1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 12:43:36 +01:00
llvm-mirror/lib/Analysis/DivergenceAnalysis.cpp
Sameer Sahasrabuddhe 07b90bc454 [DA] conservatively mark the join of every divergent branch
For a loop, a join block is a block that is reachable along multiple
disjoint paths from the exiting block of a loop. If the exit condition
of the loop is divergent, then such join blocks must also be marked
divergent. This currently fails in some cases because not all join
blocks are identified correctly.

The workaround is to conservatively mark every join block of any
branch (not necessarily the exiting block of a loop) as divergent.

https://bugs.llvm.org/show_bug.cgi?id=46372

Reviewed By: simoll

Differential Revision: https://reviews.llvm.org/D81806
2020-06-18 17:39:20 +05:30

477 lines
16 KiB
C++

//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a general divergence analysis for loop vectorization
// and GPU programs. It determines which branches and values in a loop or GPU
// program are divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they re-converge.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can interfere with thread re-convergence.
// Therefore, an analysis that computes which branches in a GPU program are
// divergent can help the compiler to selectively run these optimizations.
//
// This implementation is derived from the Vectorization Analysis of the
// Region Vectorizer (RV). That implementation in turn is based on the approach
// described in
//
// Improving Performance of OpenCL on CPUs
// Ralf Karrenberg and Sebastian Hack
// CC '12
//
// This DivergenceAnalysis implementation is generic in the sense that it does
// not itself identify original sources of divergence.
// Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
// (GPUDivergenceAnalysis) for GPU programs, identify the sources of divergence
// (e.g., special variables that hold the thread ID or the iteration variable).
//
// The generic implementation propagates divergence to variables that are data
// or sync dependent on a source of divergence.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The sync dependence detection (which branch induces divergence in which join
// points) is implemented in the SyncDependenceAnalysis.
//
// The current DivergenceAnalysis implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
// non-kernel-entry function and the return value of a function call as
// divergent.
// 2. memory as black box. It conservatively considers values loaded from
// generic or local address as divergent. This can be improved by leveraging
// pointer analysis and/or by modelling non-escaping memory objects in SSA
// as done in RV.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "divergence-analysis"
// class DivergenceAnalysis
DivergenceAnalysis::DivergenceAnalysis(
const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
: F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
IsLCSSAForm(IsLCSSAForm) {}
void DivergenceAnalysis::markDivergent(const Value &DivVal) {
assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
DivergentValues.insert(&DivVal);
}
void DivergenceAnalysis::addUniformOverride(const Value &UniVal) {
UniformOverrides.insert(&UniVal);
}
bool DivergenceAnalysis::updateTerminator(const Instruction &Term) const {
if (Term.getNumSuccessors() <= 1)
return false;
if (auto *BranchTerm = dyn_cast<BranchInst>(&Term)) {
assert(BranchTerm->isConditional());
return isDivergent(*BranchTerm->getCondition());
}
if (auto *SwitchTerm = dyn_cast<SwitchInst>(&Term)) {
return isDivergent(*SwitchTerm->getCondition());
}
if (isa<InvokeInst>(Term)) {
return false; // ignore abnormal executions through landingpad
}
llvm_unreachable("unexpected terminator");
}
bool DivergenceAnalysis::updateNormalInstruction(const Instruction &I) const {
// TODO function calls with side effects, etc
for (const auto &Op : I.operands()) {
if (isDivergent(*Op))
return true;
}
return false;
}
bool DivergenceAnalysis::isTemporalDivergent(const BasicBlock &ObservingBlock,
const Value &Val) const {
const auto *Inst = dyn_cast<const Instruction>(&Val);
if (!Inst)
return false;
// check whether any divergent loop carrying Val terminates before control
// proceeds to ObservingBlock
for (const auto *Loop = LI.getLoopFor(Inst->getParent());
Loop != RegionLoop && !Loop->contains(&ObservingBlock);
Loop = Loop->getParentLoop()) {
if (DivergentLoops.find(Loop) != DivergentLoops.end())
return true;
}
return false;
}
bool DivergenceAnalysis::updatePHINode(const PHINode &Phi) const {
// joining divergent disjoint path in Phi parent block
if (!Phi.hasConstantOrUndefValue() && isJoinDivergent(*Phi.getParent())) {
return true;
}
// An incoming value could be divergent by itself.
// Otherwise, an incoming value could be uniform within the loop
// that carries its definition but it may appear divergent
// from outside the loop. This happens when divergent loop exits
// drop definitions of that uniform value in different iterations.
//
// for (int i = 0; i < n; ++i) { // 'i' is uniform inside the loop
// if (i % thread_id == 0) break; // divergent loop exit
// }
// int divI = i; // divI is divergent
for (size_t i = 0; i < Phi.getNumIncomingValues(); ++i) {
const auto *InVal = Phi.getIncomingValue(i);
if (isDivergent(*Phi.getIncomingValue(i)) ||
isTemporalDivergent(*Phi.getParent(), *InVal)) {
return true;
}
}
return false;
}
bool DivergenceAnalysis::inRegion(const Instruction &I) const {
return I.getParent() && inRegion(*I.getParent());
}
bool DivergenceAnalysis::inRegion(const BasicBlock &BB) const {
return (!RegionLoop && BB.getParent() == &F) || RegionLoop->contains(&BB);
}
static bool usesLiveOut(const Instruction &I, const Loop *DivLoop) {
for (auto &Op : I.operands()) {
auto *OpInst = dyn_cast<Instruction>(&Op);
if (!OpInst)
continue;
if (DivLoop->contains(OpInst->getParent()))
return true;
}
return false;
}
// marks all users of loop-carried values of the loop headed by LoopHeader as
// divergent
void DivergenceAnalysis::taintLoopLiveOuts(const BasicBlock &LoopHeader) {
auto *DivLoop = LI.getLoopFor(&LoopHeader);
assert(DivLoop && "loopHeader is not actually part of a loop");
SmallVector<BasicBlock *, 8> TaintStack;
DivLoop->getExitBlocks(TaintStack);
// Otherwise potential users of loop-carried values could be anywhere in the
// dominance region of DivLoop (including its fringes for phi nodes)
DenseSet<const BasicBlock *> Visited;
for (auto *Block : TaintStack) {
Visited.insert(Block);
}
Visited.insert(&LoopHeader);
while (!TaintStack.empty()) {
auto *UserBlock = TaintStack.back();
TaintStack.pop_back();
// don't spread divergence beyond the region
if (!inRegion(*UserBlock))
continue;
assert(!DivLoop->contains(UserBlock) &&
"irreducible control flow detected");
// phi nodes at the fringes of the dominance region
if (!DT.dominates(&LoopHeader, UserBlock)) {
// all PHI nodes of UserBlock become divergent
for (auto &Phi : UserBlock->phis()) {
Worklist.push_back(&Phi);
}
continue;
}
// taint outside users of values carried by DivLoop
for (auto &I : *UserBlock) {
if (isAlwaysUniform(I))
continue;
if (isDivergent(I))
continue;
if (!usesLiveOut(I, DivLoop))
continue;
markDivergent(I);
if (I.isTerminator()) {
propagateBranchDivergence(I);
} else {
pushUsers(I);
}
}
// visit all blocks in the dominance region
for (auto *SuccBlock : successors(UserBlock)) {
if (!Visited.insert(SuccBlock).second) {
continue;
}
TaintStack.push_back(SuccBlock);
}
}
}
void DivergenceAnalysis::pushPHINodes(const BasicBlock &Block) {
for (const auto &Phi : Block.phis()) {
if (isDivergent(Phi))
continue;
Worklist.push_back(&Phi);
}
}
void DivergenceAnalysis::pushUsers(const Value &V) {
for (const auto *User : V.users()) {
const auto *UserInst = dyn_cast<const Instruction>(User);
if (!UserInst)
continue;
if (isDivergent(*UserInst))
continue;
// only compute divergent inside loop
if (!inRegion(*UserInst))
continue;
Worklist.push_back(UserInst);
}
}
bool DivergenceAnalysis::propagateJoinDivergence(const BasicBlock &JoinBlock,
const Loop *BranchLoop) {
LLVM_DEBUG(dbgs() << "\tpropJoinDiv " << JoinBlock.getName() << "\n");
// ignore divergence outside the region
if (!inRegion(JoinBlock)) {
return false;
}
// push non-divergent phi nodes in JoinBlock to the worklist
pushPHINodes(JoinBlock);
// disjoint-paths divergent at JoinBlock
markBlockJoinDivergent(JoinBlock);
// JoinBlock is a divergent loop exit
return BranchLoop && !BranchLoop->contains(&JoinBlock);
}
void DivergenceAnalysis::propagateBranchDivergence(const Instruction &Term) {
LLVM_DEBUG(dbgs() << "propBranchDiv " << Term.getParent()->getName() << "\n");
markDivergent(Term);
// Don't propagate divergence from unreachable blocks.
if (!DT.isReachableFromEntry(Term.getParent()))
return;
const auto *BranchLoop = LI.getLoopFor(Term.getParent());
// whether there is a divergent loop exit from BranchLoop (if any)
bool IsBranchLoopDivergent = false;
// iterate over all blocks reachable by disjoint from Term within the loop
// also iterates over loop exits that become divergent due to Term.
for (const auto *JoinBlock : SDA.join_blocks(Term)) {
IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
}
// Branch loop is a divergent loop due to the divergent branch in Term
if (IsBranchLoopDivergent) {
assert(BranchLoop);
if (!DivergentLoops.insert(BranchLoop).second) {
return;
}
propagateLoopDivergence(*BranchLoop);
}
}
void DivergenceAnalysis::propagateLoopDivergence(const Loop &ExitingLoop) {
LLVM_DEBUG(dbgs() << "propLoopDiv " << ExitingLoop.getName() << "\n");
// don't propagate beyond region
if (!inRegion(*ExitingLoop.getHeader()))
return;
const auto *BranchLoop = ExitingLoop.getParentLoop();
// Uses of loop-carried values could occur anywhere
// within the dominance region of the definition. All loop-carried
// definitions are dominated by the loop header (reducible control).
// Thus all users have to be in the dominance region of the loop header,
// except PHI nodes that can also live at the fringes of the dom region
// (incoming defining value).
if (!IsLCSSAForm)
taintLoopLiveOuts(*ExitingLoop.getHeader());
// whether there is a divergent loop exit from BranchLoop (if any)
bool IsBranchLoopDivergent = false;
// iterate over all blocks reachable by disjoint paths from exits of
// ExitingLoop also iterates over loop exits (of BranchLoop) that in turn
// become divergent.
for (const auto *JoinBlock : SDA.join_blocks(ExitingLoop)) {
IsBranchLoopDivergent |= propagateJoinDivergence(*JoinBlock, BranchLoop);
}
// Branch loop is a divergent due to divergent loop exit in ExitingLoop
if (IsBranchLoopDivergent) {
assert(BranchLoop);
if (!DivergentLoops.insert(BranchLoop).second) {
return;
}
propagateLoopDivergence(*BranchLoop);
}
}
void DivergenceAnalysis::compute() {
for (auto *DivVal : DivergentValues) {
pushUsers(*DivVal);
}
// propagate divergence
while (!Worklist.empty()) {
const Instruction &I = *Worklist.back();
Worklist.pop_back();
// maintain uniformity of overrides
if (isAlwaysUniform(I))
continue;
bool WasDivergent = isDivergent(I);
if (WasDivergent)
continue;
// propagate divergence caused by terminator
if (I.isTerminator()) {
if (updateTerminator(I)) {
// propagate control divergence to affected instructions
propagateBranchDivergence(I);
continue;
}
}
// update divergence of I due to divergent operands
bool DivergentUpd = false;
const auto *Phi = dyn_cast<const PHINode>(&I);
if (Phi) {
DivergentUpd = updatePHINode(*Phi);
} else {
DivergentUpd = updateNormalInstruction(I);
}
// propagate value divergence to users
if (DivergentUpd) {
markDivergent(I);
pushUsers(I);
}
}
}
bool DivergenceAnalysis::isAlwaysUniform(const Value &V) const {
return UniformOverrides.find(&V) != UniformOverrides.end();
}
bool DivergenceAnalysis::isDivergent(const Value &V) const {
return DivergentValues.find(&V) != DivergentValues.end();
}
bool DivergenceAnalysis::isDivergentUse(const Use &U) const {
Value &V = *U.get();
Instruction &I = *cast<Instruction>(U.getUser());
return isDivergent(V) || isTemporalDivergent(*I.getParent(), V);
}
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
// iterate instructions using instructions() to ensure a deterministic order.
for (auto &I : instructions(F)) {
if (isDivergent(I))
OS << "DIVERGENT:" << I << '\n';
}
}
// class GPUDivergenceAnalysis
GPUDivergenceAnalysis::GPUDivergenceAnalysis(Function &F,
const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI,
const TargetTransformInfo &TTI)
: SDA(DT, PDT, LI), DA(F, nullptr, DT, LI, SDA, false) {
for (auto &I : instructions(F)) {
if (TTI.isSourceOfDivergence(&I)) {
DA.markDivergent(I);
} else if (TTI.isAlwaysUniform(&I)) {
DA.addUniformOverride(I);
}
}
for (auto &Arg : F.args()) {
if (TTI.isSourceOfDivergence(&Arg)) {
DA.markDivergent(Arg);
}
}
DA.compute();
}
bool GPUDivergenceAnalysis::isDivergent(const Value &val) const {
return DA.isDivergent(val);
}
bool GPUDivergenceAnalysis::isDivergentUse(const Use &use) const {
return DA.isDivergentUse(use);
}
void GPUDivergenceAnalysis::print(raw_ostream &OS, const Module *mod) const {
OS << "Divergence of kernel " << DA.getFunction().getName() << " {\n";
DA.print(OS, mod);
OS << "}\n";
}