1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/IR/AsmWriter.cpp
James Y Knight 4e50d0475a IR: Support parsing numeric block ids, and emit them in textual output.
Just as as llvm IR supports explicitly specifying numeric value ids
for instructions, and emits them by default in textual output, now do
the same for blocks.

This is a slightly incompatible change in the textual IR format.

Previously, llvm would parse numeric labels as string names. E.g.
  define void @f() {
    br label %"55"
  55:
    ret void
  }
defined a label *named* "55", even without needing to be quoted, while
the reference required quoting. Now, if you intend a block label which
looks like a value number to be a name, you must quote it in the
definition too (e.g. `"55":`).

Previously, llvm would print nameless blocks only as a comment, and
would omit it if there was no predecessor. This could cause confusion
for readers of the IR, just as unnamed instructions did prior to the
addition of "%5 = " syntax, back in 2008 (PR2480).

Now, it will always print a label for an unnamed block, with the
exception of the entry block. (IMO it may be better to print it for
the entry-block as well. However, that requires updating many more
tests.)

Thus, the following is supported, and is the canonical printing:
  define i32 @f(i32, i32) {
    %3 = add i32 %0, %1
    br label %4

  4:
    ret i32 %3
  }

New test cases covering this behavior are added, and other tests
updated as required.

Differential Revision: https://reviews.llvm.org/D58548

llvm-svn: 356789
2019-03-22 18:27:13 +00:00

4382 lines
144 KiB
C++

//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This library implements `print` family of functions in classes like
// Module, Function, Value, etc. In-memory representation of those classes is
// converted to IR strings.
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalIndirectSymbol.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/UseListOrder.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
// Make virtual table appear in this compilation unit.
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//
namespace {
struct OrderMap {
DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
unsigned size() const { return IDs.size(); }
std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
std::pair<unsigned, bool> lookup(const Value *V) const {
return IDs.lookup(V);
}
void index(const Value *V) {
// Explicitly sequence get-size and insert-value operations to avoid UB.
unsigned ID = IDs.size() + 1;
IDs[V].first = ID;
}
};
} // end anonymous namespace
static void orderValue(const Value *V, OrderMap &OM) {
if (OM.lookup(V).first)
return;
if (const Constant *C = dyn_cast<Constant>(V))
if (C->getNumOperands() && !isa<GlobalValue>(C))
for (const Value *Op : C->operands())
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
orderValue(Op, OM);
// Note: we cannot cache this lookup above, since inserting into the map
// changes the map's size, and thus affects the other IDs.
OM.index(V);
}
static OrderMap orderModule(const Module *M) {
// This needs to match the order used by ValueEnumerator::ValueEnumerator()
// and ValueEnumerator::incorporateFunction().
OrderMap OM;
for (const GlobalVariable &G : M->globals()) {
if (G.hasInitializer())
if (!isa<GlobalValue>(G.getInitializer()))
orderValue(G.getInitializer(), OM);
orderValue(&G, OM);
}
for (const GlobalAlias &A : M->aliases()) {
if (!isa<GlobalValue>(A.getAliasee()))
orderValue(A.getAliasee(), OM);
orderValue(&A, OM);
}
for (const GlobalIFunc &I : M->ifuncs()) {
if (!isa<GlobalValue>(I.getResolver()))
orderValue(I.getResolver(), OM);
orderValue(&I, OM);
}
for (const Function &F : *M) {
for (const Use &U : F.operands())
if (!isa<GlobalValue>(U.get()))
orderValue(U.get(), OM);
orderValue(&F, OM);
if (F.isDeclaration())
continue;
for (const Argument &A : F.args())
orderValue(&A, OM);
for (const BasicBlock &BB : F) {
orderValue(&BB, OM);
for (const Instruction &I : BB) {
for (const Value *Op : I.operands())
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
isa<InlineAsm>(*Op))
orderValue(Op, OM);
orderValue(&I, OM);
}
}
}
return OM;
}
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
unsigned ID, const OrderMap &OM,
UseListOrderStack &Stack) {
// Predict use-list order for this one.
using Entry = std::pair<const Use *, unsigned>;
SmallVector<Entry, 64> List;
for (const Use &U : V->uses())
// Check if this user will be serialized.
if (OM.lookup(U.getUser()).first)
List.push_back(std::make_pair(&U, List.size()));
if (List.size() < 2)
// We may have lost some users.
return;
bool GetsReversed =
!isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
if (auto *BA = dyn_cast<BlockAddress>(V))
ID = OM.lookup(BA->getBasicBlock()).first;
llvm::sort(List, [&](const Entry &L, const Entry &R) {
const Use *LU = L.first;
const Use *RU = R.first;
if (LU == RU)
return false;
auto LID = OM.lookup(LU->getUser()).first;
auto RID = OM.lookup(RU->getUser()).first;
// If ID is 4, then expect: 7 6 5 1 2 3.
if (LID < RID) {
if (GetsReversed)
if (RID <= ID)
return true;
return false;
}
if (RID < LID) {
if (GetsReversed)
if (LID <= ID)
return false;
return true;
}
// LID and RID are equal, so we have different operands of the same user.
// Assume operands are added in order for all instructions.
if (GetsReversed)
if (LID <= ID)
return LU->getOperandNo() < RU->getOperandNo();
return LU->getOperandNo() > RU->getOperandNo();
});
if (std::is_sorted(
List.begin(), List.end(),
[](const Entry &L, const Entry &R) { return L.second < R.second; }))
// Order is already correct.
return;
// Store the shuffle.
Stack.emplace_back(V, F, List.size());
assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
for (size_t I = 0, E = List.size(); I != E; ++I)
Stack.back().Shuffle[I] = List[I].second;
}
static void predictValueUseListOrder(const Value *V, const Function *F,
OrderMap &OM, UseListOrderStack &Stack) {
auto &IDPair = OM[V];
assert(IDPair.first && "Unmapped value");
if (IDPair.second)
// Already predicted.
return;
// Do the actual prediction.
IDPair.second = true;
if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
// Recursive descent into constants.
if (const Constant *C = dyn_cast<Constant>(V))
if (C->getNumOperands()) // Visit GlobalValues.
for (const Value *Op : C->operands())
if (isa<Constant>(Op)) // Visit GlobalValues.
predictValueUseListOrder(Op, F, OM, Stack);
}
static UseListOrderStack predictUseListOrder(const Module *M) {
OrderMap OM = orderModule(M);
// Use-list orders need to be serialized after all the users have been added
// to a value, or else the shuffles will be incomplete. Store them per
// function in a stack.
//
// Aside from function order, the order of values doesn't matter much here.
UseListOrderStack Stack;
// We want to visit the functions backward now so we can list function-local
// constants in the last Function they're used in. Module-level constants
// have already been visited above.
for (const Function &F : make_range(M->rbegin(), M->rend())) {
if (F.isDeclaration())
continue;
for (const BasicBlock &BB : F)
predictValueUseListOrder(&BB, &F, OM, Stack);
for (const Argument &A : F.args())
predictValueUseListOrder(&A, &F, OM, Stack);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
for (const Value *Op : I.operands())
if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
predictValueUseListOrder(Op, &F, OM, Stack);
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
predictValueUseListOrder(&I, &F, OM, Stack);
}
// Visit globals last.
for (const GlobalVariable &G : M->globals())
predictValueUseListOrder(&G, nullptr, OM, Stack);
for (const Function &F : *M)
predictValueUseListOrder(&F, nullptr, OM, Stack);
for (const GlobalAlias &A : M->aliases())
predictValueUseListOrder(&A, nullptr, OM, Stack);
for (const GlobalIFunc &I : M->ifuncs())
predictValueUseListOrder(&I, nullptr, OM, Stack);
for (const GlobalVariable &G : M->globals())
if (G.hasInitializer())
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
for (const GlobalAlias &A : M->aliases())
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
for (const GlobalIFunc &I : M->ifuncs())
predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
for (const Function &F : *M)
for (const Use &U : F.operands())
predictValueUseListOrder(U.get(), nullptr, OM, Stack);
return Stack;
}
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : nullptr;
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : nullptr;
if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
return M ? M->getParent() : nullptr;
}
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
for (const User *U : MAV->users())
if (isa<Instruction>(U))
if (const Module *M = getModuleFromVal(U))
return M;
return nullptr;
}
return nullptr;
}
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
switch (cc) {
default: Out << "cc" << cc; break;
case CallingConv::Fast: Out << "fastcc"; break;
case CallingConv::Cold: Out << "coldcc"; break;
case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
case CallingConv::AnyReg: Out << "anyregcc"; break;
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
case CallingConv::GHC: Out << "ghccc"; break;
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
case CallingConv::PTX_Device: Out << "ptx_device"; break;
case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
case CallingConv::Win64: Out << "win64cc"; break;
case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
case CallingConv::Swift: Out << "swiftcc"; break;
case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
case CallingConv::HHVM: Out << "hhvmcc"; break;
case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
}
}
enum PrefixType {
GlobalPrefix,
ComdatPrefix,
LabelPrefix,
LocalPrefix,
NoPrefix
};
void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
assert(!Name.empty() && "Cannot get empty name!");
// Scan the name to see if it needs quotes first.
bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
if (!NeedsQuotes) {
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
// By making this unsigned, the value passed in to isalnum will always be
// in the range 0-255. This is important when building with MSVC because
// its implementation will assert. This situation can arise when dealing
// with UTF-8 multibyte characters.
unsigned char C = Name[i];
if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
C != '_') {
NeedsQuotes = true;
break;
}
}
}
// If we didn't need any quotes, just write out the name in one blast.
if (!NeedsQuotes) {
OS << Name;
return;
}
// Okay, we need quotes. Output the quotes and escape any scary characters as
// needed.
OS << '"';
printEscapedString(Name, OS);
OS << '"';
}
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
/// (if the string only contains simple characters) or is surrounded with ""'s
/// (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
switch (Prefix) {
case NoPrefix:
break;
case GlobalPrefix:
OS << '@';
break;
case ComdatPrefix:
OS << '$';
break;
case LabelPrefix:
break;
case LocalPrefix:
OS << '%';
break;
}
printLLVMNameWithoutPrefix(OS, Name);
}
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
/// (if the string only contains simple characters) or is surrounded with ""'s
/// (if it has special chars in it). Print it out.
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
PrintLLVMName(OS, V->getName(),
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
}
namespace {
class TypePrinting {
public:
TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
TypePrinting(const TypePrinting &) = delete;
TypePrinting &operator=(const TypePrinting &) = delete;
/// The named types that are used by the current module.
TypeFinder &getNamedTypes();
/// The numbered types, number to type mapping.
std::vector<StructType *> &getNumberedTypes();
bool empty();
void print(Type *Ty, raw_ostream &OS);
void printStructBody(StructType *Ty, raw_ostream &OS);
private:
void incorporateTypes();
/// A module to process lazily when needed. Set to nullptr as soon as used.
const Module *DeferredM;
TypeFinder NamedTypes;
// The numbered types, along with their value.
DenseMap<StructType *, unsigned> Type2Number;
std::vector<StructType *> NumberedTypes;
};
} // end anonymous namespace
TypeFinder &TypePrinting::getNamedTypes() {
incorporateTypes();
return NamedTypes;
}
std::vector<StructType *> &TypePrinting::getNumberedTypes() {
incorporateTypes();
// We know all the numbers that each type is used and we know that it is a
// dense assignment. Convert the map to an index table, if it's not done
// already (judging from the sizes):
if (NumberedTypes.size() == Type2Number.size())
return NumberedTypes;
NumberedTypes.resize(Type2Number.size());
for (const auto &P : Type2Number) {
assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
NumberedTypes[P.second] = P.first;
}
return NumberedTypes;
}
bool TypePrinting::empty() {
incorporateTypes();
return NamedTypes.empty() && Type2Number.empty();
}
void TypePrinting::incorporateTypes() {
if (!DeferredM)
return;
NamedTypes.run(*DeferredM, false);
DeferredM = nullptr;
// The list of struct types we got back includes all the struct types, split
// the unnamed ones out to a numbering and remove the anonymous structs.
unsigned NextNumber = 0;
std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
StructType *STy = *I;
// Ignore anonymous types.
if (STy->isLiteral())
continue;
if (STy->getName().empty())
Type2Number[STy] = NextNumber++;
else
*NextToUse++ = STy;
}
NamedTypes.erase(NextToUse, NamedTypes.end());
}
/// Write the specified type to the specified raw_ostream, making use of type
/// names or up references to shorten the type name where possible.
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
switch (Ty->getTypeID()) {
case Type::VoidTyID: OS << "void"; return;
case Type::HalfTyID: OS << "half"; return;
case Type::FloatTyID: OS << "float"; return;
case Type::DoubleTyID: OS << "double"; return;
case Type::X86_FP80TyID: OS << "x86_fp80"; return;
case Type::FP128TyID: OS << "fp128"; return;
case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
case Type::LabelTyID: OS << "label"; return;
case Type::MetadataTyID: OS << "metadata"; return;
case Type::X86_MMXTyID: OS << "x86_mmx"; return;
case Type::TokenTyID: OS << "token"; return;
case Type::IntegerTyID:
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
return;
case Type::FunctionTyID: {
FunctionType *FTy = cast<FunctionType>(Ty);
print(FTy->getReturnType(), OS);
OS << " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
OS << ", ";
print(*I, OS);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) OS << ", ";
OS << "...";
}
OS << ')';
return;
}
case Type::StructTyID: {
StructType *STy = cast<StructType>(Ty);
if (STy->isLiteral())
return printStructBody(STy, OS);
if (!STy->getName().empty())
return PrintLLVMName(OS, STy->getName(), LocalPrefix);
incorporateTypes();
const auto I = Type2Number.find(STy);
if (I != Type2Number.end())
OS << '%' << I->second;
else // Not enumerated, print the hex address.
OS << "%\"type " << STy << '\"';
return;
}
case Type::PointerTyID: {
PointerType *PTy = cast<PointerType>(Ty);
print(PTy->getElementType(), OS);
if (unsigned AddressSpace = PTy->getAddressSpace())
OS << " addrspace(" << AddressSpace << ')';
OS << '*';
return;
}
case Type::ArrayTyID: {
ArrayType *ATy = cast<ArrayType>(Ty);
OS << '[' << ATy->getNumElements() << " x ";
print(ATy->getElementType(), OS);
OS << ']';
return;
}
case Type::VectorTyID: {
VectorType *PTy = cast<VectorType>(Ty);
OS << "<" << PTy->getNumElements() << " x ";
print(PTy->getElementType(), OS);
OS << '>';
return;
}
}
llvm_unreachable("Invalid TypeID");
}
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
if (STy->isOpaque()) {
OS << "opaque";
return;
}
if (STy->isPacked())
OS << '<';
if (STy->getNumElements() == 0) {
OS << "{}";
} else {
StructType::element_iterator I = STy->element_begin();
OS << "{ ";
print(*I++, OS);
for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
OS << ", ";
print(*I, OS);
}
OS << " }";
}
if (STy->isPacked())
OS << '>';
}
namespace llvm {
//===----------------------------------------------------------------------===//
// SlotTracker Class: Enumerate slot numbers for unnamed values
//===----------------------------------------------------------------------===//
/// This class provides computation of slot numbers for LLVM Assembly writing.
///
class SlotTracker {
public:
/// ValueMap - A mapping of Values to slot numbers.
using ValueMap = DenseMap<const Value *, unsigned>;
private:
/// TheModule - The module for which we are holding slot numbers.
const Module* TheModule;
/// TheFunction - The function for which we are holding slot numbers.
const Function* TheFunction = nullptr;
bool FunctionProcessed = false;
bool ShouldInitializeAllMetadata;
/// The summary index for which we are holding slot numbers.
const ModuleSummaryIndex *TheIndex = nullptr;
/// mMap - The slot map for the module level data.
ValueMap mMap;
unsigned mNext = 0;
/// fMap - The slot map for the function level data.
ValueMap fMap;
unsigned fNext = 0;
/// mdnMap - Map for MDNodes.
DenseMap<const MDNode*, unsigned> mdnMap;
unsigned mdnNext = 0;
/// asMap - The slot map for attribute sets.
DenseMap<AttributeSet, unsigned> asMap;
unsigned asNext = 0;
/// ModulePathMap - The slot map for Module paths used in the summary index.
StringMap<unsigned> ModulePathMap;
unsigned ModulePathNext = 0;
/// GUIDMap - The slot map for GUIDs used in the summary index.
DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
unsigned GUIDNext = 0;
/// TypeIdMap - The slot map for type ids used in the summary index.
StringMap<unsigned> TypeIdMap;
unsigned TypeIdNext = 0;
public:
/// Construct from a module.
///
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
/// functions, giving correct numbering for metadata referenced only from
/// within a function (even if no functions have been initialized).
explicit SlotTracker(const Module *M,
bool ShouldInitializeAllMetadata = false);
/// Construct from a function, starting out in incorp state.
///
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
/// functions, giving correct numbering for metadata referenced only from
/// within a function (even if no functions have been initialized).
explicit SlotTracker(const Function *F,
bool ShouldInitializeAllMetadata = false);
/// Construct from a module summary index.
explicit SlotTracker(const ModuleSummaryIndex *Index);
SlotTracker(const SlotTracker &) = delete;
SlotTracker &operator=(const SlotTracker &) = delete;
/// Return the slot number of the specified value in it's type
/// plane. If something is not in the SlotTracker, return -1.
int getLocalSlot(const Value *V);
int getGlobalSlot(const GlobalValue *V);
int getMetadataSlot(const MDNode *N);
int getAttributeGroupSlot(AttributeSet AS);
int getModulePathSlot(StringRef Path);
int getGUIDSlot(GlobalValue::GUID GUID);
int getTypeIdSlot(StringRef Id);
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotTracker.
void incorporateFunction(const Function *F) {
TheFunction = F;
FunctionProcessed = false;
}
const Function *getFunction() const { return TheFunction; }
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotTracker. This
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
/// MDNode map iterators.
using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_iterator mdn_end() { return mdnMap.end(); }
unsigned mdn_size() const { return mdnMap.size(); }
bool mdn_empty() const { return mdnMap.empty(); }
/// AttributeSet map iterators.
using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
as_iterator as_begin() { return asMap.begin(); }
as_iterator as_end() { return asMap.end(); }
unsigned as_size() const { return asMap.size(); }
bool as_empty() const { return asMap.empty(); }
/// GUID map iterators.
using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
/// These functions do the actual initialization.
inline void initializeIfNeeded();
void initializeIndexIfNeeded();
// Implementation Details
private:
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void CreateModuleSlot(const GlobalValue *V);
/// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
void CreateMetadataSlot(const MDNode *N);
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
void CreateFunctionSlot(const Value *V);
/// Insert the specified AttributeSet into the slot table.
void CreateAttributeSetSlot(AttributeSet AS);
inline void CreateModulePathSlot(StringRef Path);
void CreateGUIDSlot(GlobalValue::GUID GUID);
void CreateTypeIdSlot(StringRef Id);
/// Add all of the module level global variables (and their initializers)
/// and function declarations, but not the contents of those functions.
void processModule();
void processIndex();
/// Add all of the functions arguments, basic blocks, and instructions.
void processFunction();
/// Add the metadata directly attached to a GlobalObject.
void processGlobalObjectMetadata(const GlobalObject &GO);
/// Add all of the metadata from a function.
void processFunctionMetadata(const Function &F);
/// Add all of the metadata from an instruction.
void processInstructionMetadata(const Instruction &I);
};
} // end namespace llvm
ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
const Function *F)
: M(M), F(F), Machine(&Machine) {}
ModuleSlotTracker::ModuleSlotTracker(const Module *M,
bool ShouldInitializeAllMetadata)
: ShouldCreateStorage(M),
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
ModuleSlotTracker::~ModuleSlotTracker() = default;
SlotTracker *ModuleSlotTracker::getMachine() {
if (!ShouldCreateStorage)
return Machine;
ShouldCreateStorage = false;
MachineStorage =
llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
Machine = MachineStorage.get();
return Machine;
}
void ModuleSlotTracker::incorporateFunction(const Function &F) {
// Using getMachine() may lazily create the slot tracker.
if (!getMachine())
return;
// Nothing to do if this is the right function already.
if (this->F == &F)
return;
if (this->F)
Machine->purgeFunction();
Machine->incorporateFunction(&F);
this->F = &F;
}
int ModuleSlotTracker::getLocalSlot(const Value *V) {
assert(F && "No function incorporated");
return Machine->getLocalSlot(V);
}
static SlotTracker *createSlotTracker(const Value *V) {
if (const Argument *FA = dyn_cast<Argument>(V))
return new SlotTracker(FA->getParent());
if (const Instruction *I = dyn_cast<Instruction>(V))
if (I->getParent())
return new SlotTracker(I->getParent()->getParent());
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return new SlotTracker(BB->getParent());
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return new SlotTracker(GV->getParent());
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
return new SlotTracker(GA->getParent());
if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
return new SlotTracker(GIF->getParent());
if (const Function *Func = dyn_cast<Function>(V))
return new SlotTracker(Func);
return nullptr;
}
#if 0
#define ST_DEBUG(X) dbgs() << X
#else
#define ST_DEBUG(X)
#endif
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
: TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
: TheModule(F ? F->getParent() : nullptr), TheFunction(F),
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
: TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
inline void SlotTracker::initializeIfNeeded() {
if (TheModule) {
processModule();
TheModule = nullptr; ///< Prevent re-processing next time we're called.
}
if (TheFunction && !FunctionProcessed)
processFunction();
}
void SlotTracker::initializeIndexIfNeeded() {
if (!TheIndex)
return;
processIndex();
TheIndex = nullptr; ///< Prevent re-processing next time we're called.
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotTracker::processModule() {
ST_DEBUG("begin processModule!\n");
// Add all of the unnamed global variables to the value table.
for (const GlobalVariable &Var : TheModule->globals()) {
if (!Var.hasName())
CreateModuleSlot(&Var);
processGlobalObjectMetadata(Var);
auto Attrs = Var.getAttributes();
if (Attrs.hasAttributes())
CreateAttributeSetSlot(Attrs);
}
for (const GlobalAlias &A : TheModule->aliases()) {
if (!A.hasName())
CreateModuleSlot(&A);
}
for (const GlobalIFunc &I : TheModule->ifuncs()) {
if (!I.hasName())
CreateModuleSlot(&I);
}
// Add metadata used by named metadata.
for (const NamedMDNode &NMD : TheModule->named_metadata()) {
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
CreateMetadataSlot(NMD.getOperand(i));
}
for (const Function &F : *TheModule) {
if (!F.hasName())
// Add all the unnamed functions to the table.
CreateModuleSlot(&F);
if (ShouldInitializeAllMetadata)
processFunctionMetadata(F);
// Add all the function attributes to the table.
// FIXME: Add attributes of other objects?
AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
if (FnAttrs.hasAttributes())
CreateAttributeSetSlot(FnAttrs);
}
ST_DEBUG("end processModule!\n");
}
// Process the arguments, basic blocks, and instructions of a function.
void SlotTracker::processFunction() {
ST_DEBUG("begin processFunction!\n");
fNext = 0;
// Process function metadata if it wasn't hit at the module-level.
if (!ShouldInitializeAllMetadata)
processFunctionMetadata(*TheFunction);
// Add all the function arguments with no names.
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
AE = TheFunction->arg_end(); AI != AE; ++AI)
if (!AI->hasName())
CreateFunctionSlot(&*AI);
ST_DEBUG("Inserting Instructions:\n");
// Add all of the basic blocks and instructions with no names.
for (auto &BB : *TheFunction) {
if (!BB.hasName())
CreateFunctionSlot(&BB);
for (auto &I : BB) {
if (!I.getType()->isVoidTy() && !I.hasName())
CreateFunctionSlot(&I);
// We allow direct calls to any llvm.foo function here, because the
// target may not be linked into the optimizer.
if (const auto *Call = dyn_cast<CallBase>(&I)) {
// Add all the call attributes to the table.
AttributeSet Attrs = Call->getAttributes().getFnAttributes();
if (Attrs.hasAttributes())
CreateAttributeSetSlot(Attrs);
}
}
}
FunctionProcessed = true;
ST_DEBUG("end processFunction!\n");
}
// Iterate through all the GUID in the index and create slots for them.
void SlotTracker::processIndex() {
ST_DEBUG("begin processIndex!\n");
assert(TheIndex);
// The first block of slots are just the module ids, which start at 0 and are
// assigned consecutively. Since the StringMap iteration order isn't
// guaranteed, use a std::map to order by module ID before assigning slots.
std::map<uint64_t, StringRef> ModuleIdToPathMap;
for (auto &ModPath : TheIndex->modulePaths())
ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
for (auto &ModPair : ModuleIdToPathMap)
CreateModulePathSlot(ModPair.second);
// Start numbering the GUIDs after the module ids.
GUIDNext = ModulePathNext;
for (auto &GlobalList : *TheIndex)
CreateGUIDSlot(GlobalList.first);
// Start numbering the TypeIds after the GUIDs.
TypeIdNext = GUIDNext;
for (auto TidIter = TheIndex->typeIds().begin();
TidIter != TheIndex->typeIds().end(); TidIter++)
CreateTypeIdSlot(TidIter->second.first);
ST_DEBUG("end processIndex!\n");
}
void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
GO.getAllMetadata(MDs);
for (auto &MD : MDs)
CreateMetadataSlot(MD.second);
}
void SlotTracker::processFunctionMetadata(const Function &F) {
processGlobalObjectMetadata(F);
for (auto &BB : F) {
for (auto &I : BB)
processInstructionMetadata(I);
}
}
void SlotTracker::processInstructionMetadata(const Instruction &I) {
// Process metadata used directly by intrinsics.
if (const CallInst *CI = dyn_cast<CallInst>(&I))
if (Function *F = CI->getCalledFunction())
if (F->isIntrinsic())
for (auto &Op : I.operands())
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
CreateMetadataSlot(N);
// Process metadata attached to this instruction.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
I.getAllMetadata(MDs);
for (auto &MD : MDs)
CreateMetadataSlot(MD.second);
}
/// Clean up after incorporating a function. This is the only way to get out of
/// the function incorporation state that affects get*Slot/Create*Slot. Function
/// incorporation state is indicated by TheFunction != 0.
void SlotTracker::purgeFunction() {
ST_DEBUG("begin purgeFunction!\n");
fMap.clear(); // Simply discard the function level map
TheFunction = nullptr;
FunctionProcessed = false;
ST_DEBUG("end purgeFunction!\n");
}
/// getGlobalSlot - Get the slot number of a global value.
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
// Check for uninitialized state and do lazy initialization.
initializeIfNeeded();
// Find the value in the module map
ValueMap::iterator MI = mMap.find(V);
return MI == mMap.end() ? -1 : (int)MI->second;
}
/// getMetadataSlot - Get the slot number of a MDNode.
int SlotTracker::getMetadataSlot(const MDNode *N) {
// Check for uninitialized state and do lazy initialization.
initializeIfNeeded();
// Find the MDNode in the module map
mdn_iterator MI = mdnMap.find(N);
return MI == mdnMap.end() ? -1 : (int)MI->second;
}
/// getLocalSlot - Get the slot number for a value that is local to a function.
int SlotTracker::getLocalSlot(const Value *V) {
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
// Check for uninitialized state and do lazy initialization.
initializeIfNeeded();
ValueMap::iterator FI = fMap.find(V);
return FI == fMap.end() ? -1 : (int)FI->second;
}
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
// Check for uninitialized state and do lazy initialization.
initializeIfNeeded();
// Find the AttributeSet in the module map.
as_iterator AI = asMap.find(AS);
return AI == asMap.end() ? -1 : (int)AI->second;
}
int SlotTracker::getModulePathSlot(StringRef Path) {
// Check for uninitialized state and do lazy initialization.
initializeIndexIfNeeded();
// Find the Module path in the map
auto I = ModulePathMap.find(Path);
return I == ModulePathMap.end() ? -1 : (int)I->second;
}
int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
// Check for uninitialized state and do lazy initialization.
initializeIndexIfNeeded();
// Find the GUID in the map
guid_iterator I = GUIDMap.find(GUID);
return I == GUIDMap.end() ? -1 : (int)I->second;
}
int SlotTracker::getTypeIdSlot(StringRef Id) {
// Check for uninitialized state and do lazy initialization.
initializeIndexIfNeeded();
// Find the TypeId string in the map
auto I = TypeIdMap.find(Id);
return I == TypeIdMap.end() ? -1 : (int)I->second;
}
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
assert(V && "Can't insert a null Value into SlotTracker!");
assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
assert(!V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = mNext++;
mMap[V] = DestSlot;
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, F = Function, A = Alias, I = IFunc, o = other
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
(isa<Function>(V) ? 'F' :
(isa<GlobalAlias>(V) ? 'A' :
(isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
}
/// CreateSlot - Create a new slot for the specified value if it has no name.
void SlotTracker::CreateFunctionSlot(const Value *V) {
assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
unsigned DestSlot = fNext++;
fMap[V] = DestSlot;
// G = Global, F = Function, o = other
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
DestSlot << " [o]\n");
}
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
assert(N && "Can't insert a null Value into SlotTracker!");
// Don't make slots for DIExpressions. We just print them inline everywhere.
if (isa<DIExpression>(N))
return;
unsigned DestSlot = mdnNext;
if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
return;
++mdnNext;
// Recursively add any MDNodes referenced by operands.
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
CreateMetadataSlot(Op);
}
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
assert(AS.hasAttributes() && "Doesn't need a slot!");
as_iterator I = asMap.find(AS);
if (I != asMap.end())
return;
unsigned DestSlot = asNext++;
asMap[AS] = DestSlot;
}
/// Create a new slot for the specified Module
void SlotTracker::CreateModulePathSlot(StringRef Path) {
ModulePathMap[Path] = ModulePathNext++;
}
/// Create a new slot for the specified GUID
void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
GUIDMap[GUID] = GUIDNext++;
}
/// Create a new slot for the specified Id
void SlotTracker::CreateTypeIdSlot(StringRef Id) {
TypeIdMap[Id] = TypeIdNext++;
}
//===----------------------------------------------------------------------===//
// AsmWriter Implementation
//===----------------------------------------------------------------------===//
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context);
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context,
bool FromValue = false);
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
// 'Fast' is an abbreviation for all fast-math-flags.
if (FPO->isFast())
Out << " fast";
else {
if (FPO->hasAllowReassoc())
Out << " reassoc";
if (FPO->hasNoNaNs())
Out << " nnan";
if (FPO->hasNoInfs())
Out << " ninf";
if (FPO->hasNoSignedZeros())
Out << " nsz";
if (FPO->hasAllowReciprocal())
Out << " arcp";
if (FPO->hasAllowContract())
Out << " contract";
if (FPO->hasApproxFunc())
Out << " afn";
}
}
if (const OverflowingBinaryOperator *OBO =
dyn_cast<OverflowingBinaryOperator>(U)) {
if (OBO->hasNoUnsignedWrap())
Out << " nuw";
if (OBO->hasNoSignedWrap())
Out << " nsw";
} else if (const PossiblyExactOperator *Div =
dyn_cast<PossiblyExactOperator>(U)) {
if (Div->isExact())
Out << " exact";
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
if (GEP->isInBounds())
Out << " inbounds";
}
}
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
TypePrinting &TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType()->isIntegerTy(1)) {
Out << (CI->getZExtValue() ? "true" : "false");
return;
}
Out << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
const APFloat &APF = CFP->getValueAPF();
if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
&APF.getSemantics() == &APFloat::IEEEdouble()) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
bool ignored;
bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
bool isInf = APF.isInfinity();
bool isNaN = APF.isNaN();
if (!isInf && !isNaN) {
double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
SmallString<128> StrVal;
APF.toString(StrVal, 6, 0, false);
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
//
assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
"[-+]?[0-9] regex does not match!");
// Reparse stringized version!
if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
Out << StrVal;
return;
}
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format! Note that loading and storing
// floating point types changes the bits of NaNs on some hosts, notably
// x86, so we must not use these types.
static_assert(sizeof(double) == sizeof(uint64_t),
"assuming that double is 64 bits!");
APFloat apf = APF;
// Floats are represented in ASCII IR as double, convert.
if (!isDouble)
apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&ignored);
Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
return;
}
// Either half, or some form of long double.
// These appear as a magic letter identifying the type, then a
// fixed number of hex digits.
Out << "0x";
APInt API = APF.bitcastToAPInt();
if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
Out << 'K';
Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
return;
} else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
Out << 'L';
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
/*Upper=*/true);
} else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
Out << 'M';
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
/*Upper=*/true);
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
/*Upper=*/true);
} else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
Out << 'H';
Out << format_hex_no_prefix(API.getZExtValue(), 4,
/*Upper=*/true);
} else
llvm_unreachable("Unsupported floating point type");
return;
}
if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
return;
}
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
Out << "blockaddress(";
WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
Context);
Out << ", ";
WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
Context);
Out << ")";
return;
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
Type *ETy = CA->getType()->getElementType();
Out << '[';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(0),
&TypePrinter, Machine,
Context);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
Context);
}
Out << ']';
return;
}
if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// i8 with ConstantInt values.
if (CA->isString()) {
Out << "c\"";
printEscapedString(CA->getAsString(), Out);
Out << '"';
return;
}
Type *ETy = CA->getType()->getElementType();
Out << '[';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
&TypePrinter, Machine,
Context);
for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
Machine, Context);
}
Out << ']';
return;
}
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
if (CS->getType()->isPacked())
Out << '<';
Out << '{';
unsigned N = CS->getNumOperands();
if (N) {
Out << ' ';
TypePrinter.print(CS->getOperand(0)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
Context);
for (unsigned i = 1; i < N; i++) {
Out << ", ";
TypePrinter.print(CS->getOperand(i)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
Context);
}
Out << ' ';
}
Out << '}';
if (CS->getType()->isPacked())
Out << '>';
return;
}
if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
Type *ETy = CV->getType()->getVectorElementType();
Out << '<';
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
Machine, Context);
for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
Out << ", ";
TypePrinter.print(ETy, Out);
Out << ' ';
WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
Machine, Context);
}
Out << '>';
return;
}
if (isa<ConstantPointerNull>(CV)) {
Out << "null";
return;
}
if (isa<ConstantTokenNone>(CV)) {
Out << "none";
return;
}
if (isa<UndefValue>(CV)) {
Out << "undef";
return;
}
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName();
WriteOptimizationInfo(Out, CE);
if (CE->isCompare())
Out << ' ' << CmpInst::getPredicateName(
static_cast<CmpInst::Predicate>(CE->getPredicate()));
Out << " (";
Optional<unsigned> InRangeOp;
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
TypePrinter.print(GEP->getSourceElementType(), Out);
Out << ", ";
InRangeOp = GEP->getInRangeIndex();
if (InRangeOp)
++*InRangeOp;
}
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
Out << "inrange ";
TypePrinter.print((*OI)->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
if (OI+1 != CE->op_end())
Out << ", ";
}
if (CE->hasIndices()) {
ArrayRef<unsigned> Indices = CE->getIndices();
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
Out << ", " << Indices[i];
}
if (CE->isCast()) {
Out << " to ";
TypePrinter.print(CE->getType(), Out);
}
Out << ')';
return;
}
Out << "<placeholder or erroneous Constant>";
}
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!{";
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
const Metadata *MD = Node->getOperand(mi);
if (!MD)
Out << "null";
else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
Value *V = MDV->getValue();
TypePrinter->print(V->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
} else {
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
if (mi + 1 != me)
Out << ", ";
}
Out << "}";
}
namespace {
struct FieldSeparator {
bool Skip = true;
const char *Sep;
FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
};
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
if (FS.Skip) {
FS.Skip = false;
return OS;
}
return OS << FS.Sep;
}
struct MDFieldPrinter {
raw_ostream &Out;
FieldSeparator FS;
TypePrinting *TypePrinter = nullptr;
SlotTracker *Machine = nullptr;
const Module *Context = nullptr;
explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context)
: Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
}
void printTag(const DINode *N);
void printMacinfoType(const DIMacroNode *N);
void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
void printString(StringRef Name, StringRef Value,
bool ShouldSkipEmpty = true);
void printMetadata(StringRef Name, const Metadata *MD,
bool ShouldSkipNull = true);
template <class IntTy>
void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
void printDIFlags(StringRef Name, DINode::DIFlags Flags);
void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
template <class IntTy, class Stringifier>
void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
bool ShouldSkipZero = true);
void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
void printNameTableKind(StringRef Name,
DICompileUnit::DebugNameTableKind NTK);
};
} // end anonymous namespace
void MDFieldPrinter::printTag(const DINode *N) {
Out << FS << "tag: ";
auto Tag = dwarf::TagString(N->getTag());
if (!Tag.empty())
Out << Tag;
else
Out << N->getTag();
}
void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
Out << FS << "type: ";
auto Type = dwarf::MacinfoString(N->getMacinfoType());
if (!Type.empty())
Out << Type;
else
Out << N->getMacinfoType();
}
void MDFieldPrinter::printChecksum(
const DIFile::ChecksumInfo<StringRef> &Checksum) {
Out << FS << "checksumkind: " << Checksum.getKindAsString();
printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
}
void MDFieldPrinter::printString(StringRef Name, StringRef Value,
bool ShouldSkipEmpty) {
if (ShouldSkipEmpty && Value.empty())
return;
Out << FS << Name << ": \"";
printEscapedString(Value, Out);
Out << "\"";
}
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (!MD) {
Out << "null";
return;
}
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
}
void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
bool ShouldSkipNull) {
if (ShouldSkipNull && !MD)
return;
Out << FS << Name << ": ";
writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
}
template <class IntTy>
void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
if (ShouldSkipZero && !Int)
return;
Out << FS << Name << ": " << Int;
}
void MDFieldPrinter::printBool(StringRef Name, bool Value,
Optional<bool> Default) {
if (Default && Value == *Default)
return;
Out << FS << Name << ": " << (Value ? "true" : "false");
}
void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
if (!Flags)
return;
Out << FS << Name << ": ";
SmallVector<DINode::DIFlags, 8> SplitFlags;
auto Extra = DINode::splitFlags(Flags, SplitFlags);
FieldSeparator FlagsFS(" | ");
for (auto F : SplitFlags) {
auto StringF = DINode::getFlagString(F);
assert(!StringF.empty() && "Expected valid flag");
Out << FlagsFS << StringF;
}
if (Extra || SplitFlags.empty())
Out << FlagsFS << Extra;
}
void MDFieldPrinter::printDISPFlags(StringRef Name,
DISubprogram::DISPFlags Flags) {
// Always print this field, because no flags in the IR at all will be
// interpreted as old-style isDefinition: true.
Out << FS << Name << ": ";
if (!Flags) {
Out << 0;
return;
}
SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
FieldSeparator FlagsFS(" | ");
for (auto F : SplitFlags) {
auto StringF = DISubprogram::getFlagString(F);
assert(!StringF.empty() && "Expected valid flag");
Out << FlagsFS << StringF;
}
if (Extra || SplitFlags.empty())
Out << FlagsFS << Extra;
}
void MDFieldPrinter::printEmissionKind(StringRef Name,
DICompileUnit::DebugEmissionKind EK) {
Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
}
void MDFieldPrinter::printNameTableKind(StringRef Name,
DICompileUnit::DebugNameTableKind NTK) {
if (NTK == DICompileUnit::DebugNameTableKind::Default)
return;
Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
}
template <class IntTy, class Stringifier>
void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
Stringifier toString, bool ShouldSkipZero) {
if (!Value)
return;
Out << FS << Name << ": ";
auto S = toString(Value);
if (!S.empty())
Out << S;
else
Out << Value;
}
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!GenericDINode(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("header", N->getHeader());
if (N->getNumDwarfOperands()) {
Out << Printer.FS << "operands: {";
FieldSeparator IFS;
for (auto &I : N->dwarf_operands()) {
Out << IFS;
writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
}
Out << "}";
}
Out << ")";
}
static void writeDILocation(raw_ostream &Out, const DILocation *DL,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DILocation(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
// Always output the line, since 0 is a relevant and important value for it.
Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
Printer.printInt("column", DL->getColumn());
Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
Printer.printBool("isImplicitCode", DL->isImplicitCode(),
/* Default */ false);
Out << ")";
}
static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DISubrange(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
else
Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
/*ShouldSkipNull */ false);
Printer.printInt("lowerBound", N->getLowerBound());
Out << ")";
}
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!DIEnumerator(";
MDFieldPrinter Printer(Out);
Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
if (N->isUnsigned()) {
auto Value = static_cast<uint64_t>(N->getValue());
Printer.printInt("value", Value, /* ShouldSkipZero */ false);
Printer.printBool("isUnsigned", true);
} else {
Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
}
Out << ")";
}
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
TypePrinting *, SlotTracker *, const Module *) {
Out << "!DIBasicType(";
MDFieldPrinter Printer(Out);
if (N->getTag() != dwarf::DW_TAG_base_type)
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printDwarfEnum("encoding", N->getEncoding(),
dwarf::AttributeEncodingString);
Printer.printDIFlags("flags", N->getFlags());
Out << ")";
}
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIDerivedType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("baseType", N->getRawBaseType(),
/* ShouldSkipNull */ false);
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printInt("offset", N->getOffsetInBits());
Printer.printDIFlags("flags", N->getFlags());
Printer.printMetadata("extraData", N->getRawExtraData());
if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
/* ShouldSkipZero */ false);
Out << ")";
}
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DICompositeType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("baseType", N->getRawBaseType());
Printer.printInt("size", N->getSizeInBits());
Printer.printInt("align", N->getAlignInBits());
Printer.printInt("offset", N->getOffsetInBits());
Printer.printDIFlags("flags", N->getFlags());
Printer.printMetadata("elements", N->getRawElements());
Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
dwarf::LanguageString);
Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
Printer.printMetadata("templateParams", N->getRawTemplateParams());
Printer.printString("identifier", N->getIdentifier());
Printer.printMetadata("discriminator", N->getRawDiscriminator());
Out << ")";
}
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DISubroutineType(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printDIFlags("flags", N->getFlags());
Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
Printer.printMetadata("types", N->getRawTypeArray(),
/* ShouldSkipNull */ false);
Out << ")";
}
static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
SlotTracker *, const Module *) {
Out << "!DIFile(";
MDFieldPrinter Printer(Out);
Printer.printString("filename", N->getFilename(),
/* ShouldSkipEmpty */ false);
Printer.printString("directory", N->getDirectory(),
/* ShouldSkipEmpty */ false);
// Print all values for checksum together, or not at all.
if (N->getChecksum())
Printer.printChecksum(*N->getChecksum());
Printer.printString("source", N->getSource().getValueOr(StringRef()),
/* ShouldSkipEmpty */ true);
Out << ")";
}
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DICompileUnit(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printDwarfEnum("language", N->getSourceLanguage(),
dwarf::LanguageString, /* ShouldSkipZero */ false);
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
Printer.printString("producer", N->getProducer());
Printer.printBool("isOptimized", N->isOptimized());
Printer.printString("flags", N->getFlags());
Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
/* ShouldSkipZero */ false);
Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
Printer.printEmissionKind("emissionKind", N->getEmissionKind());
Printer.printMetadata("enums", N->getRawEnumTypes());
Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
Printer.printMetadata("globals", N->getRawGlobalVariables());
Printer.printMetadata("imports", N->getRawImportedEntities());
Printer.printMetadata("macros", N->getRawMacros());
Printer.printInt("dwoId", N->getDWOId());
Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
false);
Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
Out << ")";
}
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DISubprogram(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printString("linkageName", N->getLinkageName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printInt("scopeLine", N->getScopeLine());
Printer.printMetadata("containingType", N->getRawContainingType());
if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
N->getVirtualIndex() != 0)
Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
Printer.printInt("thisAdjustment", N->getThisAdjustment());
Printer.printDIFlags("flags", N->getFlags());
Printer.printDISPFlags("spFlags", N->getSPFlags());
Printer.printMetadata("unit", N->getRawUnit());
Printer.printMetadata("templateParams", N->getRawTemplateParams());
Printer.printMetadata("declaration", N->getRawDeclaration());
Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
Out << ")";
}
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DILexicalBlock(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printInt("column", N->getColumn());
Out << ")";
}
static void writeDILexicalBlockFile(raw_ostream &Out,
const DILexicalBlockFile *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DILexicalBlockFile(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("discriminator", N->getDiscriminator(),
/* ShouldSkipZero */ false);
Out << ")";
}
static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DINamespace(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printBool("exportSymbols", N->getExportSymbols(), false);
Out << ")";
}
static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIMacro(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMacinfoType(N);
Printer.printInt("line", N->getLine());
Printer.printString("name", N->getName());
Printer.printString("value", N->getValue());
Out << ")";
}
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIMacroFile(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printInt("line", N->getLine());
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
Printer.printMetadata("nodes", N->getRawElements());
Out << ")";
}
static void writeDIModule(raw_ostream &Out, const DIModule *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIModule(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printString("name", N->getName());
Printer.printString("configMacros", N->getConfigurationMacros());
Printer.printString("includePath", N->getIncludePath());
Printer.printString("isysroot", N->getISysRoot());
Out << ")";
}
static void writeDITemplateTypeParameter(raw_ostream &Out,
const DITemplateTypeParameter *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DITemplateTypeParameter(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
Out << ")";
}
static void writeDITemplateValueParameter(raw_ostream &Out,
const DITemplateValueParameter *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DITemplateValueParameter(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("type", N->getRawType());
Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
Out << ")";
}
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DIGlobalVariable(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printString("linkageName", N->getLinkageName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printBool("isLocal", N->isLocalToUnit());
Printer.printBool("isDefinition", N->isDefinition());
Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
Printer.printMetadata("templateParams", N->getRawTemplateParams());
Printer.printInt("align", N->getAlignInBits());
Out << ")";
}
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DILocalVariable(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printInt("arg", N->getArg());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printMetadata("type", N->getRawType());
Printer.printDIFlags("flags", N->getFlags());
Printer.printInt("align", N->getAlignInBits());
Out << ")";
}
static void writeDILabel(raw_ostream &Out, const DILabel *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DILabel(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printString("name", N->getName());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Out << ")";
}
static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIExpression(";
FieldSeparator FS;
if (N->isValid()) {
for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
auto OpStr = dwarf::OperationEncodingString(I->getOp());
assert(!OpStr.empty() && "Expected valid opcode");
Out << FS << OpStr;
if (I->getOp() == dwarf::DW_OP_LLVM_convert) {
Out << FS << I->getArg(0);
Out << FS << dwarf::AttributeEncodingString(I->getArg(1));
} else {
for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
Out << FS << I->getArg(A);
}
}
} else {
for (const auto &I : N->getElements())
Out << FS << I;
}
Out << ")";
}
static void writeDIGlobalVariableExpression(raw_ostream &Out,
const DIGlobalVariableExpression *N,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
Out << "!DIGlobalVariableExpression(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printMetadata("var", N->getVariable());
Printer.printMetadata("expr", N->getExpression());
Out << ")";
}
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
TypePrinting *TypePrinter, SlotTracker *Machine,
const Module *Context) {
Out << "!DIObjCProperty(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printString("name", N->getName());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Printer.printString("setter", N->getSetterName());
Printer.printString("getter", N->getGetterName());
Printer.printInt("attributes", N->getAttributes());
Printer.printMetadata("type", N->getRawType());
Out << ")";
}
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context) {
Out << "!DIImportedEntity(";
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
Printer.printTag(N);
Printer.printString("name", N->getName());
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
Printer.printMetadata("entity", N->getRawEntity());
Printer.printMetadata("file", N->getRawFile());
Printer.printInt("line", N->getLine());
Out << ")";
}
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (Node->isDistinct())
Out << "distinct ";
else if (Node->isTemporary())
Out << "<temporary!> "; // Handle broken code.
switch (Node->getMetadataID()) {
default:
llvm_unreachable("Expected uniquable MDNode");
#define HANDLE_MDNODE_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
break;
#include "llvm/IR/Metadata.def"
}
}
// Full implementation of printing a Value as an operand with support for
// TypePrinting, etc.
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
TypePrinting *TypePrinter,
SlotTracker *Machine,
const Module *Context) {
if (V->hasName()) {
PrintLLVMName(Out, V);
return;
}
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV)) {
assert(TypePrinter && "Constants require TypePrinting!");
WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
return;
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Out << "asm ";
if (IA->hasSideEffects())
Out << "sideeffect ";
if (IA->isAlignStack())
Out << "alignstack ";
// We don't emit the AD_ATT dialect as it's the assumed default.
if (IA->getDialect() == InlineAsm::AD_Intel)
Out << "inteldialect ";
Out << '"';
printEscapedString(IA->getAsmString(), Out);
Out << "\", \"";
printEscapedString(IA->getConstraintString(), Out);
Out << '"';
return;
}
if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
Context, /* FromValue */ true);
return;
}
char Prefix = '%';
int Slot;
// If we have a SlotTracker, use it.
if (Machine) {
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
// If the local value didn't succeed, then we may be referring to a value
// from a different function. Translate it, as this can happen when using
// address of blocks.
if (Slot == -1)
if ((Machine = createSlotTracker(V))) {
Slot = Machine->getLocalSlot(V);
delete Machine;
}
}
} else if ((Machine = createSlotTracker(V))) {
// Otherwise, create one to get the # and then destroy it.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Slot = Machine->getGlobalSlot(GV);
Prefix = '@';
} else {
Slot = Machine->getLocalSlot(V);
}
delete Machine;
Machine = nullptr;
} else {
Slot = -1;
}
if (Slot != -1)
Out << Prefix << Slot;
else
Out << "<badref>";
}
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
TypePrinting *TypePrinter,
SlotTracker *Machine, const Module *Context,
bool FromValue) {
// Write DIExpressions inline when used as a value. Improves readability of
// debug info intrinsics.
if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
return;
}
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
std::unique_ptr<SlotTracker> MachineStorage;
if (!Machine) {
MachineStorage = make_unique<SlotTracker>(Context);
Machine = MachineStorage.get();
}
int Slot = Machine->getMetadataSlot(N);
if (Slot == -1) {
if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
writeDILocation(Out, Loc, TypePrinter, Machine, Context);
return;
}
// Give the pointer value instead of "badref", since this comes up all
// the time when debugging.
Out << "<" << N << ">";
} else
Out << '!' << Slot;
return;
}
if (const MDString *MDS = dyn_cast<MDString>(MD)) {
Out << "!\"";
printEscapedString(MDS->getString(), Out);
Out << '"';
return;
}
auto *V = cast<ValueAsMetadata>(MD);
assert(TypePrinter && "TypePrinter required for metadata values");
assert((FromValue || !isa<LocalAsMetadata>(V)) &&
"Unexpected function-local metadata outside of value argument");
TypePrinter->print(V->getValue()->getType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
}
namespace {
class AssemblyWriter {
formatted_raw_ostream &Out;
const Module *TheModule = nullptr;
const ModuleSummaryIndex *TheIndex = nullptr;
std::unique_ptr<SlotTracker> SlotTrackerStorage;
SlotTracker &Machine;
TypePrinting TypePrinter;
AssemblyAnnotationWriter *AnnotationWriter = nullptr;
SetVector<const Comdat *> Comdats;
bool IsForDebug;
bool ShouldPreserveUseListOrder;
UseListOrderStack UseListOrders;
SmallVector<StringRef, 8> MDNames;
/// Synchronization scope names registered with LLVMContext.
SmallVector<StringRef, 8> SSNs;
DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
public:
/// Construct an AssemblyWriter with an external SlotTracker
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
AssemblyAnnotationWriter *AAW, bool IsForDebug,
bool ShouldPreserveUseListOrder = false);
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const ModuleSummaryIndex *Index, bool IsForDebug);
void printMDNodeBody(const MDNode *MD);
void printNamedMDNode(const NamedMDNode *NMD);
void printModule(const Module *M);
void writeOperand(const Value *Op, bool PrintType);
void writeParamOperand(const Value *Operand, AttributeSet Attrs);
void writeOperandBundles(const CallBase *Call);
void writeSyncScope(const LLVMContext &Context,
SyncScope::ID SSID);
void writeAtomic(const LLVMContext &Context,
AtomicOrdering Ordering,
SyncScope::ID SSID);
void writeAtomicCmpXchg(const LLVMContext &Context,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID);
void writeAllMDNodes();
void writeMDNode(unsigned Slot, const MDNode *Node);
void writeAllAttributeGroups();
void printTypeIdentities();
void printGlobal(const GlobalVariable *GV);
void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
void printComdat(const Comdat *C);
void printFunction(const Function *F);
void printArgument(const Argument *FA, AttributeSet Attrs);
void printBasicBlock(const BasicBlock *BB);
void printInstructionLine(const Instruction &I);
void printInstruction(const Instruction &I);
void printUseListOrder(const UseListOrder &Order);
void printUseLists(const Function *F);
void printModuleSummaryIndex();
void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
void printSummary(const GlobalValueSummary &Summary);
void printAliasSummary(const AliasSummary *AS);
void printGlobalVarSummary(const GlobalVarSummary *GS);
void printFunctionSummary(const FunctionSummary *FS);
void printTypeIdSummary(const TypeIdSummary &TIS);
void printTypeTestResolution(const TypeTestResolution &TTRes);
void printArgs(const std::vector<uint64_t> &Args);
void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
void printVFuncId(const FunctionSummary::VFuncId VFId);
void
printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
const char *Tag);
void
printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
const char *Tag);
private:
/// Print out metadata attachments.
void printMetadataAttachments(
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
StringRef Separator);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value &V);
// printGCRelocateComment - print comment after call to the gc.relocate
// intrinsic indicating base and derived pointer names.
void printGCRelocateComment(const GCRelocateInst &Relocate);
};
} // end anonymous namespace
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const Module *M, AssemblyAnnotationWriter *AAW,
bool IsForDebug, bool ShouldPreserveUseListOrder)
: Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
IsForDebug(IsForDebug),
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
if (!TheModule)
return;
for (const GlobalObject &GO : TheModule->global_objects())
if (const Comdat *C = GO.getComdat())
Comdats.insert(C);
}
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const ModuleSummaryIndex *Index, bool IsForDebug)
: Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
if (!Operand) {
Out << "<null operand!>";
return;
}
if (PrintType) {
TypePrinter.print(Operand->getType(), Out);
Out << ' ';
}
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
SyncScope::ID SSID) {
switch (SSID) {
case SyncScope::System: {
break;
}
default: {
if (SSNs.empty())
Context.getSyncScopeNames(SSNs);
Out << " syncscope(\"";
printEscapedString(SSNs[SSID], Out);
Out << "\")";
break;
}
}
}
void AssemblyWriter::writeAtomic(const LLVMContext &Context,
AtomicOrdering Ordering,
SyncScope::ID SSID) {
if (Ordering == AtomicOrdering::NotAtomic)
return;
writeSyncScope(Context, SSID);
Out << " " << toIRString(Ordering);
}
void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID) {
assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
FailureOrdering != AtomicOrdering::NotAtomic);
writeSyncScope(Context, SSID);
Out << " " << toIRString(SuccessOrdering);
Out << " " << toIRString(FailureOrdering);
}
void AssemblyWriter::writeParamOperand(const Value *Operand,
AttributeSet Attrs) {
if (!Operand) {
Out << "<null operand!>";
return;
}
// Print the type
TypePrinter.print(Operand->getType(), Out);
// Print parameter attributes list
if (Attrs.hasAttributes())
Out << ' ' << Attrs.getAsString();
Out << ' ';
// Print the operand
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
if (!Call->hasOperandBundles())
return;
Out << " [ ";
bool FirstBundle = true;
for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
OperandBundleUse BU = Call->getOperandBundleAt(i);
if (!FirstBundle)
Out << ", ";
FirstBundle = false;
Out << '"';
printEscapedString(BU.getTagName(), Out);
Out << '"';
Out << '(';
bool FirstInput = true;
for (const auto &Input : BU.Inputs) {
if (!FirstInput)
Out << ", ";
FirstInput = false;
TypePrinter.print(Input->getType(), Out);
Out << " ";
WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
}
Out << ')';
}
Out << " ]";
}
void AssemblyWriter::printModule(const Module *M) {
Machine.initializeIfNeeded();
if (ShouldPreserveUseListOrder)
UseListOrders = predictUseListOrder(M);
if (!M->getModuleIdentifier().empty() &&
// Don't print the ID if it will start a new line (which would
// require a comment char before it).
M->getModuleIdentifier().find('\n') == std::string::npos)
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
if (!M->getSourceFileName().empty()) {
Out << "source_filename = \"";
printEscapedString(M->getSourceFileName(), Out);
Out << "\"\n";
}
const std::string &DL = M->getDataLayoutStr();
if (!DL.empty())
Out << "target datalayout = \"" << DL << "\"\n";
if (!M->getTargetTriple().empty())
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
if (!M->getModuleInlineAsm().empty()) {
Out << '\n';
// Split the string into lines, to make it easier to read the .ll file.
StringRef Asm = M->getModuleInlineAsm();
do {
StringRef Front;
std::tie(Front, Asm) = Asm.split('\n');
// We found a newline, print the portion of the asm string from the
// last newline up to this newline.
Out << "module asm \"";
printEscapedString(Front, Out);
Out << "\"\n";
} while (!Asm.empty());
}
printTypeIdentities();
// Output all comdats.
if (!Comdats.empty())
Out << '\n';
for (const Comdat *C : Comdats) {
printComdat(C);
if (C != Comdats.back())
Out << '\n';
}
// Output all globals.
if (!M->global_empty()) Out << '\n';
for (const GlobalVariable &GV : M->globals()) {
printGlobal(&GV); Out << '\n';
}
// Output all aliases.
if (!M->alias_empty()) Out << "\n";
for (const GlobalAlias &GA : M->aliases())
printIndirectSymbol(&GA);
// Output all ifuncs.
if (!M->ifunc_empty()) Out << "\n";
for (const GlobalIFunc &GI : M->ifuncs())
printIndirectSymbol(&GI);
// Output global use-lists.
printUseLists(nullptr);
// Output all of the functions.
for (const Function &F : *M)
printFunction(&F);
assert(UseListOrders.empty() && "All use-lists should have been consumed");
// Output all attribute groups.
if (!Machine.as_empty()) {
Out << '\n';
writeAllAttributeGroups();
}
// Output named metadata.
if (!M->named_metadata_empty()) Out << '\n';
for (const NamedMDNode &Node : M->named_metadata())
printNamedMDNode(&Node);
// Output metadata.
if (!Machine.mdn_empty()) {
Out << '\n';
writeAllMDNodes();
}
}
void AssemblyWriter::printModuleSummaryIndex() {
assert(TheIndex);
Machine.initializeIndexIfNeeded();
Out << "\n";
// Print module path entries. To print in order, add paths to a vector
// indexed by module slot.
std::vector<std::pair<std::string, ModuleHash>> moduleVec;
std::string RegularLTOModuleName = "[Regular LTO]";
moduleVec.resize(TheIndex->modulePaths().size());
for (auto &ModPath : TheIndex->modulePaths())
moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
// A module id of -1 is a special entry for a regular LTO module created
// during the thin link.
ModPath.second.first == -1u ? RegularLTOModuleName
: (std::string)ModPath.first(),
ModPath.second.second);
unsigned i = 0;
for (auto &ModPair : moduleVec) {
Out << "^" << i++ << " = module: (";
Out << "path: \"";
printEscapedString(ModPair.first, Out);
Out << "\", hash: (";
FieldSeparator FS;
for (auto Hash : ModPair.second)
Out << FS << Hash;
Out << "))\n";
}
// FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
// for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
for (auto &GlobalList : *TheIndex) {
auto GUID = GlobalList.first;
for (auto &Summary : GlobalList.second.SummaryList)
SummaryToGUIDMap[Summary.get()] = GUID;
}
// Print the global value summary entries.
for (auto &GlobalList : *TheIndex) {
auto GUID = GlobalList.first;
auto VI = TheIndex->getValueInfo(GlobalList);
printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
}
// Print the TypeIdMap entries.
for (auto TidIter = TheIndex->typeIds().begin();
TidIter != TheIndex->typeIds().end(); TidIter++) {
Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
<< " = typeid: (name: \"" << TidIter->second.first << "\"";
printTypeIdSummary(TidIter->second.second);
Out << ") ; guid = " << TidIter->first << "\n";
}
}
static const char *
getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
switch (K) {
case WholeProgramDevirtResolution::Indir:
return "indir";
case WholeProgramDevirtResolution::SingleImpl:
return "singleImpl";
case WholeProgramDevirtResolution::BranchFunnel:
return "branchFunnel";
}
llvm_unreachable("invalid WholeProgramDevirtResolution kind");
}
static const char *getWholeProgDevirtResByArgKindName(
WholeProgramDevirtResolution::ByArg::Kind K) {
switch (K) {
case WholeProgramDevirtResolution::ByArg::Indir:
return "indir";
case WholeProgramDevirtResolution::ByArg::UniformRetVal:
return "uniformRetVal";
case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
return "uniqueRetVal";
case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
return "virtualConstProp";
}
llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
}
static const char *getTTResKindName(TypeTestResolution::Kind K) {
switch (K) {
case TypeTestResolution::Unsat:
return "unsat";
case TypeTestResolution::ByteArray:
return "byteArray";
case TypeTestResolution::Inline:
return "inline";
case TypeTestResolution::Single:
return "single";
case TypeTestResolution::AllOnes:
return "allOnes";
}
llvm_unreachable("invalid TypeTestResolution kind");
}
void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
<< ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
// The following fields are only used if the target does not support the use
// of absolute symbols to store constants. Print only if non-zero.
if (TTRes.AlignLog2)
Out << ", alignLog2: " << TTRes.AlignLog2;
if (TTRes.SizeM1)
Out << ", sizeM1: " << TTRes.SizeM1;
if (TTRes.BitMask)
// BitMask is uint8_t which causes it to print the corresponding char.
Out << ", bitMask: " << (unsigned)TTRes.BitMask;
if (TTRes.InlineBits)
Out << ", inlineBits: " << TTRes.InlineBits;
Out << ")";
}
void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
Out << ", summary: (";
printTypeTestResolution(TIS.TTRes);
if (!TIS.WPDRes.empty()) {
Out << ", wpdResolutions: (";
FieldSeparator FS;
for (auto &WPDRes : TIS.WPDRes) {
Out << FS;
Out << "(offset: " << WPDRes.first << ", ";
printWPDRes(WPDRes.second);
Out << ")";
}
Out << ")";
}
Out << ")";
}
void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
Out << "args: (";
FieldSeparator FS;
for (auto arg : Args) {
Out << FS;
Out << arg;
}
Out << ")";
}
void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
Out << "wpdRes: (kind: ";
Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
if (!WPDRes.ResByArg.empty()) {
Out << ", resByArg: (";
FieldSeparator FS;
for (auto &ResByArg : WPDRes.ResByArg) {
Out << FS;
printArgs(ResByArg.first);
Out << ", byArg: (kind: ";
Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
if (ResByArg.second.TheKind ==
WholeProgramDevirtResolution::ByArg::UniformRetVal ||
ResByArg.second.TheKind ==
WholeProgramDevirtResolution::ByArg::UniqueRetVal)
Out << ", info: " << ResByArg.second.Info;
// The following fields are only used if the target does not support the
// use of absolute symbols to store constants. Print only if non-zero.
if (ResByArg.second.Byte || ResByArg.second.Bit)
Out << ", byte: " << ResByArg.second.Byte
<< ", bit: " << ResByArg.second.Bit;
Out << ")";
}
Out << ")";
}
Out << ")";
}
static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
switch (SK) {
case GlobalValueSummary::AliasKind:
return "alias";
case GlobalValueSummary::FunctionKind:
return "function";
case GlobalValueSummary::GlobalVarKind:
return "variable";
}
llvm_unreachable("invalid summary kind");
}
void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
Out << ", aliasee: ";
// The indexes emitted for distributed backends may not include the
// aliasee summary (only if it is being imported directly). Handle
// that case by just emitting "null" as the aliasee.
if (AS->hasAliasee())
Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
else
Out << "null";
}
void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
Out << ", varFlags: (readonly: " << GS->VarFlags.ReadOnly << ")";
}
static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
switch (LT) {
case GlobalValue::ExternalLinkage:
return "external";
case GlobalValue::PrivateLinkage:
return "private";
case GlobalValue::InternalLinkage:
return "internal";
case GlobalValue::LinkOnceAnyLinkage:
return "linkonce";
case GlobalValue::LinkOnceODRLinkage:
return "linkonce_odr";
case GlobalValue::WeakAnyLinkage:
return "weak";
case GlobalValue::WeakODRLinkage:
return "weak_odr";
case GlobalValue::CommonLinkage:
return "common";
case GlobalValue::AppendingLinkage:
return "appending";
case GlobalValue::ExternalWeakLinkage:
return "extern_weak";
case GlobalValue::AvailableExternallyLinkage:
return "available_externally";
}
llvm_unreachable("invalid linkage");
}
// When printing the linkage types in IR where the ExternalLinkage is
// not printed, and other linkage types are expected to be printed with
// a space after the name.
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
if (LT == GlobalValue::ExternalLinkage)
return "";
return getLinkageName(LT) + " ";
}
void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
Out << ", insts: " << FS->instCount();
FunctionSummary::FFlags FFlags = FS->fflags();
if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
FFlags.ReturnDoesNotAlias) {
Out << ", funcFlags: (";
Out << "readNone: " << FFlags.ReadNone;
Out << ", readOnly: " << FFlags.ReadOnly;
Out << ", noRecurse: " << FFlags.NoRecurse;
Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
Out << ", noInline: " << FFlags.NoInline;
Out << ")";
}
if (!FS->calls().empty()) {
Out << ", calls: (";
FieldSeparator IFS;
for (auto &Call : FS->calls()) {
Out << IFS;
Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
Out << ", hotness: " << getHotnessName(Call.second.getHotness());
else if (Call.second.RelBlockFreq)
Out << ", relbf: " << Call.second.RelBlockFreq;
Out << ")";
}
Out << ")";
}
if (const auto *TIdInfo = FS->getTypeIdInfo())
printTypeIdInfo(*TIdInfo);
}
void AssemblyWriter::printTypeIdInfo(
const FunctionSummary::TypeIdInfo &TIDInfo) {
Out << ", typeIdInfo: (";
FieldSeparator TIDFS;
if (!TIDInfo.TypeTests.empty()) {
Out << TIDFS;
Out << "typeTests: (";
FieldSeparator FS;
for (auto &GUID : TIDInfo.TypeTests) {
auto TidIter = TheIndex->typeIds().equal_range(GUID);
if (TidIter.first == TidIter.second) {
Out << FS;
Out << GUID;
continue;
}
// Print all type id that correspond to this GUID.
for (auto It = TidIter.first; It != TidIter.second; ++It) {
Out << FS;
auto Slot = Machine.getTypeIdSlot(It->second.first);
assert(Slot != -1);
Out << "^" << Slot;
}
}
Out << ")";
}
if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
Out << TIDFS;
printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
}
if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
Out << TIDFS;
printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
}
if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
Out << TIDFS;
printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
"typeTestAssumeConstVCalls");
}
if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
Out << TIDFS;
printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
"typeCheckedLoadConstVCalls");
}
Out << ")";
}
void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
if (TidIter.first == TidIter.second) {
Out << "vFuncId: (";
Out << "guid: " << VFId.GUID;
Out << ", offset: " << VFId.Offset;
Out << ")";
return;
}
// Print all type id that correspond to this GUID.
FieldSeparator FS;
for (auto It = TidIter.first; It != TidIter.second; ++It) {
Out << FS;
Out << "vFuncId: (";
auto Slot = Machine.getTypeIdSlot(It->second.first);
assert(Slot != -1);
Out << "^" << Slot;
Out << ", offset: " << VFId.Offset;
Out << ")";
}
}
void AssemblyWriter::printNonConstVCalls(
const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
Out << Tag << ": (";
FieldSeparator FS;
for (auto &VFuncId : VCallList) {
Out << FS;
printVFuncId(VFuncId);
}
Out << ")";
}
void AssemblyWriter::printConstVCalls(
const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
Out << Tag << ": (";
FieldSeparator FS;
for (auto &ConstVCall : VCallList) {
Out << FS;
Out << "(";
printVFuncId(ConstVCall.VFunc);
if (!ConstVCall.Args.empty()) {
Out << ", ";
printArgs(ConstVCall.Args);
}
Out << ")";
}
Out << ")";
}
void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
GlobalValueSummary::GVFlags GVFlags = Summary.flags();
GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
<< ", flags: (";
Out << "linkage: " << getLinkageName(LT);
Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
Out << ", live: " << GVFlags.Live;
Out << ", dsoLocal: " << GVFlags.DSOLocal;
Out << ")";
if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
printAliasSummary(cast<AliasSummary>(&Summary));
else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
printFunctionSummary(cast<FunctionSummary>(&Summary));
else
printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
auto RefList = Summary.refs();
if (!RefList.empty()) {
Out << ", refs: (";
FieldSeparator FS;
for (auto &Ref : RefList) {
Out << FS;
if (Ref.isReadOnly())
Out << "readonly ";
Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
}
Out << ")";
}
Out << ")";
}
void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
Out << "^" << Slot << " = gv: (";
if (!VI.name().empty())
Out << "name: \"" << VI.name() << "\"";
else
Out << "guid: " << VI.getGUID();
if (!VI.getSummaryList().empty()) {
Out << ", summaries: (";
FieldSeparator FS;
for (auto &Summary : VI.getSummaryList()) {
Out << FS;
printSummary(*Summary);
}
Out << ")";
}
Out << ")";
if (!VI.name().empty())
Out << " ; guid = " << VI.getGUID();
Out << "\n";
}
static void printMetadataIdentifier(StringRef Name,
formatted_raw_ostream &Out) {
if (Name.empty()) {
Out << "<empty name> ";
} else {
if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
Out << Name[0];
else
Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
for (unsigned i = 1, e = Name.size(); i != e; ++i) {
unsigned char C = Name[i];
if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
C == '.' || C == '_')
Out << C;
else
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
}
}
}
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
Out << '!';
printMetadataIdentifier(NMD->getName(), Out);
Out << " = !{";
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
if (i)
Out << ", ";
// Write DIExpressions inline.
// FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
MDNode *Op = NMD->getOperand(i);
if (auto *Expr = dyn_cast<DIExpression>(Op)) {
writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
continue;
}
int Slot = Machine.getMetadataSlot(Op);
if (Slot == -1)
Out << "<badref>";
else
Out << '!' << Slot;
}
Out << "}\n";
}
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
formatted_raw_ostream &Out) {
switch (Vis) {
case GlobalValue::DefaultVisibility: break;
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
}
}
static void PrintDSOLocation(const GlobalValue &GV,
formatted_raw_ostream &Out) {
// GVs with local linkage or non default visibility are implicitly dso_local,
// so we don't print it.
bool Implicit = GV.hasLocalLinkage() ||
(!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
if (GV.isDSOLocal() && !Implicit)
Out << "dso_local ";
}
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
formatted_raw_ostream &Out) {
switch (SCT) {
case GlobalValue::DefaultStorageClass: break;
case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
}
}
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
formatted_raw_ostream &Out) {
switch (TLM) {
case GlobalVariable::NotThreadLocal:
break;
case GlobalVariable::GeneralDynamicTLSModel:
Out << "thread_local ";
break;
case GlobalVariable::LocalDynamicTLSModel:
Out << "thread_local(localdynamic) ";
break;
case GlobalVariable::InitialExecTLSModel:
Out << "thread_local(initialexec) ";
break;
case GlobalVariable::LocalExecTLSModel:
Out << "thread_local(localexec) ";
break;
}
}
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
switch (UA) {
case GlobalVariable::UnnamedAddr::None:
return "";
case GlobalVariable::UnnamedAddr::Local:
return "local_unnamed_addr";
case GlobalVariable::UnnamedAddr::Global:
return "unnamed_addr";
}
llvm_unreachable("Unknown UnnamedAddr");
}
static void maybePrintComdat(formatted_raw_ostream &Out,
const GlobalObject &GO) {
const Comdat *C = GO.getComdat();
if (!C)
return;
if (isa<GlobalVariable>(GO))
Out << ',';
Out << " comdat";
if (GO.getName() == C->getName())
return;
Out << '(';
PrintLLVMName(Out, C->getName(), ComdatPrefix);
Out << ')';
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->isMaterializable())
Out << "; Materializable\n";
WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
Out << " = ";
if (!GV->hasInitializer() && GV->hasExternalLinkage())
Out << "external ";
Out << getLinkageNameWithSpace(GV->getLinkage());
PrintDSOLocation(*GV, Out);
PrintVisibility(GV->getVisibility(), Out);
PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
if (!UA.empty())
Out << UA << ' ';
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
Out << "addrspace(" << AddressSpace << ") ";
if (GV->isExternallyInitialized()) Out << "externally_initialized ";
Out << (GV->isConstant() ? "constant " : "global ");
TypePrinter.print(GV->getValueType(), Out);
if (GV->hasInitializer()) {
Out << ' ';
writeOperand(GV->getInitializer(), false);
}
if (GV->hasSection()) {
Out << ", section \"";
printEscapedString(GV->getSection(), Out);
Out << '"';
}
maybePrintComdat(Out, *GV);
if (GV->getAlignment())
Out << ", align " << GV->getAlignment();
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
GV->getAllMetadata(MDs);
printMetadataAttachments(MDs, ", ");
auto Attrs = GV->getAttributes();
if (Attrs.hasAttributes())
Out << " #" << Machine.getAttributeGroupSlot(Attrs);
printInfoComment(*GV);
}
void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
if (GIS->isMaterializable())
Out << "; Materializable\n";
WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
Out << " = ";
Out << getLinkageNameWithSpace(GIS->getLinkage());
PrintDSOLocation(*GIS, Out);
PrintVisibility(GIS->getVisibility(), Out);
PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
if (!UA.empty())
Out << UA << ' ';
if (isa<GlobalAlias>(GIS))
Out << "alias ";
else if (isa<GlobalIFunc>(GIS))
Out << "ifunc ";
else
llvm_unreachable("Not an alias or ifunc!");
TypePrinter.print(GIS->getValueType(), Out);
Out << ", ";
const Constant *IS = GIS->getIndirectSymbol();
if (!IS) {
TypePrinter.print(GIS->getType(), Out);
Out << " <<NULL ALIASEE>>";
} else {
writeOperand(IS, !isa<ConstantExpr>(IS));
}
printInfoComment(*GIS);
Out << '\n';
}
void AssemblyWriter::printComdat(const Comdat *C) {
C->print(Out);
}
void AssemblyWriter::printTypeIdentities() {
if (TypePrinter.empty())
return;
Out << '\n';
// Emit all numbered types.
auto &NumberedTypes = TypePrinter.getNumberedTypes();
for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
Out << '%' << I << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %2 = type %2
TypePrinter.printStructBody(NumberedTypes[I], Out);
Out << '\n';
}
auto &NamedTypes = TypePrinter.getNamedTypes();
for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
Out << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
TypePrinter.printStructBody(NamedTypes[I], Out);
Out << '\n';
}
}
/// printFunction - Print all aspects of a function.
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name.
Out << '\n';
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
if (F->isMaterializable())
Out << "; Materializable\n";
const AttributeList &Attrs = F->getAttributes();
if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
AttributeSet AS = Attrs.getFnAttributes();
std::string AttrStr;
for (const Attribute &Attr : AS) {
if (!Attr.isStringAttribute()) {
if (!AttrStr.empty()) AttrStr += ' ';
AttrStr += Attr.getAsString();
}
}
if (!AttrStr.empty())
Out << "; Function Attrs: " << AttrStr << '\n';
}
Machine.incorporateFunction(F);
if (F->isDeclaration()) {
Out << "declare";
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F->getAllMetadata(MDs);
printMetadataAttachments(MDs, " ");
Out << ' ';
} else
Out << "define ";
Out << getLinkageNameWithSpace(F->getLinkage());
PrintDSOLocation(*F, Out);
PrintVisibility(F->getVisibility(), Out);
PrintDLLStorageClass(F->getDLLStorageClass(), Out);
// Print the calling convention.
if (F->getCallingConv() != CallingConv::C) {
PrintCallingConv(F->getCallingConv(), Out);
Out << " ";
}
FunctionType *FT = F->getFunctionType();
if (Attrs.hasAttributes(AttributeList::ReturnIndex))
Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
TypePrinter.print(F->getReturnType(), Out);
Out << ' ';
WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
Out << '(';
// Loop over the arguments, printing them...
if (F->isDeclaration() && !IsForDebug) {
// We're only interested in the type here - don't print argument names.
for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
// Insert commas as we go... the first arg doesn't get a comma
if (I)
Out << ", ";
// Output type...
TypePrinter.print(FT->getParamType(I), Out);
AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
if (ArgAttrs.hasAttributes())
Out << ' ' << ArgAttrs.getAsString();
}
} else {
// The arguments are meaningful here, print them in detail.
for (const Argument &Arg : F->args()) {
// Insert commas as we go... the first arg doesn't get a comma
if (Arg.getArgNo() != 0)
Out << ", ";
printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
}
}
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getNumParams()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ')';
StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
if (!UA.empty())
Out << ' ' << UA;
// We print the function address space if it is non-zero or if we are writing
// a module with a non-zero program address space or if there is no valid
// Module* so that the file can be parsed without the datalayout string.
const Module *Mod = F->getParent();
if (F->getAddressSpace() != 0 || !Mod ||
Mod->getDataLayout().getProgramAddressSpace() != 0)
Out << " addrspace(" << F->getAddressSpace() << ")";
if (Attrs.hasAttributes(AttributeList::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
if (F->hasSection()) {
Out << " section \"";
printEscapedString(F->getSection(), Out);
Out << '"';
}
maybePrintComdat(Out, *F);
if (F->getAlignment())
Out << " align " << F->getAlignment();
if (F->hasGC())
Out << " gc \"" << F->getGC() << '"';
if (F->hasPrefixData()) {
Out << " prefix ";
writeOperand(F->getPrefixData(), true);
}
if (F->hasPrologueData()) {
Out << " prologue ";
writeOperand(F->getPrologueData(), true);
}
if (F->hasPersonalityFn()) {
Out << " personality ";
writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
}
if (F->isDeclaration()) {
Out << '\n';
} else {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
F->getAllMetadata(MDs);
printMetadataAttachments(MDs, " ");
Out << " {";
// Output all of the function's basic blocks.
for (const BasicBlock &BB : *F)
printBasicBlock(&BB);
// Output the function's use-lists.
printUseLists(F);
Out << "}\n";
}
Machine.purgeFunction();
}
/// printArgument - This member is called for every argument that is passed into
/// the function. Simply print it out
void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
// Output type...
TypePrinter.print(Arg->getType(), Out);
// Output parameter attributes list
if (Attrs.hasAttributes())
Out << ' ' << Attrs.getAsString();
// Output name, if available...
if (Arg->hasName()) {
Out << ' ';
PrintLLVMName(Out, Arg);
}
}
/// printBasicBlock - This member is called for each basic block in a method.
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock();
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n";
PrintLLVMName(Out, BB->getName(), LabelPrefix);
Out << ':';
} else if (!IsEntryBlock) {
Out << "\n";
int Slot = Machine.getLocalSlot(BB);
if (Slot != -1)
Out << Slot << ":";
else
Out << "<badref>:";
}
if (!BB->getParent()) {
Out.PadToColumn(50);
Out << "; Error: Block without parent!";
} else if (!IsEntryBlock) {
// Output predecessors for the block.
Out.PadToColumn(50);
Out << ";";
const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) {
Out << " No predecessors!";
} else {
Out << " preds = ";
writeOperand(*PI, false);
for (++PI; PI != PE; ++PI) {
Out << ", ";
writeOperand(*PI, false);
}
}
}
Out << "\n";
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
// Output all of the instructions in the basic block...
for (const Instruction &I : *BB) {
printInstructionLine(I);
}
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}
/// printInstructionLine - Print an instruction and a newline character.
void AssemblyWriter::printInstructionLine(const Instruction &I) {
printInstruction(I);
Out << '\n';
}
/// printGCRelocateComment - print comment after call to the gc.relocate
/// intrinsic indicating base and derived pointer names.
void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
Out << " ; (";
writeOperand(Relocate.getBasePtr(), false);
Out << ", ";
writeOperand(Relocate.getDerivedPtr(), false);
Out << ")";
}
/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
void AssemblyWriter::printInfoComment(const Value &V) {
if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
printGCRelocateComment(*Relocate);
if (AnnotationWriter)
AnnotationWriter->printInfoComment(V, Out);
}
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
raw_ostream &Out) {
// We print the address space of the call if it is non-zero.
unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
bool PrintAddrSpace = CallAddrSpace != 0;
if (!PrintAddrSpace) {
const Module *Mod = getModuleFromVal(I);
// We also print it if it is zero but not equal to the program address space
// or if we can't find a valid Module* to make it possible to parse
// the resulting file even without a datalayout string.
if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
PrintAddrSpace = true;
}
if (PrintAddrSpace)
Out << " addrspace(" << CallAddrSpace << ")";
}
// This member is called for each Instruction in a function..
void AssemblyWriter::printInstruction(const Instruction &I) {
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
// Print out indentation for an instruction.
Out << " ";
// Print out name if it exists...
if (I.hasName()) {
PrintLLVMName(Out, &I);
Out << " = ";
} else if (!I.getType()->isVoidTy()) {
// Print out the def slot taken.
int SlotNum = Machine.getLocalSlot(&I);
if (SlotNum == -1)
Out << "<badref> = ";
else
Out << '%' << SlotNum << " = ";
}
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
if (CI->isMustTailCall())
Out << "musttail ";
else if (CI->isTailCall())
Out << "tail ";
else if (CI->isNoTailCall())
Out << "notail ";
}
// Print out the opcode...
Out << I.getOpcodeName();
// If this is an atomic load or store, print out the atomic marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
Out << " atomic";
if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
Out << " weak";
// If this is a volatile operation, print out the volatile marker.
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
(isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
(isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
Out << " volatile";
// Print out optimization information.
WriteOptimizationInfo(Out, &I);
// Print out the compare instruction predicates
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
// Print out the atomicrmw operation
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
const BranchInst &BI(cast<BranchInst>(I));
Out << ' ';
writeOperand(BI.getCondition(), true);
Out << ", ";
writeOperand(BI.getSuccessor(0), true);
Out << ", ";
writeOperand(BI.getSuccessor(1), true);
} else if (isa<SwitchInst>(I)) {
const SwitchInst& SI(cast<SwitchInst>(I));
// Special case switch instruction to get formatting nice and correct.
Out << ' ';
writeOperand(SI.getCondition(), true);
Out << ", ";
writeOperand(SI.getDefaultDest(), true);
Out << " [";
for (auto Case : SI.cases()) {
Out << "\n ";
writeOperand(Case.getCaseValue(), true);
Out << ", ";
writeOperand(Case.getCaseSuccessor(), true);
}
Out << "\n ]";
} else if (isa<IndirectBrInst>(I)) {
// Special case indirectbr instruction to get formatting nice and correct.
Out << ' ';
writeOperand(Operand, true);
Out << ", [";
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
if (i != 1)
Out << ", ";
writeOperand(I.getOperand(i), true);
}
Out << ']';
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
Out << ' ';
for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
if (op) Out << ", ";
Out << "[ ";
writeOperand(PN->getIncomingValue(op), false); Out << ", ";
writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
}
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true);
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
Out << ' ';
writeOperand(I.getOperand(0), true); Out << ", ";
writeOperand(I.getOperand(1), true);
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
Out << ", " << *i;
} else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
Out << ' ';
TypePrinter.print(I.getType(), Out);
if (LPI->isCleanup() || LPI->getNumClauses() != 0)
Out << '\n';
if (LPI->isCleanup())
Out << " cleanup";
for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
if (i != 0 || LPI->isCleanup()) Out << "\n";
if (LPI->isCatch(i))
Out << " catch ";
else
Out << " filter ";
writeOperand(LPI->getClause(i), true);
}
} else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
Out << " within ";
writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
Out << " [";
unsigned Op = 0;
for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
if (Op > 0)
Out << ", ";
writeOperand(PadBB, /*PrintType=*/true);
++Op;
}
Out << "] unwind ";
if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
writeOperand(UnwindDest, /*PrintType=*/true);
else
Out << "to caller";
} else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
Out << " within ";
writeOperand(FPI->getParentPad(), /*PrintType=*/false);
Out << " [";
for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
++Op) {
if (Op > 0)
Out << ", ";
writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
}
Out << ']';
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
Out << " from ";
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
Out << " to ";
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
} else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
Out << " from ";
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
Out << " unwind ";
if (CRI->hasUnwindDest())
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
else
Out << "to caller";
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
// Print the calling convention being used.
if (CI->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(CI->getCallingConv(), Out);
}
Operand = CI->getCalledValue();
FunctionType *FTy = CI->getFunctionType();
Type *RetTy = FTy->getReturnType();
const AttributeList &PAL = CI->getAttributes();
if (PAL.hasAttributes(AttributeList::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
// Only print addrspace(N) if necessary:
maybePrintCallAddrSpace(Operand, &I, Out);
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
Out << '(';
for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
if (op > 0)
Out << ", ";
writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
}
// Emit an ellipsis if this is a musttail call in a vararg function. This
// is only to aid readability, musttail calls forward varargs by default.
if (CI->isMustTailCall() && CI->getParent() &&
CI->getParent()->getParent() &&
CI->getParent()->getParent()->isVarArg())
Out << ", ...";
Out << ')';
if (PAL.hasAttributes(AttributeList::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
writeOperandBundles(CI);
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
Operand = II->getCalledValue();
FunctionType *FTy = II->getFunctionType();
Type *RetTy = FTy->getReturnType();
const AttributeList &PAL = II->getAttributes();
// Print the calling convention being used.
if (II->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(II->getCallingConv(), Out);
}
if (PAL.hasAttributes(AttributeList::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
// Only print addrspace(N) if necessary:
maybePrintCallAddrSpace(Operand, &I, Out);
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
Out << '(';
for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
if (op)
Out << ", ";
writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
}
Out << ')';
if (PAL.hasAttributes(AttributeList::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
writeOperandBundles(II);
Out << "\n to ";
writeOperand(II->getNormalDest(), true);
Out << " unwind ";
writeOperand(II->getUnwindDest(), true);
} else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
Operand = CBI->getCalledValue();
FunctionType *FTy = CBI->getFunctionType();
Type *RetTy = FTy->getReturnType();
const AttributeList &PAL = CBI->getAttributes();
// Print the calling convention being used.
if (CBI->getCallingConv() != CallingConv::C) {
Out << " ";
PrintCallingConv(CBI->getCallingConv(), Out);
}
if (PAL.hasAttributes(AttributeList::ReturnIndex))
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
// If possible, print out the short form of the callbr instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
Out << ' ';
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
Out << ' ';
writeOperand(Operand, false);
Out << '(';
for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
if (op)
Out << ", ";
writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
}
Out << ')';
if (PAL.hasAttributes(AttributeList::FunctionIndex))
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
writeOperandBundles(CBI);
Out << "\n to ";
writeOperand(CBI->getDefaultDest(), true);
Out << " [";
for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
if (i != 0)
Out << ", ";
writeOperand(CBI->getIndirectDest(i), true);
}
Out << ']';
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
Out << ' ';
if (AI->isUsedWithInAlloca())
Out << "inalloca ";
if (AI->isSwiftError())
Out << "swifterror ";
TypePrinter.print(AI->getAllocatedType(), Out);
// Explicitly write the array size if the code is broken, if it's an array
// allocation, or if the type is not canonical for scalar allocations. The
// latter case prevents the type from mutating when round-tripping through
// assembly.
if (!AI->getArraySize() || AI->isArrayAllocation() ||
!AI->getArraySize()->getType()->isIntegerTy(32)) {
Out << ", ";
writeOperand(AI->getArraySize(), true);
}
if (AI->getAlignment()) {
Out << ", align " << AI->getAlignment();
}
unsigned AddrSpace = AI->getType()->getAddressSpace();
if (AddrSpace != 0) {
Out << ", addrspace(" << AddrSpace << ')';
}
} else if (isa<CastInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << " to ";
TypePrinter.print(I.getType(), Out);
} else if (isa<VAArgInst>(I)) {
if (Operand) {
Out << ' ';
writeOperand(Operand, true); // Work with broken code
}
Out << ", ";
TypePrinter.print(I.getType(), Out);
} else if (Operand) { // Print the normal way.
if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
Out << ' ';
TypePrinter.print(GEP->getSourceElementType(), Out);
Out << ',';
} else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
Out << ' ';
TypePrinter.print(LI->getType(), Out);
Out << ',';
}
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
Type *TheType = Operand->getType();
// Select, Store and ShuffleVector always print all types.
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|| isa<ReturnInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
// note that Operand shouldn't be null, but the test helps make dump()
// more tolerant of malformed IR
if (Operand && Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
TypePrinter.print(TheType, Out);
}
Out << ' ';
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ", ";
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
// Print atomic ordering/alignment for memory operations
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (LI->isAtomic())
writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
if (LI->getAlignment())
Out << ", align " << LI->getAlignment();
} else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
if (SI->isAtomic())
writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
if (SI->getAlignment())
Out << ", align " << SI->getAlignment();
} else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
CXI->getFailureOrdering(), CXI->getSyncScopeID());
} else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
RMWI->getSyncScopeID());
} else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
}
// Print Metadata info.
SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
I.getAllMetadata(InstMD);
printMetadataAttachments(InstMD, ", ");
// Print a nice comment.
printInfoComment(I);
}
void AssemblyWriter::printMetadataAttachments(
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
StringRef Separator) {
if (MDs.empty())
return;
if (MDNames.empty())
MDs[0].second->getContext().getMDKindNames(MDNames);
for (const auto &I : MDs) {
unsigned Kind = I.first;
Out << Separator;
if (Kind < MDNames.size()) {
Out << "!";
printMetadataIdentifier(MDNames[Kind], Out);
} else
Out << "!<unknown kind #" << Kind << ">";
Out << ' ';
WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
}
}
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
Out << '!' << Slot << " = ";
printMDNodeBody(Node);
Out << "\n";
}
void AssemblyWriter::writeAllMDNodes() {
SmallVector<const MDNode *, 16> Nodes;
Nodes.resize(Machine.mdn_size());
for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
I != E; ++I)
Nodes[I->second] = cast<MDNode>(I->first);
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
writeMDNode(i, Nodes[i]);
}
}
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
}
void AssemblyWriter::writeAllAttributeGroups() {
std::vector<std::pair<AttributeSet, unsigned>> asVec;
asVec.resize(Machine.as_size());
for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
I != E; ++I)
asVec[I->second] = *I;
for (const auto &I : asVec)
Out << "attributes #" << I.second << " = { "
<< I.first.getAsString(true) << " }\n";
}
void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
bool IsInFunction = Machine.getFunction();
if (IsInFunction)
Out << " ";
Out << "uselistorder";
if (const BasicBlock *BB =
IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
Out << "_bb ";
writeOperand(BB->getParent(), false);
Out << ", ";
writeOperand(BB, false);
} else {
Out << " ";
writeOperand(Order.V, true);
}
Out << ", { ";
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
Out << Order.Shuffle[0];
for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
Out << ", " << Order.Shuffle[I];
Out << " }\n";
}
void AssemblyWriter::printUseLists(const Function *F) {
auto hasMore =
[&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
if (!hasMore())
// Nothing to do.
return;
Out << "\n; uselistorder directives\n";
while (hasMore()) {
printUseListOrder(UseListOrders.back());
UseListOrders.pop_back();
}
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder,
bool IsForDebug) const {
SlotTracker SlotTable(this->getParent());
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
IsForDebug,
ShouldPreserveUseListOrder);
W.printFunction(this);
}
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder, bool IsForDebug) const {
SlotTracker SlotTable(this);
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
ShouldPreserveUseListOrder);
W.printModule(this);
}
void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
SlotTracker SlotTable(getParent());
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
W.printNamedMDNode(this);
}
void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
bool IsForDebug) const {
Optional<SlotTracker> LocalST;
SlotTracker *SlotTable;
if (auto *ST = MST.getMachine())
SlotTable = ST;
else {
LocalST.emplace(getParent());
SlotTable = &*LocalST;
}
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
W.printNamedMDNode(this);
}
void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
PrintLLVMName(ROS, getName(), ComdatPrefix);
ROS << " = comdat ";
switch (getSelectionKind()) {
case Comdat::Any:
ROS << "any";
break;
case Comdat::ExactMatch:
ROS << "exactmatch";
break;
case Comdat::Largest:
ROS << "largest";
break;
case Comdat::NoDuplicates:
ROS << "noduplicates";
break;
case Comdat::SameSize:
ROS << "samesize";
break;
}
ROS << '\n';
}
void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
TypePrinting TP;
TP.print(const_cast<Type*>(this), OS);
if (NoDetails)
return;
// If the type is a named struct type, print the body as well.
if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
if (!STy->isLiteral()) {
OS << " = type ";
TP.printStructBody(STy, OS);
}
}
static bool isReferencingMDNode(const Instruction &I) {
if (const auto *CI = dyn_cast<CallInst>(&I))
if (Function *F = CI->getCalledFunction())
if (F->isIntrinsic())
for (auto &Op : I.operands())
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
if (isa<MDNode>(V->getMetadata()))
return true;
return false;
}
void Value::print(raw_ostream &ROS, bool IsForDebug) const {
bool ShouldInitializeAllMetadata = false;
if (auto *I = dyn_cast<Instruction>(this))
ShouldInitializeAllMetadata = isReferencingMDNode(*I);
else if (isa<Function>(this) || isa<MetadataAsValue>(this))
ShouldInitializeAllMetadata = true;
ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
print(ROS, MST, IsForDebug);
}
void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
bool IsForDebug) const {
formatted_raw_ostream OS(ROS);
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
SlotTracker &SlotTable =
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
auto incorporateFunction = [&](const Function *F) {
if (F)
MST.incorporateFunction(*F);
};
if (const Instruction *I = dyn_cast<Instruction>(this)) {
incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
W.printInstruction(*I);
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
incorporateFunction(BB->getParent());
AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
W.printBasicBlock(BB);
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
W.printGlobal(V);
else if (const Function *F = dyn_cast<Function>(GV))
W.printFunction(F);
else
W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
} else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
} else if (const Constant *C = dyn_cast<Constant>(this)) {
TypePrinting TypePrinter;
TypePrinter.print(C->getType(), OS);
OS << ' ';
WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
} else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
this->printAsOperand(OS, /* PrintType */ true, MST);
} else {
llvm_unreachable("Unknown value to print out!");
}
}
/// Print without a type, skipping the TypePrinting object.
///
/// \return \c true iff printing was successful.
static bool printWithoutType(const Value &V, raw_ostream &O,
SlotTracker *Machine, const Module *M) {
if (V.hasName() || isa<GlobalValue>(V) ||
(!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
WriteAsOperandInternal(O, &V, nullptr, Machine, M);
return true;
}
return false;
}
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
ModuleSlotTracker &MST) {
TypePrinting TypePrinter(MST.getModule());
if (PrintType) {
TypePrinter.print(V.getType(), O);
O << ' ';
}
WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
MST.getModule());
}
void Value::printAsOperand(raw_ostream &O, bool PrintType,
const Module *M) const {
if (!M)
M = getModuleFromVal(this);
if (!PrintType)
if (printWithoutType(*this, O, nullptr, M))
return;
SlotTracker Machine(
M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
ModuleSlotTracker MST(Machine, M);
printAsOperandImpl(*this, O, PrintType, MST);
}
void Value::printAsOperand(raw_ostream &O, bool PrintType,
ModuleSlotTracker &MST) const {
if (!PrintType)
if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
return;
printAsOperandImpl(*this, O, PrintType, MST);
}
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
ModuleSlotTracker &MST, const Module *M,
bool OnlyAsOperand) {
formatted_raw_ostream OS(ROS);
TypePrinting TypePrinter(M);
WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
/* FromValue */ true);
auto *N = dyn_cast<MDNode>(&MD);
if (OnlyAsOperand || !N || isa<DIExpression>(MD))
return;
OS << " = ";
WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
}
void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
ModuleSlotTracker MST(M, isa<MDNode>(this));
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
}
void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
const Module *M) const {
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
}
void Metadata::print(raw_ostream &OS, const Module *M,
bool /*IsForDebug*/) const {
ModuleSlotTracker MST(M, isa<MDNode>(this));
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
}
void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
const Module *M, bool /*IsForDebug*/) const {
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
}
void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
SlotTracker SlotTable(this);
formatted_raw_ostream OS(ROS);
AssemblyWriter W(OS, SlotTable, this, IsForDebug);
W.printModuleSummaryIndex();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
// Value::dump - allow easy printing of Values from the debugger.
LLVM_DUMP_METHOD
void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
// Type::dump - allow easy printing of Types from the debugger.
LLVM_DUMP_METHOD
void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
// Module::dump() - Allow printing of Modules from the debugger.
LLVM_DUMP_METHOD
void Module::dump() const {
print(dbgs(), nullptr,
/*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
}
// Allow printing of Comdats from the debugger.
LLVM_DUMP_METHOD
void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
LLVM_DUMP_METHOD
void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
LLVM_DUMP_METHOD
void Metadata::dump() const { dump(nullptr); }
LLVM_DUMP_METHOD
void Metadata::dump(const Module *M) const {
print(dbgs(), M, /*IsForDebug=*/true);
dbgs() << '\n';
}
// Allow printing of ModuleSummaryIndex from the debugger.
LLVM_DUMP_METHOD
void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
#endif