>::NodeRef>::type>
&DT,
Function &F);
template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
DominatorTreeBase<typename std::remove_pointer<
GraphTraits<Inverse<BasicBlock *>>::NodeRef>::type> &DT,
Function &F);
// dominates - Return true if Def dominates a use in User. This performs
// the special checks necessary if Def and User are in the same basic block.
// Note that Def doesn't dominate a use in Def itself!
bool DominatorTree::dominates(const Instruction *Def,
const Instruction *User) const {
const BasicBlock *UseBB = User->getParent();
const BasicBlock *DefBB = Def->getParent();
// Any unreachable use is dominated, even if Def == User.
if (!isReachableFromEntry(UseBB))
return true;
// Unreachable definitions don't dominate anything.
if (!isReachableFromEntry(DefBB))
return false;
// An instruction doesn't dominate a use in itself.
if (Def == User)
return false;
// The value defined by an invoke dominates an instruction only if it
// dominates every instruction in UseBB.
// A PHI is dominated only if the instruction dominates every possible use in
// the UseBB.
if (isa<InvokeInst>(Def) || isa<PHINode>(User))
return dominates(Def, UseBB);
if (DefBB != UseBB)
return dominates(DefBB, UseBB);
// Loop through the basic block until we find Def or User.
BasicBlock::const_iterator I = DefBB->begin();
for (; &*I != Def && &*I != User; ++I)
/*empty*/;
return &*I == Def;
}
// true if Def would dominate a use in any instruction in UseBB.
// note that dominates(Def, Def->getParent()) is false.
bool DominatorTree::dominates(const Instruction *Def,
const BasicBlock *UseBB) const {
const BasicBlock *DefBB = Def->getParent();
// Any unreachable use is dominated, even if DefBB == UseBB.
if (!isReachableFromEntry(UseBB))
return true;
// Unreachable definitions don't dominate anything.
if (!isReachableFromEntry(DefBB))
return false;
if (DefBB == UseBB)
return false;
// Invoke results are only usable in the normal destination, not in the
// exceptional destination.
if (const auto *II = dyn_cast<InvokeInst>(Def)) {
BasicBlock *NormalDest = II->getNormalDest();
BasicBlockEdge E(DefBB, NormalDest);
return dominates(E, UseBB);
}
return dominates(DefBB, UseBB);
}
bool DominatorTree::dominates(const BasicBlockEdge &BBE,
const BasicBlock *UseBB) const {
// Assert that we have a single edge. We could handle them by simply
// returning false, but since isSingleEdge is linear on the number of
// edges, the callers can normally handle them more efficiently.
assert(BBE.isSingleEdge() &&
"This function is not efficient in handling multiple edges");
// If the BB the edge ends in doesn't dominate the use BB, then the
// edge also doesn't.
const BasicBlock *Start = BBE.getStart();
const BasicBlock *End = BBE.getEnd();
if (!dominates(End, UseBB))
return false;
// Simple case: if the end BB has a single predecessor, the fact that it
// dominates the use block implies that the edge also does.
if (End->getSinglePredecessor())
return true;
// The normal edge from the invoke is critical. Conceptually, what we would
// like to do is split it and check if the new block dominates the use.
// With X being the new block, the graph would look like:
//
// DefBB
// /\ . .
// / \ . .
// / \ . .
// / \ | |
// A X B C
// | \ | /
// . \|/
// . NormalDest
// .
//
// Given the definition of dominance, NormalDest is dominated by X iff X
// dominates all of NormalDest's predecessors (X, B, C in the example). X
// trivially dominates itself, so we only have to find if it dominates the
// other predecessors. Since the only way out of X is via NormalDest, X can
// only properly dominate a node if NormalDest dominates that node too.
for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
PI != E; ++PI) {
const BasicBlock *BB = *PI;
if (BB == Start)
continue;
if (!dominates(End, BB))
return false;
}
return true;
}
bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
// Assert that we have a single edge. We could handle them by simply
// returning false, but since isSingleEdge is linear on the number of
// edges, the callers can normally handle them more efficiently.
assert(BBE.isSingleEdge() &&
"This function is not efficient in handling multiple edges");
Instruction *UserInst = cast<Instruction>(U.getUser());
// A PHI in the end of the edge is dominated by it.
PHINode *PN = dyn_cast<PHINode>(UserInst);
if (PN && PN->getParent() == BBE.getEnd() &&
PN->getIncomingBlock(U) == BBE.getStart())
return true;
// Otherwise use the edge-dominates-block query, which
// handles the crazy critical edge cases properly.
const BasicBlock *UseBB;
if (PN)
UseBB = PN->getIncomingBlock(U);
else
UseBB = UserInst->getParent();
return dominates(BBE, UseBB);
}
bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
Instruction *UserInst = cast<Instruction>(U.getUser());
const BasicBlock *DefBB = Def->getParent();
// Determine the block in which the use happens. PHI nodes use
// their operands on edges; simulate this by thinking of the use
// happening at the end of the predecessor block.
const BasicBlock *UseBB;
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
UseBB = PN->getIncomingBlock(U);
else
UseBB = UserInst->getParent();
// Any unreachable use is dominated, even if Def == User.
if (!isReachableFromEntry(UseBB))
return true;
// Unreachable definitions don't dominate anything.
if (!isReachableFromEntry(DefBB))
return false;
// Invoke instructions define their return values on the edges to their normal
// successors, so we have to handle them specially.
// Among other things, this means they don't dominate anything in
// their own block, except possibly a phi, so we don't need to
// walk the block in any case.
if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
BasicBlock *NormalDest = II->getNormalDest();
BasicBlockEdge E(DefBB, NormalDest);
return dominates(E, U);
}
// If the def and use are in different blocks, do a simple CFG dominator
// tree query.
if (DefBB != UseBB)
return dominates(DefBB, UseBB);
// Ok, def and use are in the same block. If the def is an invoke, it
// doesn't dominate anything in the block. If it's a PHI, it dominates
// everything in the block.
if (isa<PHINode>(UserInst))
return true;
// Otherwise, just loop through the basic block until we find Def or User.
BasicBlock::const_iterator I = DefBB->begin();
for (; &*I != Def && &*I != UserInst; ++I)
/*empty*/;
return &*I != UserInst;
}
bool DominatorTree::isReachableFromEntry(const Use &U) const {
Instruction *I = dyn_cast<Instruction>(U.getUser());
// ConstantExprs aren't really reachable from the entry block, but they
// don't need to be treated like unreachable code either.
if (!I) return true;
// PHI nodes use their operands on their incoming edges.
if (PHINode *PN = dyn_cast<PHINode>(I))
return isReachableFromEntry(PN->getIncomingBlock(U));
// Everything else uses their operands in their own block.
return isReachableFromEntry(I->getParent());
}
void DominatorTree::verifyDomTree() const {
Function &F = *getRoot()->getParent();
DominatorTree OtherDT;
OtherDT.recalculate(F);
if (compare(OtherDT)) {
errs() << "DominatorTree is not up to date!\nComputed:\n";
print(errs());
errs() << "\nActual:\n";
OtherDT.print(errs());
abort();
}
}
//===----------------------------------------------------------------------===//
// DominatorTreeAnalysis and related pass implementations
//===----------------------------------------------------------------------===//
//
// This implements the DominatorTreeAnalysis which is used with the new pass
// manager. It also implements some methods from utility passes.
//
//===----------------------------------------------------------------------===//
DominatorTree DominatorTreeAnalysis::run(Function &F,
FunctionAnalysisManager &) {
DominatorTree DT;
DT.recalculate(F);
return DT;
}
AnalysisKey DominatorTreeAnalysis::Key;
DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
OS << "DominatorTree for function: " << F.getName() << "\n";
AM.getResult<DominatorTreeAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}
PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
FunctionAnalysisManager &AM) {
AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree();
return PreservedAnalyses::all();
}
//===----------------------------------------------------------------------===//
// DominatorTreeWrapperPass Implementation
//===----------------------------------------------------------------------===//
//
// The implementation details of the wrapper pass that holds a DominatorTree
// suitable for use with the legacy pass manager.
//
//===----------------------------------------------------------------------===//
char DominatorTreeWrapperPass::ID = 0;
INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
"Dominator Tree Construction", true, true)
bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
DT.recalculate(F);
return false;
}
void DominatorTreeWrapperPass::verifyAnalysis() const {
if (VerifyDomInfo)
DT.verifyDomTree();
}
void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
DT.print(OS);
}