1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 05:01:59 +01:00
llvm-mirror/lib/Analysis/DivergenceAnalysis.cpp
Simon Moll 5ebd974f16 [DA][SDA] SyncDependenceAnalysis re-write
This patch achieves two things:
1. It breaks up the `join_blocks` interface between the SDA to the DA to
   return two separate sets for divergent loops exits and divergent,
disjoint path joins.
2. It updates the SDA algorithm to run in O(n) time and improves the
   precision on divergent loop exits.

This fixes `https://bugs.llvm.org/show_bug.cgi?id=46372` (by virtue of
the improved `join_blocks` interface) and revealed an imprecise expected
result in the `Analysis/DivergenceAnalysis/AMDGPU/hidden_loopdiverge.ll`
test.

Reviewed By: sameerds

Differential Revision: https://reviews.llvm.org/D84413
2020-09-30 17:36:26 +02:00

395 lines
14 KiB
C++

//===---- DivergenceAnalysis.cpp --- Divergence Analysis Implementation ----==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a general divergence analysis for loop vectorization
// and GPU programs. It determines which branches and values in a loop or GPU
// program are divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they re-converge.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can interfere with thread re-convergence.
// Therefore, an analysis that computes which branches in a GPU program are
// divergent can help the compiler to selectively run these optimizations.
//
// This implementation is derived from the Vectorization Analysis of the
// Region Vectorizer (RV). That implementation in turn is based on the approach
// described in
//
// Improving Performance of OpenCL on CPUs
// Ralf Karrenberg and Sebastian Hack
// CC '12
//
// This DivergenceAnalysis implementation is generic in the sense that it does
// not itself identify original sources of divergence.
// Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
// (GPUDivergenceAnalysis) for GPU programs, identify the sources of divergence
// (e.g., special variables that hold the thread ID or the iteration variable).
//
// The generic implementation propagates divergence to variables that are data
// or sync dependent on a source of divergence.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The sync dependence detection (which branch induces divergence in which join
// points) is implemented in the SyncDependenceAnalysis.
//
// The current DivergenceAnalysis implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
// non-kernel-entry function and the return value of a function call as
// divergent.
// 2. memory as black box. It conservatively considers values loaded from
// generic or local address as divergent. This can be improved by leveraging
// pointer analysis and/or by modelling non-escaping memory objects in SSA
// as done in RV.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "divergence-analysis"
// class DivergenceAnalysis
DivergenceAnalysis::DivergenceAnalysis(
const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
: F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
IsLCSSAForm(IsLCSSAForm) {}
bool DivergenceAnalysis::markDivergent(const Value &DivVal) {
if (isAlwaysUniform(DivVal))
return false;
assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
return DivergentValues.insert(&DivVal).second;
}
void DivergenceAnalysis::addUniformOverride(const Value &UniVal) {
UniformOverrides.insert(&UniVal);
}
bool DivergenceAnalysis::isTemporalDivergent(const BasicBlock &ObservingBlock,
const Value &Val) const {
const auto *Inst = dyn_cast<const Instruction>(&Val);
if (!Inst)
return false;
// check whether any divergent loop carrying Val terminates before control
// proceeds to ObservingBlock
for (const auto *Loop = LI.getLoopFor(Inst->getParent());
Loop != RegionLoop && !Loop->contains(&ObservingBlock);
Loop = Loop->getParentLoop()) {
if (DivergentLoops.find(Loop) != DivergentLoops.end())
return true;
}
return false;
}
bool DivergenceAnalysis::inRegion(const Instruction &I) const {
return I.getParent() && inRegion(*I.getParent());
}
bool DivergenceAnalysis::inRegion(const BasicBlock &BB) const {
return (!RegionLoop && BB.getParent() == &F) || RegionLoop->contains(&BB);
}
void DivergenceAnalysis::pushUsers(const Value &V) {
const auto *I = dyn_cast<const Instruction>(&V);
if (I && I->isTerminator()) {
analyzeControlDivergence(*I);
return;
}
for (const auto *User : V.users()) {
const auto *UserInst = dyn_cast<const Instruction>(User);
if (!UserInst)
continue;
// only compute divergent inside loop
if (!inRegion(*UserInst))
continue;
// All users of divergent values are immediate divergent
if (markDivergent(*UserInst))
Worklist.push_back(UserInst);
}
}
static const Instruction *getIfCarriedInstruction(const Use &U,
const Loop &DivLoop) {
const auto *I = dyn_cast<const Instruction>(&U);
if (!I)
return nullptr;
if (!DivLoop.contains(I))
return nullptr;
return I;
}
void DivergenceAnalysis::analyzeTemporalDivergence(const Instruction &I,
const Loop &OuterDivLoop) {
if (isAlwaysUniform(I))
return;
if (isDivergent(I))
return;
LLVM_DEBUG(dbgs() << "Analyze temporal divergence: " << I.getName() << "\n");
assert((isa<PHINode>(I) || !IsLCSSAForm) &&
"In LCSSA form all users of loop-exiting defs are Phi nodes.");
for (const Use &Op : I.operands()) {
const auto *OpInst = getIfCarriedInstruction(Op, OuterDivLoop);
if (!OpInst)
continue;
if (markDivergent(I))
pushUsers(I);
return;
}
}
// marks all users of loop-carried values of the loop headed by LoopHeader as
// divergent
void DivergenceAnalysis::analyzeLoopExitDivergence(const BasicBlock &DivExit,
const Loop &OuterDivLoop) {
// All users are in immediate exit blocks
if (IsLCSSAForm) {
for (const auto &Phi : DivExit.phis()) {
analyzeTemporalDivergence(Phi, OuterDivLoop);
}
return;
}
// For non-LCSSA we have to follow all live out edges wherever they may lead.
const BasicBlock &LoopHeader = *OuterDivLoop.getHeader();
SmallVector<const BasicBlock *, 8> TaintStack;
TaintStack.push_back(&DivExit);
// Otherwise potential users of loop-carried values could be anywhere in the
// dominance region of DivLoop (including its fringes for phi nodes)
DenseSet<const BasicBlock *> Visited;
Visited.insert(&DivExit);
do {
auto *UserBlock = TaintStack.back();
TaintStack.pop_back();
// don't spread divergence beyond the region
if (!inRegion(*UserBlock))
continue;
assert(!OuterDivLoop.contains(UserBlock) &&
"irreducible control flow detected");
// phi nodes at the fringes of the dominance region
if (!DT.dominates(&LoopHeader, UserBlock)) {
// all PHI nodes of UserBlock become divergent
for (auto &Phi : UserBlock->phis()) {
analyzeTemporalDivergence(Phi, OuterDivLoop);
}
continue;
}
// Taint outside users of values carried by OuterDivLoop.
for (auto &I : *UserBlock) {
analyzeTemporalDivergence(I, OuterDivLoop);
}
// visit all blocks in the dominance region
for (auto *SuccBlock : successors(UserBlock)) {
if (!Visited.insert(SuccBlock).second) {
continue;
}
TaintStack.push_back(SuccBlock);
}
} while (!TaintStack.empty());
}
void DivergenceAnalysis::propagateLoopExitDivergence(const BasicBlock &DivExit,
const Loop &InnerDivLoop) {
LLVM_DEBUG(dbgs() << "\tpropLoopExitDiv " << DivExit.getName() << "\n");
// Find outer-most loop that does not contain \p DivExit
const Loop *DivLoop = &InnerDivLoop;
const Loop *OuterDivLoop = DivLoop;
const Loop *ExitLevelLoop = LI.getLoopFor(&DivExit);
const unsigned LoopExitDepth =
ExitLevelLoop ? ExitLevelLoop->getLoopDepth() : 0;
while (DivLoop && DivLoop->getLoopDepth() > LoopExitDepth) {
DivergentLoops.insert(DivLoop); // all crossed loops are divergent
OuterDivLoop = DivLoop;
DivLoop = DivLoop->getParentLoop();
}
LLVM_DEBUG(dbgs() << "\tOuter-most left loop: " << OuterDivLoop->getName()
<< "\n");
analyzeLoopExitDivergence(DivExit, *OuterDivLoop);
}
// this is a divergent join point - mark all phi nodes as divergent and push
// them onto the stack.
void DivergenceAnalysis::taintAndPushPhiNodes(const BasicBlock &JoinBlock) {
LLVM_DEBUG(dbgs() << "taintAndPushPhiNodes in " << JoinBlock.getName()
<< "\n");
// ignore divergence outside the region
if (!inRegion(JoinBlock)) {
return;
}
// push non-divergent phi nodes in JoinBlock to the worklist
for (const auto &Phi : JoinBlock.phis()) {
if (isDivergent(Phi))
continue;
// FIXME Theoretically ,the 'undef' value could be replaced by any other
// value causing spurious divergence.
if (Phi.hasConstantOrUndefValue())
continue;
if (markDivergent(Phi))
Worklist.push_back(&Phi);
}
}
void DivergenceAnalysis::analyzeControlDivergence(const Instruction &Term) {
LLVM_DEBUG(dbgs() << "analyzeControlDiv " << Term.getParent()->getName()
<< "\n");
// Don't propagate divergence from unreachable blocks.
if (!DT.isReachableFromEntry(Term.getParent()))
return;
const auto *BranchLoop = LI.getLoopFor(Term.getParent());
const auto &DivDesc = SDA.getJoinBlocks(Term);
// Iterate over all blocks now reachable by a disjoint path join
for (const auto *JoinBlock : DivDesc.JoinDivBlocks) {
taintAndPushPhiNodes(*JoinBlock);
}
assert(DivDesc.LoopDivBlocks.empty() || BranchLoop);
for (const auto *DivExitBlock : DivDesc.LoopDivBlocks) {
propagateLoopExitDivergence(*DivExitBlock, *BranchLoop);
}
}
void DivergenceAnalysis::compute() {
// Initialize worklist.
auto DivValuesCopy = DivergentValues;
for (const auto *DivVal : DivValuesCopy) {
assert(isDivergent(*DivVal) && "Worklist invariant violated!");
pushUsers(*DivVal);
}
// All values on the Worklist are divergent.
// Their users may not have been updated yed.
while (!Worklist.empty()) {
const Instruction &I = *Worklist.back();
Worklist.pop_back();
// propagate value divergence to users
assert(isDivergent(I) && "Worklist invariant violated!");
pushUsers(I);
}
}
bool DivergenceAnalysis::isAlwaysUniform(const Value &V) const {
return UniformOverrides.find(&V) != UniformOverrides.end();
}
bool DivergenceAnalysis::isDivergent(const Value &V) const {
return DivergentValues.find(&V) != DivergentValues.end();
}
bool DivergenceAnalysis::isDivergentUse(const Use &U) const {
Value &V = *U.get();
Instruction &I = *cast<Instruction>(U.getUser());
return isDivergent(V) || isTemporalDivergent(*I.getParent(), V);
}
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
// iterate instructions using instructions() to ensure a deterministic order.
for (auto &I : instructions(F)) {
if (isDivergent(I))
OS << "DIVERGENT:" << I << '\n';
}
}
// class GPUDivergenceAnalysis
GPUDivergenceAnalysis::GPUDivergenceAnalysis(Function &F,
const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI,
const TargetTransformInfo &TTI)
: SDA(DT, PDT, LI), DA(F, nullptr, DT, LI, SDA, /* LCSSA */ false) {
for (auto &I : instructions(F)) {
if (TTI.isSourceOfDivergence(&I)) {
DA.markDivergent(I);
} else if (TTI.isAlwaysUniform(&I)) {
DA.addUniformOverride(I);
}
}
for (auto &Arg : F.args()) {
if (TTI.isSourceOfDivergence(&Arg)) {
DA.markDivergent(Arg);
}
}
DA.compute();
}
bool GPUDivergenceAnalysis::isDivergent(const Value &val) const {
return DA.isDivergent(val);
}
bool GPUDivergenceAnalysis::isDivergentUse(const Use &use) const {
return DA.isDivergentUse(use);
}
void GPUDivergenceAnalysis::print(raw_ostream &OS, const Module *mod) const {
OS << "Divergence of kernel " << DA.getFunction().getName() << " {\n";
DA.print(OS, mod);
OS << "}\n";
}