1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Analysis/DevelopmentModeInlineAdvisor.cpp
Mircea Trofin 9c71d4e1d1 [MLInliner] Support training that doesn't require partial rewards
If we use training algorithms that don't need partial rewards, we don't
need to worry about an ir2native model. In that case, training logs
won't contain a 'delta_size' feature either (since that's the partial
reward).

Differential Revision: https://reviews.llvm.org/D86481
2020-08-24 17:36:29 -07:00

682 lines
26 KiB
C++

//===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a model runner using Tensorflow C APIs, allowing the
// loading of a model from a command line option.
//
//===----------------------------------------------------------------------===//
#include "llvm/Config/config.h"
#if defined(LLVM_HAVE_TF_API)
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
#include "llvm/Analysis/MLInlineAdvisor.h"
#include "llvm/Analysis/Utils/TFUtils.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Path.h"
#include <vector>
using namespace llvm;
static cl::opt<std::string> TrainingLog(
"training-log", cl::Hidden,
cl::desc("Path where the development - mode inlining log is saved."));
static cl::opt<std::string> TFModelUnderTrainingPath(
"ml-inliner-model-under-training", cl::Hidden,
cl::desc(R"(Path to SavedModel from the previous training iteration.
The directory is also expected to contain a JSON specification of the
outputs expected to be logged, where the first entry must be the
inlining decision. The file containing the specification should be
called output_spec.json. The expected JSON value is an array of
dictionaries. Each dictionary should have 2 keys:
- "tensor_spec, followed by the TensorSpec description of the
output; and
- "logging_name", a string indicating the name to use when
logging the output values.
Example:
[
{
"logging_name" : "some_name",
"tensor_spec" : {
"name" : "model_name",
"port" : 0,
"shape" : [2, 3],
"type" : "float"
}
}
]
The first value must always correspond to the decision.)"));
static cl::opt<std::string> TFOutputSpecOverride(
"ml-inliner-output-spec-override", cl::Hidden,
cl::desc("Override the path to the output spec json file. See "
"-ml-inliner-model-under-training documentation for the "
"specification of that file."));
static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix",
cl::Hidden, cl::init("action_"),
cl::desc("Prefix for feature names."));
namespace {
/// An InlineEvent, used by TrainingLogger.
struct InlineEvent {
/// What the default policy's decision would have been.
bool DefaultDecision = false;
/// What we advised. When training off the default policy, this is the same as
/// DefaultDecision.
bool AdvisedDecision = false;
/// What actually happened. This would be 'false' in the case of an inline
/// error, even if AdvisedDecision were true, otherwise it agrees with
/// AdvisedDecision.
bool Effect = false;
/// What the change in size was: size_after - size_before
int64_t Reward = 0;
};
/// Collect data we may use for training a model, and write it as a textual
/// Tensorflow SequenceExample
/// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample)
/// protobuf (https://developers.google.com/protocol-buffers).
/// Because this is a protobuf, we cannot just stream the events as they come.
/// Internally, TrainingLogger stores data in column-major format, because that
/// lines up with how TF SequenceExample represents it.
class ModelUnderTrainingRunner;
class TrainingLogger final {
public:
TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR);
/// Log one inlining event.
void logInlineEvent(const InlineEvent &Event,
const MLModelRunner &ModelRunner);
/// Print the stored tensors.
void print();
private:
/// Write the values of one tensor as a list.
template <typename T>
void writeTensorValues(raw_fd_ostream &OutFile, const char *TensorData,
size_t ElemCount) const {
OutFile << "[";
const T *TypedData = reinterpret_cast<const T *>(TensorData);
for (size_t I = 0; I < ElemCount; ++I) {
if (I > 0)
OutFile << ", ";
OutFile << TypedData[I];
}
OutFile << "]";
}
/// Write a list of tensors as a sequence of TensorFlow FeatureList protobufs.
/// The tensors are assumed to be stored contiguously, in row-major format,
/// in the TensorData buffer. Each tensor has the shape given by Spec. The
/// feature name in the output is either the provided LoggingName, if
/// specified, otherwise it's the name of the tensor (as given by Spec).
template <typename T>
void
writeTensorsAsFeatureLists(raw_fd_ostream &OutFile, const TensorSpec &Spec,
const T *TensorData, size_t TensorCount,
Optional<StringRef> LoggingName = None) const {
writeRawTensorsAsFeatureLists(OutFile, Spec,
reinterpret_cast<const char *>(TensorData),
TensorCount, LoggingName);
}
/// Untyped implementation of the API above.
void
writeRawTensorsAsFeatureLists(raw_fd_ostream &OutFile, const TensorSpec &Spec,
const char *TensorData, size_t TensorCount,
Optional<StringRef> LoggingName = None) const {
const char *FieldName = "<invalid>";
std::function<void(const char *)> ValueWriter;
// The 'Feature' protobuf only has 3 possible fields: float_list,
// int64_list, or bytes_list, so we capture int32 values as int64. We don't
// support any other types.
if (Spec.isElementType<int64_t>()) {
FieldName = "int64_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<int64_t>(OutFile, Data, Spec.getElementCount());
};
} else if (Spec.isElementType<int32_t>()) {
FieldName = "int64_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<int32_t>(OutFile, Data, Spec.getElementCount());
};
} else if (Spec.isElementType<float>()) {
FieldName = "float_list";
ValueWriter = [&](const char *Data) {
writeTensorValues<float>(OutFile, Data, Spec.getElementCount());
};
} else
llvm_unreachable("Unsupported tensor type.");
OutFile << " feature_list: {\n";
OutFile << " key: "
<< "\"" << (LoggingName ? *LoggingName : Spec.name()) << "\" ";
OutFile << "value: {\n";
size_t TensorByteSize = Spec.getElementCount() * Spec.getElementByteSize();
for (const char *P = TensorData,
*E = TensorData + TensorByteSize * TensorCount;
P < E; P += TensorByteSize) {
OutFile << " feature: { " << FieldName << ": { value: ";
ValueWriter(P);
OutFile << " } }\n";
}
OutFile << " }\n";
OutFile << " }\n";
}
StringRef LogFileName;
const ModelUnderTrainingRunner *const MUTR;
std::vector<InlineFeatures> Features;
std::vector<int64_t> DefaultDecisions;
// We store all outputs as data blobs, but we always expect to have one, the
// first one, representing the decision. While we could track that separately,
// for uniformity, we store it, generically, here.
std::vector<std::vector<char>> Outputs;
std::vector<bool> Effects;
std::vector<int64_t> Rewards;
};
/// An extension of the MLInlineAdvisor for the 'development' mode, targeting
/// the offline training scenario. Note that training happens outside of the
/// compiler, this facility is concerned with producing training data ("logs").
/// This InlineAdvisor can operate in the following modes:
///
/// 1) collect logs for the default policy. This is useful for bootstrapping
/// training, which will be considerably faster by starting from a reasonable
/// policy.
///
/// 2) collect logs for the ML policy, using a model from a previous
/// training. Potentially, that model uses internally some small random
/// perturbation of its weights, to induce exploration (setting this up is the
/// responsibility of the training algorithm). The logs would then be used to
/// retrain and improve on this model.
///
/// 3) use the provided model, with no logging. This is useful for end to end
/// validation - the model, in this case, is a release candidate and shouldn't
/// have random perturbations. It is a convenience feature: rather than needing
/// to take the release candidate model and compile it in 'release' mode,
/// validate it, then potentially discard it, it's easier to just pass the model
/// to the compiler, albeit compilation would be slower, as a one-off. Once the
/// model behaves satisfactorily, it can be compiled AOT, for efficiency, in
/// release mode. The expectation is that a well-trained model provides a good
/// policy over a sufficiently diverse codebase, over many changes (i.e.
/// training happens seldom).
class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor {
public:
DevelopmentModeMLInlineAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> ModelRunner,
std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference,
std::unique_ptr<TrainingLogger> Logger);
size_t getTotalSizeEstimate();
virtual ~DevelopmentModeMLInlineAdvisor();
void updateNativeSizeEstimate(int64_t Change) {
*CurrentNativeSize += Change;
}
void resetNativeSize(Function *F) {
FAM.invalidate<InlineSizeEstimatorAnalysis>(*F);
}
std::unique_ptr<MLInlineAdvice>
getMandatoryAdvice(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
std::unique_ptr<MLInlineAdvice>
getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
Optional<size_t> getNativeSizeEstimate(const Function &F) const;
private:
bool isLogging() const { return !!Logger; }
std::function<bool(CallBase &)> GetDefaultAdvice;
const bool IsDoingInference;
std::unique_ptr<TrainingLogger> Logger;
const Optional<int32_t> InitialNativeSize;
Optional<int32_t> CurrentNativeSize;
};
/// A variant of MLInlineAdvice that tracks all non-trivial inlining
/// decisions, for training/logging.
class LoggingMLInlineAdvice : public MLInlineAdvice {
public:
LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB,
OptimizationRemarkEmitter &ORE, bool Recommendation,
TrainingLogger &Logger,
Optional<size_t> CallerSizeEstimateBefore,
Optional<size_t> CalleeSizeEstimateBefore,
bool DefaultDecision, bool Mandatory = false)
: MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger),
CallerSizeEstimateBefore(CallerSizeEstimateBefore),
CalleeSizeEstimateBefore(CalleeSizeEstimateBefore),
DefaultDecision(DefaultDecision), Mandatory(Mandatory) {}
virtual ~LoggingMLInlineAdvice() = default;
private:
DevelopmentModeMLInlineAdvisor *getAdvisor() const {
return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor);
}
void recordInliningImpl() override {
MLInlineAdvice::recordInliningImpl();
getAdvisor()->resetNativeSize(Caller);
int Reward = std::numeric_limits<int>::max();
if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() &&
!getAdvisor()->isForcedToStop()) {
int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) +
*CalleeSizeEstimateBefore;
Reward = NativeSizeAfter -
(*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore);
getAdvisor()->updateNativeSizeEstimate(Reward);
}
log(Reward, /*Success=*/true);
}
void recordInliningWithCalleeDeletedImpl() override {
MLInlineAdvice::recordInliningWithCalleeDeletedImpl();
getAdvisor()->resetNativeSize(Caller);
if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() &&
!getAdvisor()->isForcedToStop()) {
int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller);
int Reward = NativeSizeAfter -
(*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore);
getAdvisor()->updateNativeSizeEstimate(Reward);
log(Reward, /*Success=*/true);
}
}
void recordUnsuccessfulInliningImpl(const InlineResult &Result) override {
MLInlineAdvice::recordUnsuccessfulInliningImpl(Result);
log(NoReward, /*Success=*/false);
}
void recordUnattemptedInliningImpl() override {
MLInlineAdvice::recordUnattemptedInliningImpl();
log(NoReward, /*Success=*/false);
}
void log(int64_t Reward, bool Success) {
if (Mandatory)
return;
InlineEvent Event;
Event.AdvisedDecision = isInliningRecommended();
Event.DefaultDecision = DefaultDecision;
Event.Effect = Success;
Event.Reward = Reward;
Logger.logInlineEvent(Event, getAdvisor()->getModelRunner());
}
static const int64_t NoReward = 0;
TrainingLogger &Logger;
const Optional<size_t> CallerSizeEstimateBefore;
const Optional<size_t> CalleeSizeEstimateBefore;
const bool DefaultDecision;
const bool Mandatory;
};
/// A pseudo model runner. We use it to store feature values when collecting
/// logs for the default policy, but never ask it to 'run'.
class NoInferenceModelRunner : public MLModelRunner {
public:
NoInferenceModelRunner(LLVMContext &Ctx)
: MLModelRunner(Ctx), Features(NumberOfFeatures) {}
void setFeature(FeatureIndex Index, int64_t Value) override {
Features[static_cast<int>(Index)] = Value;
}
int64_t getFeature(int Index) const override { return Features[Index]; }
bool run() override {
llvm_unreachable("We shouldn't call run on this model runner.");
}
private:
InlineFeatures Features;
};
/// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs
/// to dynamically load and evaluate a TF SavedModel
/// (https://www.tensorflow.org/guide/saved_model). Runtime performance is
/// sacrificed for ease of use while training.
class ModelUnderTrainingRunner final : public MLModelRunner {
public:
ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath);
bool run() override;
// Disallows copy and assign.
ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete;
ModelUnderTrainingRunner &
operator=(const ModelUnderTrainingRunner &) = delete;
void setFeature(FeatureIndex Index, int64_t Value) override;
int64_t getFeature(int Index) const override;
bool isValid() const { return !!Evaluator; }
const std::vector<std::string> outputNames() const { return OutputNames; }
const std::vector<TensorSpec> outputSpecs() const { return OutputSpecs; }
const Optional<TFModelEvaluator::EvaluationResult> &
lastEvaluationResult() const {
return LastEvaluationResult;
}
private:
std::unique_ptr<TFModelEvaluator> Evaluator;
std::vector<std::string> OutputNames;
std::vector<TensorSpec> OutputSpecs;
Optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult;
bool loadOutputSpecs(LLVMContext &Ctx, StringRef FileName);
// The training framework needs some additional features.
const std::vector<TensorSpec> TrainingOnlyFeatures{
TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}),
TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}),
TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}),
TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})};
};
} // namespace
TrainingLogger::TrainingLogger(StringRef LogFileName,
const ModelUnderTrainingRunner *MUTR)
: LogFileName(LogFileName), MUTR(MUTR) {
for (size_t I = 0; I < NumberOfFeatures; ++I)
Features.push_back(InlineFeatures());
// The first output is the inlining decision.
auto OutputCount = MUTR ? MUTR->outputSpecs().size() : 1;
Outputs.assign(OutputCount, std::vector<char>());
}
/// Log one inlining event.
void TrainingLogger::logInlineEvent(const InlineEvent &Event,
const MLModelRunner &ModelRunner) {
for (size_t I = 0; I < NumberOfFeatures; ++I)
Features[I].push_back(ModelRunner.getFeature(I));
Effects.push_back(Event.Effect);
Rewards.push_back(Event.Reward);
DefaultDecisions.push_back(Event.DefaultDecision);
int64_t Advice = static_cast<int64_t>(Event.AdvisedDecision);
const char *AdviceData = reinterpret_cast<const char *>(&Advice);
Outputs[0].insert(Outputs[0].end(), AdviceData, AdviceData + sizeof(int64_t));
for (size_t I = 1; I < Outputs.size(); ++I) {
const auto &Result = *MUTR->lastEvaluationResult();
auto &Spec = MUTR->outputSpecs()[I];
const char *RawData =
reinterpret_cast<const char *>(Result.getUntypedTensorValue(I));
Outputs[I].insert(Outputs[I].end(), RawData,
RawData +
Spec.getElementCount() * Spec.getElementByteSize());
}
}
void TrainingLogger::print() {
std::error_code EC;
raw_fd_ostream OutFile(LogFileName, EC);
size_t NumberOfRecords = Rewards.size();
if (NumberOfRecords == 0)
return;
OutFile << "feature_lists: {\n";
for (size_t I = 0; I < Features.size(); ++I)
writeTensorsAsFeatureLists(
OutFile, TensorSpec::createSpec<int64_t>(FeatureNameMap.at(I), {1}),
Features[I].data(), NumberOfRecords);
writeTensorsAsFeatureLists(
OutFile, TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}),
DefaultDecisions.data(), NumberOfRecords);
writeRawTensorsAsFeatureLists(
OutFile, TensorSpec::createSpec<int64_t>(DecisionName, {1}),
Outputs[0].data(), NumberOfRecords);
if (InlineSizeEstimatorAnalysis::isEvaluatorRequested())
writeTensorsAsFeatureLists(OutFile,
TensorSpec::createSpec<int64_t>(RewardName, {1}),
Rewards.data(), NumberOfRecords);
for (size_t I = 1; I < Outputs.size(); ++I)
writeRawTensorsAsFeatureLists(OutFile, MUTR->outputSpecs()[I],
Outputs[I].data(), NumberOfRecords,
StringRef(MUTR->outputNames()[I]));
OutFile << "}\n";
}
DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::unique_ptr<MLModelRunner> ModelRunner,
std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference,
std::unique_ptr<TrainingLogger> Logger)
: MLInlineAdvisor(M, MAM, std::move(ModelRunner)),
GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference),
Logger(std::move(Logger)),
InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0),
CurrentNativeSize(InitialNativeSize) {
// We cannot have the case of neither inference nor logging.
assert(IsDoingInference || isLogging());
}
DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() {
if (isLogging())
Logger->print();
}
Optional<size_t>
DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const {
if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested())
return None;
auto &R =
FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F));
if (!R) {
F.getParent()->getContext().emitError(
"Native size estimator is not present.");
return 0;
}
return *R;
}
std::unique_ptr<MLInlineAdvice>
DevelopmentModeMLInlineAdvisor::getMandatoryAdvice(
CallBase &CB, OptimizationRemarkEmitter &ORE) {
if (!isLogging())
return MLInlineAdvisor::getMandatoryAdvice(CB, ORE);
return std::make_unique<LoggingMLInlineAdvice>(
/*Advisor=*/this,
/*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/true, /*Logger=*/*Logger,
/*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
/*CalleeSizeEstimateBefore=*/
getNativeSizeEstimate(*CB.getCalledFunction()),
/*DefaultDecision=*/true, /*Mandatory*/ true);
}
std::unique_ptr<MLInlineAdvice>
DevelopmentModeMLInlineAdvisor::getAdviceFromModel(
CallBase &CB, OptimizationRemarkEmitter &ORE) {
if (IsDoingInference && !isLogging())
return MLInlineAdvisor::getAdviceFromModel(CB, ORE);
bool DefaultAdvice = GetDefaultAdvice(CB);
auto Recommendation = IsDoingInference ? ModelRunner->run() : DefaultAdvice;
return std::make_unique<LoggingMLInlineAdvice>(
/*Advisor=*/this,
/*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation,
/*Logger=*/*Logger,
/*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
/*CalleeSizeEstimateBefore=*/
getNativeSizeEstimate(*CB.getCalledFunction()),
/*DefaultDecision=*/DefaultAdvice);
}
size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() {
if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested())
return 0;
size_t Ret = 0;
for (auto &F : M) {
if (F.isDeclaration())
continue;
if (isFunctionDeleted(&F))
continue;
Ret += *getNativeSizeEstimate(F);
}
return Ret;
}
ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx,
const std::string &ModelPath)
: MLModelRunner(Ctx) {
std::vector<TensorSpec> InputSpecs;
for (size_t I = 0; I < NumberOfFeatures; ++I)
InputSpecs.push_back(
TensorSpec::createSpec<int64_t>(TFFeedPrefix + FeatureNameMap[I], {1}));
InputSpecs.insert(InputSpecs.end(), TrainingOnlyFeatures.begin(),
TrainingOnlyFeatures.end());
SmallVector<char, 128> OutputSpecsPath;
StringRef OutputSpecPath = TFOutputSpecOverride;
if (OutputSpecPath.empty()) {
llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
OutputSpecPath = {OutputSpecsPath.data(), OutputSpecsPath.size()};
}
if (!loadOutputSpecs(Ctx, OutputSpecPath))
return;
Evaluator =
std::make_unique<TFModelEvaluator>(ModelPath, InputSpecs, OutputSpecs);
if (!Evaluator || !Evaluator->isValid()) {
Ctx.emitError("Failed to create inliner saved model evaluator");
Evaluator.reset();
return;
}
}
bool ModelUnderTrainingRunner::loadOutputSpecs(LLVMContext &Ctx,
StringRef FileName) {
auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
if (!BufferOrError) {
Ctx.emitError("Error opening output specs file: " + FileName + " : " +
BufferOrError.getError().message());
return false;
}
auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
if (!ParsedJSONValues) {
Ctx.emitError("Could not parse specs file: " + FileName);
return false;
}
auto ValuesArray = ParsedJSONValues->getAsArray();
if (!ValuesArray) {
Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
"logging_name:<name>} dictionaries");
return false;
}
for (const auto &Value : *ValuesArray)
if (const auto *Obj = Value.getAsObject())
if (const auto *SpecPart = Obj->get("tensor_spec"))
if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
if (auto LoggingName = Obj->getString("logging_name")) {
if (!TensorSpec->isElementType<int64_t>() &&
!TensorSpec->isElementType<int32_t>() &&
!TensorSpec->isElementType<float>()) {
Ctx.emitError(
"Only int64, int32, and float tensors are supported. "
"Found unsupported type for tensor named " +
TensorSpec->name());
return false;
}
OutputNames.push_back(LoggingName->str());
OutputSpecs.push_back(*TensorSpec);
}
if (ValuesArray->size() != OutputNames.size()) {
Ctx.emitError(
"Unable to parse output spec. It should be a json file containing an "
"array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
"with a json object describing a TensorSpec; and a 'logging_name' key, "
"which is a string to use as name when logging this tensor in the "
"training log.");
return false;
}
assert(OutputNames.size() == OutputSpecs.size());
if (OutputNames.empty() || OutputNames[0] != DecisionName) {
Ctx.emitError("The first output spec must describe the decision tensor, "
"and must have the logging_name " +
StringRef(DecisionName));
return false;
}
return true;
}
bool ModelUnderTrainingRunner::run() {
LastEvaluationResult = Evaluator->evaluate();
if (!LastEvaluationResult.hasValue()) {
Ctx.emitError("Error evaluating model.");
return false;
}
int64_t Decision = *LastEvaluationResult->getTensorValue<int64_t>(0);
return static_cast<bool>(Decision);
}
int64_t ModelUnderTrainingRunner::getFeature(int Index) const {
return *Evaluator->getInput<int64_t>(Index);
}
void ModelUnderTrainingRunner::setFeature(FeatureIndex Index, int64_t Value) {
size_t NumericIndex = static_cast<size_t>(Index);
*(Evaluator->getInput<int64_t>(NumericIndex)) = Value;
}
std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor(
Module &M, ModuleAnalysisManager &MAM,
std::function<bool(CallBase &)> GetDefaultAdvice) {
auto &Ctx = M.getContext();
std::unique_ptr<MLModelRunner> Runner;
ModelUnderTrainingRunner *MUTRPtr = nullptr;
bool IsDoingInference = false;
if (TFModelUnderTrainingPath.empty())
Runner.reset(new NoInferenceModelRunner(Ctx));
else {
auto MUTR = std::make_unique<ModelUnderTrainingRunner>(
Ctx, TFModelUnderTrainingPath);
if (!MUTR || !MUTR->isValid()) {
Ctx.emitError("Could not load the policy model from the provided path");
return nullptr;
}
IsDoingInference = true;
MUTRPtr = MUTR.get();
Runner = std::move(MUTR);
}
std::unique_ptr<TrainingLogger> Logger;
if (!TrainingLog.empty())
Logger = std::make_unique<TrainingLogger>(TrainingLog, MUTRPtr);
return std::make_unique<DevelopmentModeMLInlineAdvisor>(
M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference,
std::move(Logger));
}
#endif // defined(LLVM_HAVE_TF_API)