1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 12:33:33 +02:00
llvm-mirror/test/CodeGen/X86/machine-combiner.ll
Sanjay Patel da6034c9d4 add 'MustReduceDepth' as an objective/cost-metric for the MachineCombiner
This is one of the problems noted in PR25016:
https://llvm.org/bugs/show_bug.cgi?id=25016
and:
http://lists.llvm.org/pipermail/llvm-dev/2015-October/090998.html

The spilling problem is independent and not addressed by this patch.

The MachineCombiner was doing reassociations that don't improve or even worsen the critical path. 
This is caused by inclusion of the "slack" factor when calculating the critical path of the original
code sequence. If we don't add that, then we have a more conservative cost comparison of the old code
sequence vs. a new sequence. The more liberal calculation must be preserved, however, for the AArch64
MULADD patterns because benchmark regressions were observed without that.

The two failing test cases now have identical asm that does what we want:
a + b + c + d ---> (a + b) + (c + d)

Differential Revision: http://reviews.llvm.org/D13417

llvm-svn: 252616
2015-11-10 16:48:53 +00:00

674 lines
22 KiB
LLVM

; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=sse -enable-unsafe-fp-math < %s | FileCheck %s --check-prefix=SSE
; RUN: llc -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=avx -enable-unsafe-fp-math < %s | FileCheck %s --check-prefix=AVX
; Verify that the first two adds are independent regardless of how the inputs are
; commuted. The destination registers are used as source registers for the third add.
define float @reassociate_adds1(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds1:
; SSE: # BB#0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds1:
; AVX: # BB#0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %t0, %x2
%t2 = fadd float %t1, %x3
ret float %t2
}
define float @reassociate_adds2(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds2:
; SSE: # BB#0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds2:
; AVX: # BB#0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %x2, %t0
%t2 = fadd float %t1, %x3
ret float %t2
}
define float @reassociate_adds3(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds3:
; SSE: # BB#0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds3:
; AVX: # BB#0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %t0, %x2
%t2 = fadd float %x3, %t1
ret float %t2
}
define float @reassociate_adds4(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds4:
; SSE: # BB#0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds4:
; AVX: # BB#0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %x2, %t0
%t2 = fadd float %x3, %t1
ret float %t2
}
; Verify that we reassociate some of these ops. The optimal balanced tree of adds is not
; produced because that would cost more compile time.
define float @reassociate_adds5(float %x0, float %x1, float %x2, float %x3, float %x4, float %x5, float %x6, float %x7) {
; SSE-LABEL: reassociate_adds5:
; SSE: # BB#0:
; SSE-NEXT: addss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: addss %xmm5, %xmm4
; SSE-NEXT: addss %xmm6, %xmm4
; SSE-NEXT: addss %xmm4, %xmm0
; SSE-NEXT: addss %xmm7, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds5:
; AVX: # BB#0:
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm5, %xmm4, %xmm1
; AVX-NEXT: vaddss %xmm6, %xmm1, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm7, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd float %x0, %x1
%t1 = fadd float %t0, %x2
%t2 = fadd float %t1, %x3
%t3 = fadd float %t2, %x4
%t4 = fadd float %t3, %x5
%t5 = fadd float %t4, %x6
%t6 = fadd float %t5, %x7
ret float %t6
}
; Verify that we only need two associative operations to reassociate the operands.
; Also, we should reassociate such that the result of the high latency division
; is used by the final 'add' rather than reassociating the %x3 operand with the
; division. The latter reassociation would not improve anything.
define float @reassociate_adds6(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_adds6:
; SSE: # BB#0:
; SSE-NEXT: divss %xmm1, %xmm0
; SSE-NEXT: addss %xmm3, %xmm2
; SSE-NEXT: addss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds6:
; AVX: # BB#0:
; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv float %x0, %x1
%t1 = fadd float %x2, %t0
%t2 = fadd float %x3, %t1
ret float %t2
}
; Verify that SSE and AVX scalar single-precision multiplies are reassociated.
define float @reassociate_muls1(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_muls1:
; SSE: # BB#0:
; SSE-NEXT: divss %xmm1, %xmm0
; SSE-NEXT: mulss %xmm3, %xmm2
; SSE-NEXT: mulss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_muls1:
; AVX: # BB#0:
; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmulss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmulss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv float %x0, %x1
%t1 = fmul float %x2, %t0
%t2 = fmul float %x3, %t1
ret float %t2
}
; Verify that SSE and AVX scalar double-precision adds are reassociated.
define double @reassociate_adds_double(double %x0, double %x1, double %x2, double %x3) {
; SSE-LABEL: reassociate_adds_double:
; SSE: # BB#0:
; SSE-NEXT: divsd %xmm1, %xmm0
; SSE-NEXT: addsd %xmm3, %xmm2
; SSE-NEXT: addsd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds_double:
; AVX: # BB#0:
; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddsd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv double %x0, %x1
%t1 = fadd double %x2, %t0
%t2 = fadd double %x3, %t1
ret double %t2
}
; Verify that SSE and AVX scalar double-precision multiplies are reassociated.
define double @reassociate_muls_double(double %x0, double %x1, double %x2, double %x3) {
; SSE-LABEL: reassociate_muls_double:
; SSE: # BB#0:
; SSE-NEXT: divsd %xmm1, %xmm0
; SSE-NEXT: mulsd %xmm3, %xmm2
; SSE-NEXT: mulsd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_muls_double:
; AVX: # BB#0:
; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmulsd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmulsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv double %x0, %x1
%t1 = fmul double %x2, %t0
%t2 = fmul double %x3, %t1
ret double %t2
}
; Verify that SSE and AVX 128-bit vector single-precision adds are reassociated.
define <4 x float> @reassociate_adds_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) {
; SSE-LABEL: reassociate_adds_v4f32:
; SSE: # BB#0:
; SSE-NEXT: mulps %xmm1, %xmm0
; SSE-NEXT: addps %xmm3, %xmm2
; SSE-NEXT: addps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds_v4f32:
; AVX: # BB#0:
; AVX-NEXT: vmulps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddps %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fmul <4 x float> %x0, %x1
%t1 = fadd <4 x float> %x2, %t0
%t2 = fadd <4 x float> %x3, %t1
ret <4 x float> %t2
}
; Verify that SSE and AVX 128-bit vector double-precision adds are reassociated.
define <2 x double> @reassociate_adds_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) {
; SSE-LABEL: reassociate_adds_v2f64:
; SSE: # BB#0:
; SSE-NEXT: mulpd %xmm1, %xmm0
; SSE-NEXT: addpd %xmm3, %xmm2
; SSE-NEXT: addpd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_adds_v2f64:
; AVX: # BB#0:
; AVX-NEXT: vmulpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vaddpd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fmul <2 x double> %x0, %x1
%t1 = fadd <2 x double> %x2, %t0
%t2 = fadd <2 x double> %x3, %t1
ret <2 x double> %t2
}
; Verify that SSE and AVX 128-bit vector single-precision multiplies are reassociated.
define <4 x float> @reassociate_muls_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) {
; SSE-LABEL: reassociate_muls_v4f32:
; SSE: # BB#0:
; SSE-NEXT: addps %xmm1, %xmm0
; SSE-NEXT: mulps %xmm3, %xmm2
; SSE-NEXT: mulps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_muls_v4f32:
; AVX: # BB#0:
; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmulps %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmulps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <4 x float> %x0, %x1
%t1 = fmul <4 x float> %x2, %t0
%t2 = fmul <4 x float> %x3, %t1
ret <4 x float> %t2
}
; Verify that SSE and AVX 128-bit vector double-precision multiplies are reassociated.
define <2 x double> @reassociate_muls_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) {
; SSE-LABEL: reassociate_muls_v2f64:
; SSE: # BB#0:
; SSE-NEXT: addpd %xmm1, %xmm0
; SSE-NEXT: mulpd %xmm3, %xmm2
; SSE-NEXT: mulpd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_muls_v2f64:
; AVX: # BB#0:
; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmulpd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmulpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <2 x double> %x0, %x1
%t1 = fmul <2 x double> %x2, %t0
%t2 = fmul <2 x double> %x3, %t1
ret <2 x double> %t2
}
; Verify that AVX 256-bit vector single-precision adds are reassociated.
define <8 x float> @reassociate_adds_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) {
; AVX-LABEL: reassociate_adds_v8f32:
; AVX: # BB#0:
; AVX-NEXT: vmulps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vaddps %ymm3, %ymm2, %ymm1
; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fmul <8 x float> %x0, %x1
%t1 = fadd <8 x float> %x2, %t0
%t2 = fadd <8 x float> %x3, %t1
ret <8 x float> %t2
}
; Verify that AVX 256-bit vector double-precision adds are reassociated.
define <4 x double> @reassociate_adds_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) {
; AVX-LABEL: reassociate_adds_v4f64:
; AVX: # BB#0:
; AVX-NEXT: vmulpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: vaddpd %ymm3, %ymm2, %ymm1
; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fmul <4 x double> %x0, %x1
%t1 = fadd <4 x double> %x2, %t0
%t2 = fadd <4 x double> %x3, %t1
ret <4 x double> %t2
}
; Verify that AVX 256-bit vector single-precision multiplies are reassociated.
define <8 x float> @reassociate_muls_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) {
; AVX-LABEL: reassociate_muls_v8f32:
; AVX: # BB#0:
; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmulps %ymm3, %ymm2, %ymm1
; AVX-NEXT: vmulps %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <8 x float> %x0, %x1
%t1 = fmul <8 x float> %x2, %t0
%t2 = fmul <8 x float> %x3, %t1
ret <8 x float> %t2
}
; Verify that AVX 256-bit vector double-precision multiplies are reassociated.
define <4 x double> @reassociate_muls_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) {
; AVX-LABEL: reassociate_muls_v4f64:
; AVX: # BB#0:
; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmulpd %ymm3, %ymm2, %ymm1
; AVX-NEXT: vmulpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <4 x double> %x0, %x1
%t1 = fmul <4 x double> %x2, %t0
%t2 = fmul <4 x double> %x3, %t1
ret <4 x double> %t2
}
; Verify that SSE and AVX scalar single-precision minimum ops are reassociated.
define float @reassociate_mins_single(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_mins_single:
; SSE: # BB#0:
; SSE-NEXT: divss %xmm1, %xmm0
; SSE-NEXT: minss %xmm3, %xmm2
; SSE-NEXT: minss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_mins_single:
; AVX: # BB#0:
; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vminss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vminss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv float %x0, %x1
%cmp1 = fcmp olt float %x2, %t0
%sel1 = select i1 %cmp1, float %x2, float %t0
%cmp2 = fcmp olt float %x3, %sel1
%sel2 = select i1 %cmp2, float %x3, float %sel1
ret float %sel2
}
; Verify that SSE and AVX scalar single-precision maximum ops are reassociated.
define float @reassociate_maxs_single(float %x0, float %x1, float %x2, float %x3) {
; SSE-LABEL: reassociate_maxs_single:
; SSE: # BB#0:
; SSE-NEXT: divss %xmm1, %xmm0
; SSE-NEXT: maxss %xmm3, %xmm2
; SSE-NEXT: maxss %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_maxs_single:
; AVX: # BB#0:
; AVX-NEXT: vdivss %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmaxss %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmaxss %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv float %x0, %x1
%cmp1 = fcmp ogt float %x2, %t0
%sel1 = select i1 %cmp1, float %x2, float %t0
%cmp2 = fcmp ogt float %x3, %sel1
%sel2 = select i1 %cmp2, float %x3, float %sel1
ret float %sel2
}
; Verify that SSE and AVX scalar double-precision minimum ops are reassociated.
define double @reassociate_mins_double(double %x0, double %x1, double %x2, double %x3) {
; SSE-LABEL: reassociate_mins_double:
; SSE: # BB#0:
; SSE-NEXT: divsd %xmm1, %xmm0
; SSE-NEXT: minsd %xmm3, %xmm2
; SSE-NEXT: minsd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_mins_double:
; AVX: # BB#0:
; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vminsd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vminsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv double %x0, %x1
%cmp1 = fcmp olt double %x2, %t0
%sel1 = select i1 %cmp1, double %x2, double %t0
%cmp2 = fcmp olt double %x3, %sel1
%sel2 = select i1 %cmp2, double %x3, double %sel1
ret double %sel2
}
; Verify that SSE and AVX scalar double-precision maximum ops are reassociated.
define double @reassociate_maxs_double(double %x0, double %x1, double %x2, double %x3) {
; SSE-LABEL: reassociate_maxs_double:
; SSE: # BB#0:
; SSE-NEXT: divsd %xmm1, %xmm0
; SSE-NEXT: maxsd %xmm3, %xmm2
; SSE-NEXT: maxsd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_maxs_double:
; AVX: # BB#0:
; AVX-NEXT: vdivsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmaxsd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmaxsd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fdiv double %x0, %x1
%cmp1 = fcmp ogt double %x2, %t0
%sel1 = select i1 %cmp1, double %x2, double %t0
%cmp2 = fcmp ogt double %x3, %sel1
%sel2 = select i1 %cmp2, double %x3, double %sel1
ret double %sel2
}
; Verify that SSE and AVX 128-bit vector single-precision minimum ops are reassociated.
define <4 x float> @reassociate_mins_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) {
; SSE-LABEL: reassociate_mins_v4f32:
; SSE: # BB#0:
; SSE-NEXT: addps %xmm1, %xmm0
; SSE-NEXT: minps %xmm3, %xmm2
; SSE-NEXT: minps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_mins_v4f32:
; AVX: # BB#0:
; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vminps %xmm3, %xmm2, %xmm1
; AVX-NEXT: vminps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <4 x float> %x0, %x1
%cmp1 = fcmp olt <4 x float> %x2, %t0
%sel1 = select <4 x i1> %cmp1, <4 x float> %x2, <4 x float> %t0
%cmp2 = fcmp olt <4 x float> %x3, %sel1
%sel2 = select <4 x i1> %cmp2, <4 x float> %x3, <4 x float> %sel1
ret <4 x float> %sel2
}
; Verify that SSE and AVX 128-bit vector single-precision maximum ops are reassociated.
define <4 x float> @reassociate_maxs_v4f32(<4 x float> %x0, <4 x float> %x1, <4 x float> %x2, <4 x float> %x3) {
; SSE-LABEL: reassociate_maxs_v4f32:
; SSE: # BB#0:
; SSE-NEXT: addps %xmm1, %xmm0
; SSE-NEXT: maxps %xmm3, %xmm2
; SSE-NEXT: maxps %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_maxs_v4f32:
; AVX: # BB#0:
; AVX-NEXT: vaddps %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmaxps %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmaxps %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <4 x float> %x0, %x1
%cmp1 = fcmp ogt <4 x float> %x2, %t0
%sel1 = select <4 x i1> %cmp1, <4 x float> %x2, <4 x float> %t0
%cmp2 = fcmp ogt <4 x float> %x3, %sel1
%sel2 = select <4 x i1> %cmp2, <4 x float> %x3, <4 x float> %sel1
ret <4 x float> %sel2
}
; Verify that SSE and AVX 128-bit vector double-precision minimum ops are reassociated.
define <2 x double> @reassociate_mins_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) {
; SSE-LABEL: reassociate_mins_v2f64:
; SSE: # BB#0:
; SSE-NEXT: addpd %xmm1, %xmm0
; SSE-NEXT: minpd %xmm3, %xmm2
; SSE-NEXT: minpd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_mins_v2f64:
; AVX: # BB#0:
; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vminpd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vminpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <2 x double> %x0, %x1
%cmp1 = fcmp olt <2 x double> %x2, %t0
%sel1 = select <2 x i1> %cmp1, <2 x double> %x2, <2 x double> %t0
%cmp2 = fcmp olt <2 x double> %x3, %sel1
%sel2 = select <2 x i1> %cmp2, <2 x double> %x3, <2 x double> %sel1
ret <2 x double> %sel2
}
; Verify that SSE and AVX 128-bit vector double-precision maximum ops are reassociated.
define <2 x double> @reassociate_maxs_v2f64(<2 x double> %x0, <2 x double> %x1, <2 x double> %x2, <2 x double> %x3) {
; SSE-LABEL: reassociate_maxs_v2f64:
; SSE: # BB#0:
; SSE-NEXT: addpd %xmm1, %xmm0
; SSE-NEXT: maxpd %xmm3, %xmm2
; SSE-NEXT: maxpd %xmm2, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: reassociate_maxs_v2f64:
; AVX: # BB#0:
; AVX-NEXT: vaddpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: vmaxpd %xmm3, %xmm2, %xmm1
; AVX-NEXT: vmaxpd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%t0 = fadd <2 x double> %x0, %x1
%cmp1 = fcmp ogt <2 x double> %x2, %t0
%sel1 = select <2 x i1> %cmp1, <2 x double> %x2, <2 x double> %t0
%cmp2 = fcmp ogt <2 x double> %x3, %sel1
%sel2 = select <2 x i1> %cmp2, <2 x double> %x3, <2 x double> %sel1
ret <2 x double> %sel2
}
; Verify that AVX 256-bit vector single-precision minimum ops are reassociated.
define <8 x float> @reassociate_mins_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) {
; AVX-LABEL: reassociate_mins_v8f32:
; AVX: # BB#0:
; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vminps %ymm3, %ymm2, %ymm1
; AVX-NEXT: vminps %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <8 x float> %x0, %x1
%cmp1 = fcmp olt <8 x float> %x2, %t0
%sel1 = select <8 x i1> %cmp1, <8 x float> %x2, <8 x float> %t0
%cmp2 = fcmp olt <8 x float> %x3, %sel1
%sel2 = select <8 x i1> %cmp2, <8 x float> %x3, <8 x float> %sel1
ret <8 x float> %sel2
}
; Verify that AVX 256-bit vector single-precision maximum ops are reassociated.
define <8 x float> @reassociate_maxs_v8f32(<8 x float> %x0, <8 x float> %x1, <8 x float> %x2, <8 x float> %x3) {
; AVX-LABEL: reassociate_maxs_v8f32:
; AVX: # BB#0:
; AVX-NEXT: vaddps %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmaxps %ymm3, %ymm2, %ymm1
; AVX-NEXT: vmaxps %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <8 x float> %x0, %x1
%cmp1 = fcmp ogt <8 x float> %x2, %t0
%sel1 = select <8 x i1> %cmp1, <8 x float> %x2, <8 x float> %t0
%cmp2 = fcmp ogt <8 x float> %x3, %sel1
%sel2 = select <8 x i1> %cmp2, <8 x float> %x3, <8 x float> %sel1
ret <8 x float> %sel2
}
; Verify that AVX 256-bit vector double-precision minimum ops are reassociated.
define <4 x double> @reassociate_mins_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) {
; AVX-LABEL: reassociate_mins_v4f64:
; AVX: # BB#0:
; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: vminpd %ymm3, %ymm2, %ymm1
; AVX-NEXT: vminpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <4 x double> %x0, %x1
%cmp1 = fcmp olt <4 x double> %x2, %t0
%sel1 = select <4 x i1> %cmp1, <4 x double> %x2, <4 x double> %t0
%cmp2 = fcmp olt <4 x double> %x3, %sel1
%sel2 = select <4 x i1> %cmp2, <4 x double> %x3, <4 x double> %sel1
ret <4 x double> %sel2
}
; Verify that AVX 256-bit vector double-precision maximum ops are reassociated.
define <4 x double> @reassociate_maxs_v4f64(<4 x double> %x0, <4 x double> %x1, <4 x double> %x2, <4 x double> %x3) {
; AVX-LABEL: reassociate_maxs_v4f64:
; AVX: # BB#0:
; AVX-NEXT: vaddpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: vmaxpd %ymm3, %ymm2, %ymm1
; AVX-NEXT: vmaxpd %ymm1, %ymm0, %ymm0
; AVX-NEXT: retq
%t0 = fadd <4 x double> %x0, %x1
%cmp1 = fcmp ogt <4 x double> %x2, %t0
%sel1 = select <4 x i1> %cmp1, <4 x double> %x2, <4 x double> %t0
%cmp2 = fcmp ogt <4 x double> %x3, %sel1
%sel2 = select <4 x i1> %cmp2, <4 x double> %x3, <4 x double> %sel1
ret <4 x double> %sel2
}
; PR25016: https://llvm.org/bugs/show_bug.cgi?id=25016
; Verify that reassociation is not happening needlessly or wrongly.
declare double @bar()
define double @reassociate_adds_from_calls() {
; AVX-LABEL: reassociate_adds_from_calls:
; AVX: callq bar
; AVX-NEXT: vmovsd %xmm0, 16(%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd %xmm0, 8(%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd %xmm0, (%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd 8(%rsp), %xmm1
; AVX: vaddsd 16(%rsp), %xmm1, %xmm1
; AVX-NEXT: vaddsd (%rsp), %xmm0, %xmm0
; AVX-NEXT: vaddsd %xmm0, %xmm1, %xmm0
%x0 = call double @bar()
%x1 = call double @bar()
%x2 = call double @bar()
%x3 = call double @bar()
%t0 = fadd double %x0, %x1
%t1 = fadd double %t0, %x2
%t2 = fadd double %t1, %x3
ret double %t2
}
define double @already_reassociated() {
; AVX-LABEL: already_reassociated:
; AVX: callq bar
; AVX-NEXT: vmovsd %xmm0, 16(%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd %xmm0, 8(%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd %xmm0, (%rsp)
; AVX-NEXT: callq bar
; AVX-NEXT: vmovsd 8(%rsp), %xmm1
; AVX: vaddsd 16(%rsp), %xmm1, %xmm1
; AVX-NEXT: vaddsd (%rsp), %xmm0, %xmm0
; AVX-NEXT: vaddsd %xmm0, %xmm1, %xmm0
%x0 = call double @bar()
%x1 = call double @bar()
%x2 = call double @bar()
%x3 = call double @bar()
%t0 = fadd double %x0, %x1
%t1 = fadd double %x2, %x3
%t2 = fadd double %t0, %t1
ret double %t2
}