mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
44021712d5
Previously when trying to support CoroSplit's function splitting, we added in a hack that simply added the new function's node into the original function's SCC (https://reviews.llvm.org/D87798). This is incorrect since it might be in its own SCC. Now, more similar to the previous design, we have callers explicitly notify the LazyCallGraph that a function has been split out from another one. In order to properly support CoroSplit, there are two ways functions can be split out. One is the normal expected "outlining" of one function into a new one. The new function may only contain references to other functions that the original did. The original function must reference the new function. The new function may reference the original function, which can result in the new function being in the same SCC as the original function. The weird case is when the original function indirectly references the new function, but the new function directly calls the original function, resulting in the new SCC being a parent of the original function's SCC. This form of function splitting works with CoroSplit's Switch ABI. The second way of splitting is more specific to CoroSplit. CoroSplit's Retcon and Async ABIs split the original function into multiple functions that all reference each other and are referenced by the original function. In order to keep the LazyCallGraph in a valid state, all new functions must be processed together, else some nodes won't be populated. To keep things simple, this only supports the case where all new edges are ref edges, and every new function references every other new function. There can be a reference back from any new function to the original function, putting all functions in the same RefSCC. This also adds asserts that all nodes in a (Ref)SCC can reach all other nodes to prevent future incorrect hacks. The original hacks in https://reviews.llvm.org/D87798 are no longer necessary since all new functions should have been registered before calling updateCGAndAnalysisManagerForPass. This fixes all coroutine tests when opt's -enable-new-pm is true by default. This also fixes PR48190, which was likely due to the previous hack breaking SCC invariants. Reviewed By: rnk Differential Revision: https://reviews.llvm.org/D93828
1947 lines
76 KiB
C++
1947 lines
76 KiB
C++
//===- CGSCCPassManagerTest.cpp -------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class TestModuleAnalysis : public AnalysisInfoMixin<TestModuleAnalysis> {
|
|
public:
|
|
struct Result {
|
|
Result(int Count) : FunctionCount(Count) {}
|
|
int FunctionCount;
|
|
bool invalidate(Module &, const PreservedAnalyses &PA,
|
|
ModuleAnalysisManager::Invalidator &) {
|
|
// Check whether the analysis or all analyses on modules have been
|
|
// preserved.
|
|
auto PAC = PA.getChecker<TestModuleAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
|
|
}
|
|
};
|
|
|
|
TestModuleAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
Result run(Module &M, ModuleAnalysisManager &AM) {
|
|
++Runs;
|
|
return Result(M.size());
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestModuleAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestModuleAnalysis::Key;
|
|
|
|
class TestSCCAnalysis : public AnalysisInfoMixin<TestSCCAnalysis> {
|
|
public:
|
|
struct Result {
|
|
Result(int Count) : FunctionCount(Count) {}
|
|
int FunctionCount;
|
|
bool invalidate(LazyCallGraph::SCC &, const PreservedAnalyses &PA,
|
|
CGSCCAnalysisManager::Invalidator &) {
|
|
// Check whether the analysis or all analyses on SCCs have been
|
|
// preserved.
|
|
auto PAC = PA.getChecker<TestSCCAnalysis>();
|
|
return !(PAC.preserved() ||
|
|
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>());
|
|
}
|
|
};
|
|
|
|
TestSCCAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &) {
|
|
++Runs;
|
|
return Result(C.size());
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestSCCAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestSCCAnalysis::Key;
|
|
|
|
class TestFunctionAnalysis : public AnalysisInfoMixin<TestFunctionAnalysis> {
|
|
public:
|
|
struct Result {
|
|
Result(int Count) : InstructionCount(Count) {}
|
|
int InstructionCount;
|
|
bool invalidate(Function &, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
// Check whether the analysis or all analyses on functions have been
|
|
// preserved.
|
|
auto PAC = PA.getChecker<TestFunctionAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>());
|
|
}
|
|
};
|
|
|
|
TestFunctionAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
Result run(Function &F, FunctionAnalysisManager &AM) {
|
|
++Runs;
|
|
int Count = 0;
|
|
for (Instruction &I : instructions(F)) {
|
|
(void)I;
|
|
++Count;
|
|
}
|
|
return Result(Count);
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestFunctionAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestFunctionAnalysis::Key;
|
|
|
|
class TestImmutableFunctionAnalysis
|
|
: public AnalysisInfoMixin<TestImmutableFunctionAnalysis> {
|
|
public:
|
|
struct Result {
|
|
bool invalidate(Function &, const PreservedAnalyses &,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
TestImmutableFunctionAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
Result run(Function &F, FunctionAnalysisManager &AM) {
|
|
++Runs;
|
|
return Result();
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestImmutableFunctionAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestImmutableFunctionAnalysis::Key;
|
|
|
|
struct LambdaModulePass : public PassInfoMixin<LambdaModulePass> {
|
|
template <typename T>
|
|
LambdaModulePass(T &&Arg) : Func(std::forward<T>(Arg)) {}
|
|
|
|
PreservedAnalyses run(Module &F, ModuleAnalysisManager &AM) {
|
|
return Func(F, AM);
|
|
}
|
|
|
|
std::function<PreservedAnalyses(Module &, ModuleAnalysisManager &)> Func;
|
|
};
|
|
|
|
struct LambdaSCCPass : public PassInfoMixin<LambdaSCCPass> {
|
|
template <typename T> LambdaSCCPass(T &&Arg) : Func(std::forward<T>(Arg)) {}
|
|
|
|
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
return Func(C, AM, CG, UR);
|
|
}
|
|
|
|
std::function<PreservedAnalyses(LazyCallGraph::SCC &, CGSCCAnalysisManager &,
|
|
LazyCallGraph &, CGSCCUpdateResult &)>
|
|
Func;
|
|
};
|
|
|
|
struct LambdaFunctionPass : public PassInfoMixin<LambdaFunctionPass> {
|
|
template <typename T>
|
|
LambdaFunctionPass(T &&Arg) : Func(std::forward<T>(Arg)) {}
|
|
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
|
|
return Func(F, AM);
|
|
}
|
|
|
|
std::function<PreservedAnalyses(Function &, FunctionAnalysisManager &)> Func;
|
|
};
|
|
|
|
std::unique_ptr<Module> parseIR(const char *IR) {
|
|
// We just use a static context here. This is never called from multiple
|
|
// threads so it is harmless no matter how it is implemented. We just need
|
|
// the context to outlive the module which it does.
|
|
static LLVMContext C;
|
|
SMDiagnostic Err;
|
|
return parseAssemblyString(IR, Err, C);
|
|
}
|
|
|
|
class CGSCCPassManagerTest : public ::testing::Test {
|
|
protected:
|
|
LLVMContext Context;
|
|
FunctionAnalysisManager FAM;
|
|
CGSCCAnalysisManager CGAM;
|
|
ModuleAnalysisManager MAM;
|
|
|
|
std::unique_ptr<Module> M;
|
|
|
|
public:
|
|
CGSCCPassManagerTest()
|
|
: FAM(/*DebugLogging*/ true), CGAM(/*DebugLogging*/ true),
|
|
MAM(/*DebugLogging*/ true),
|
|
M(parseIR(
|
|
// Define a module with the following call graph, where calls go
|
|
// out the bottom of nodes and enter the top:
|
|
//
|
|
// f
|
|
// |\ _
|
|
// | \ / |
|
|
// g h1 |
|
|
// | | |
|
|
// | h2 |
|
|
// | | |
|
|
// | h3 |
|
|
// | / \_/
|
|
// |/
|
|
// x
|
|
//
|
|
"define void @x() {\n"
|
|
"entry:\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @h3() {\n"
|
|
"entry:\n"
|
|
" call void @h1()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @h2() {\n"
|
|
"entry:\n"
|
|
" call void @h3()\n"
|
|
" call void @x()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @h1() {\n"
|
|
"entry:\n"
|
|
" call void @h2()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @g() {\n"
|
|
"entry:\n"
|
|
" call void @g()\n"
|
|
" call void @x()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @f() {\n"
|
|
"entry:\n"
|
|
" call void @g()\n"
|
|
" call void @h1()\n"
|
|
" ret void\n"
|
|
"}\n")) {
|
|
FAM.registerPass([&] { return TargetLibraryAnalysis(); });
|
|
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
|
|
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
|
|
|
|
// Register required pass instrumentation analysis.
|
|
MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
|
|
CGAM.registerPass([&] { return PassInstrumentationAnalysis(); });
|
|
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
|
|
|
|
// Cross-register proxies.
|
|
MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); });
|
|
CGAM.registerPass([&] { return FunctionAnalysisManagerCGSCCProxy(); });
|
|
CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); });
|
|
FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); });
|
|
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
|
|
}
|
|
};
|
|
|
|
TEST_F(CGSCCPassManagerTest, Basic) {
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
int ImmutableFunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] {
|
|
return TestImmutableFunctionAnalysis(ImmutableFunctionAnalysisRuns);
|
|
});
|
|
|
|
int SCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
int FunctionPassRunCount1 = 0;
|
|
FPM1.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
|
|
++FunctionPassRunCount1;
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
|
|
int SCCPassRunCount1 = 0;
|
|
int AnalyzedInstrCount1 = 0;
|
|
int AnalyzedSCCFunctionCount1 = 0;
|
|
int AnalyzedModuleFunctionCount1 = 0;
|
|
CGPM1.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
++SCCPassRunCount1;
|
|
|
|
// Note: The proper way to get to a module pass from a CGSCC pass is
|
|
// through the ModuleAnalysisManagerCGSCCProxy:
|
|
// ```
|
|
// const auto &MAMProxy =
|
|
// AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
|
|
// ```
|
|
// However getting a stateful analysis is incorrect usage, and the call
|
|
// to getCachedResult below asserts:
|
|
// ```
|
|
// if (TestModuleAnalysis::Result *TMA =
|
|
// MAMProxy.getCachedResult<TestModuleAnalysis>(
|
|
// *C.begin()->getFunction().getParent()))
|
|
// AnalyzedModuleFunctionCount1 += TMA->FunctionCount;
|
|
// ```
|
|
// For the purposes of this unittest, use the above MAM directly.
|
|
if (TestModuleAnalysis::Result *TMA =
|
|
MAM.getCachedResult<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent()))
|
|
AnalyzedModuleFunctionCount1 += TMA->FunctionCount;
|
|
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
TestSCCAnalysis::Result &AR = AM.getResult<TestSCCAnalysis>(C, CG);
|
|
AnalyzedSCCFunctionCount1 += AR.FunctionCount;
|
|
for (LazyCallGraph::Node &N : C) {
|
|
TestFunctionAnalysis::Result &FAR =
|
|
FAM.getResult<TestFunctionAnalysis>(N.getFunction());
|
|
AnalyzedInstrCount1 += FAR.InstructionCount;
|
|
|
|
// Just ensure we get the immutable results.
|
|
(void)FAM.getResult<TestImmutableFunctionAnalysis>(N.getFunction());
|
|
}
|
|
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
int FunctionPassRunCount2 = 0;
|
|
FPM2.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
|
|
++FunctionPassRunCount2;
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
FunctionPassManager FPM3(/*DebugLogging*/ true);
|
|
int FunctionPassRunCount3 = 0;
|
|
FPM3.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
|
|
++FunctionPassRunCount3;
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM3)));
|
|
|
|
MPM.run(*M, MAM);
|
|
|
|
EXPECT_EQ(4, SCCPassRunCount1);
|
|
EXPECT_EQ(6, FunctionPassRunCount1);
|
|
EXPECT_EQ(6, FunctionPassRunCount2);
|
|
EXPECT_EQ(6, FunctionPassRunCount3);
|
|
|
|
EXPECT_EQ(1, ModuleAnalysisRuns);
|
|
EXPECT_EQ(4, SCCAnalysisRuns);
|
|
EXPECT_EQ(6, FunctionAnalysisRuns);
|
|
EXPECT_EQ(6, ImmutableFunctionAnalysisRuns);
|
|
|
|
EXPECT_EQ(14, AnalyzedInstrCount1);
|
|
EXPECT_EQ(6, AnalyzedSCCFunctionCount1);
|
|
EXPECT_EQ(4 * 6, AnalyzedModuleFunctionCount1);
|
|
}
|
|
|
|
// Test that an SCC pass which fails to preserve a module analysis does in fact
|
|
// invalidate that module analysis.
|
|
TEST_F(CGSCCPassManagerTest, TestSCCPassInvalidatesModuleAnalysis) {
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
|
|
// The first CGSCC run we preserve everything and make sure that works and
|
|
// the module analysis is available in the second CGSCC run from the one
|
|
// required module pass above.
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
int CountFoundModuleAnalysis1 = 0;
|
|
CGPM1.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
|
|
if (MAMProxy.cachedResultExists<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent()))
|
|
++CountFoundModuleAnalysis1;
|
|
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// The second CGSCC run checks that the module analysis got preserved the
|
|
// previous time and in one SCC fails to preserve it.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
int CountFoundModuleAnalysis2 = 0;
|
|
CGPM2.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
const auto &MAMProxy =
|
|
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
|
|
if (MAMProxy.cachedResultExists<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent()))
|
|
++CountFoundModuleAnalysis2;
|
|
|
|
// Only fail to preserve analyses on one SCC and make sure that gets
|
|
// propagated.
|
|
return C.getName() == "(g)" ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
// The third CGSCC run should fail to find a cached module analysis as it
|
|
// should have been invalidated by the above CGSCC run.
|
|
CGSCCPassManager CGPM3(/*DebugLogging*/ true);
|
|
int CountFoundModuleAnalysis3 = 0;
|
|
CGPM3.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
|
|
if (MAMProxy.cachedResultExists<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent()))
|
|
++CountFoundModuleAnalysis3;
|
|
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
|
|
|
|
MPM.run(*M, MAM);
|
|
|
|
EXPECT_EQ(1, ModuleAnalysisRuns);
|
|
EXPECT_EQ(4, CountFoundModuleAnalysis1);
|
|
EXPECT_EQ(4, CountFoundModuleAnalysis2);
|
|
EXPECT_EQ(0, CountFoundModuleAnalysis3);
|
|
}
|
|
|
|
// Similar to the above, but test that this works for function passes embedded
|
|
// *within* a CGSCC layer.
|
|
TEST_F(CGSCCPassManagerTest, TestFunctionPassInsideCGSCCInvalidatesModuleAnalysis) {
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
|
|
// The first run we preserve everything and make sure that works and the
|
|
// module analysis is available in the second run from the one required
|
|
// module pass above.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
// Start true and mark false if we ever failed to find a module analysis
|
|
// because we expect this to succeed for each SCC.
|
|
bool FoundModuleAnalysis1 = true;
|
|
FPM1.addPass(LambdaFunctionPass([&](Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
if (!MAMProxy.cachedResultExists<TestModuleAnalysis>(*F.getParent()))
|
|
FoundModuleAnalysis1 = false;
|
|
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// The second run checks that the module analysis got preserved the previous
|
|
// time and in one function fails to preserve it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
// Again, start true and mark false if we ever failed to find a module analysis
|
|
// because we expect this to succeed for each SCC.
|
|
bool FoundModuleAnalysis2 = true;
|
|
FPM2.addPass(LambdaFunctionPass([&](Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
if (!MAMProxy.cachedResultExists<TestModuleAnalysis>(*F.getParent()))
|
|
FoundModuleAnalysis2 = false;
|
|
|
|
// Only fail to preserve analyses on one SCC and make sure that gets
|
|
// propagated.
|
|
return F.getName() == "h2" ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}));
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
// The third run should fail to find a cached module analysis as it should
|
|
// have been invalidated by the above run.
|
|
FunctionPassManager FPM3(/*DebugLogging*/ true);
|
|
// Start false and mark true if we ever *succeeded* to find a module
|
|
// analysis, as we expect this to fail for every function.
|
|
bool FoundModuleAnalysis3 = false;
|
|
FPM3.addPass(LambdaFunctionPass([&](Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
if (MAMProxy.cachedResultExists<TestModuleAnalysis>(*F.getParent()))
|
|
FoundModuleAnalysis3 = true;
|
|
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
CGSCCPassManager CGPM3(/*DebugLogging*/ true);
|
|
CGPM3.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM3)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
|
|
|
|
MPM.run(*M, MAM);
|
|
|
|
EXPECT_EQ(1, ModuleAnalysisRuns);
|
|
EXPECT_TRUE(FoundModuleAnalysis1);
|
|
EXPECT_TRUE(FoundModuleAnalysis2);
|
|
EXPECT_FALSE(FoundModuleAnalysis3);
|
|
}
|
|
|
|
// Test that a Module pass which fails to preserve an SCC analysis in fact
|
|
// invalidates that analysis.
|
|
TEST_F(CGSCCPassManagerTest, TestModulePassInvalidatesSCCAnalysis) {
|
|
int SCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph and the proxy but
|
|
// not the SCC analysis.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Two runs and four SCCs.
|
|
EXPECT_EQ(2 * 4, SCCAnalysisRuns);
|
|
}
|
|
|
|
// Check that marking the SCC analysis preserved is sufficient to avoid
|
|
// invaliadtion. This should only run the analysis once for each SCC.
|
|
TEST_F(CGSCCPassManagerTest, TestModulePassCanPreserveSCCAnalysis) {
|
|
int SCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves each of the necessary components
|
|
// (but not everything).
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
PA.preserve<TestSCCAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again but find
|
|
// it in the cache.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Four SCCs
|
|
EXPECT_EQ(4, SCCAnalysisRuns);
|
|
}
|
|
|
|
// Check that even when the analysis is preserved, if the SCC information isn't
|
|
// we still nuke things because the SCC keys could change.
|
|
TEST_F(CGSCCPassManagerTest, TestModulePassInvalidatesSCCAnalysisOnCGChange) {
|
|
int SCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the analysis but not the call
|
|
// graph or proxy.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<TestSCCAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Two runs and four SCCs.
|
|
EXPECT_EQ(2 * 4, SCCAnalysisRuns);
|
|
}
|
|
|
|
// Test that an SCC pass which fails to preserve a Function analysis in fact
|
|
// invalidates that analysis.
|
|
TEST_F(CGSCCPassManagerTest, TestSCCPassInvalidatesFunctionAnalysis) {
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
// Create a very simple module with a single function and SCC to make testing
|
|
// these issues much easier.
|
|
std::unique_ptr<Module> M = parseIR("declare void @g()\n"
|
|
"declare void @h()\n"
|
|
"define void @f() {\n"
|
|
"entry:\n"
|
|
" call void @g()\n"
|
|
" call void @h()\n"
|
|
" ret void\n"
|
|
"}\n");
|
|
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph and proxy but not
|
|
// the SCC analysis.
|
|
CGPM.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
|
|
LazyCallGraph &, CGSCCUpdateResult &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
EXPECT_EQ(2, FunctionAnalysisRuns);
|
|
}
|
|
|
|
// Check that marking the SCC analysis preserved is sufficient. This should
|
|
// only run the analysis once the SCC.
|
|
TEST_F(CGSCCPassManagerTest, TestSCCPassCanPreserveFunctionAnalysis) {
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
// Create a very simple module with a single function and SCC to make testing
|
|
// these issues much easier.
|
|
std::unique_ptr<Module> M = parseIR("declare void @g()\n"
|
|
"declare void @h()\n"
|
|
"define void @f() {\n"
|
|
"entry:\n"
|
|
" call void @g()\n"
|
|
" call void @h()\n"
|
|
" ret void\n"
|
|
"}\n");
|
|
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
|
|
// Now run a module pass that preserves each of the necessary components
|
|
// (but
|
|
// not everything).
|
|
CGPM.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
|
|
LazyCallGraph &, CGSCCUpdateResult &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<TestFunctionAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again but find
|
|
// it in the cache.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
EXPECT_EQ(1, FunctionAnalysisRuns);
|
|
}
|
|
|
|
// Note that there is no test for invalidating the call graph or other
|
|
// structure with an SCC pass because there is no mechanism to do that from
|
|
// withinsuch a pass. Instead, such a pass has to directly update the call
|
|
// graph structure.
|
|
|
|
// Test that a madule pass invalidates function analyses when the CGSCC proxies
|
|
// and pass manager.
|
|
TEST_F(CGSCCPassManagerTest,
|
|
TestModulePassInvalidatesFunctionAnalysisNestedInCGSCC) {
|
|
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
|
|
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph and proxies but not
|
|
// the Function analysis.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Two runs and 6 functions.
|
|
EXPECT_EQ(2 * 6, FunctionAnalysisRuns);
|
|
}
|
|
|
|
// Check that by marking the function pass and proxies as preserved, this
|
|
// propagates all the way through.
|
|
TEST_F(CGSCCPassManagerTest,
|
|
TestModulePassCanPreserveFunctionAnalysisNestedInCGSCC) {
|
|
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
|
|
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph, the proxy, and
|
|
// the Function analysis.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
PA.preserve<TestFunctionAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// One run and 6 functions.
|
|
EXPECT_EQ(6, FunctionAnalysisRuns);
|
|
}
|
|
|
|
// Check that if the lazy call graph itself isn't preserved we still manage to
|
|
// invalidate everything.
|
|
TEST_F(CGSCCPassManagerTest,
|
|
TestModulePassInvalidatesFunctionAnalysisNestedInCGSCCOnCGChange) {
|
|
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
|
|
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph but not the
|
|
// Function analysis.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Two runs and 6 functions.
|
|
EXPECT_EQ(2 * 6, FunctionAnalysisRuns);
|
|
}
|
|
|
|
/// A test CGSCC-level analysis pass which caches in its result another
|
|
/// analysis pass and uses it to serve queries. This requires the result to
|
|
/// invalidate itself when its dependency is invalidated.
|
|
///
|
|
/// FIXME: Currently this doesn't also depend on a function analysis, and if it
|
|
/// did we would fail to invalidate it correctly.
|
|
struct TestIndirectSCCAnalysis
|
|
: public AnalysisInfoMixin<TestIndirectSCCAnalysis> {
|
|
struct Result {
|
|
Result(TestSCCAnalysis::Result &SCCDep, TestModuleAnalysis::Result &MDep)
|
|
: SCCDep(SCCDep), MDep(MDep) {}
|
|
TestSCCAnalysis::Result &SCCDep;
|
|
TestModuleAnalysis::Result &MDep;
|
|
|
|
bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
|
|
CGSCCAnalysisManager::Invalidator &Inv) {
|
|
auto PAC = PA.getChecker<TestIndirectSCCAnalysis>();
|
|
return !(PAC.preserved() ||
|
|
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) ||
|
|
Inv.invalidate<TestSCCAnalysis>(C, PA);
|
|
}
|
|
};
|
|
|
|
TestIndirectSCCAnalysis(int &Runs, ModuleAnalysisManager &MAM)
|
|
: Runs(Runs), MAM(MAM) {}
|
|
|
|
/// Run the analysis pass over the function and return a result.
|
|
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG) {
|
|
++Runs;
|
|
auto &SCCDep = AM.getResult<TestSCCAnalysis>(C, CG);
|
|
|
|
auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
|
|
// For the test, we insist that the module analysis starts off in the
|
|
// cache. Getting a cached result that isn't stateless triggers an assert.
|
|
// auto &MDep = *ModuleProxy.getCachedResult<TestModuleAnalysis>(
|
|
// *C.begin()->getFunction().getParent());
|
|
// Use MAM, for the purposes of this unittest.
|
|
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent());
|
|
// Register the dependency as module analysis dependencies have to be
|
|
// pre-registered on the proxy.
|
|
ModuleProxy.registerOuterAnalysisInvalidation<TestModuleAnalysis,
|
|
TestIndirectSCCAnalysis>();
|
|
|
|
return Result(SCCDep, MDep);
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestIndirectSCCAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
ModuleAnalysisManager &MAM;
|
|
};
|
|
|
|
AnalysisKey TestIndirectSCCAnalysis::Key;
|
|
|
|
/// A test analysis pass which caches in its result the result from the above
|
|
/// indirect analysis pass.
|
|
///
|
|
/// This allows us to ensure that whenever an analysis pass is invalidated due
|
|
/// to dependencies (especially dependencies across IR units that trigger
|
|
/// asynchronous invalidation) we correctly detect that this may in turn cause
|
|
/// other analysis to be invalidated.
|
|
struct TestDoublyIndirectSCCAnalysis
|
|
: public AnalysisInfoMixin<TestDoublyIndirectSCCAnalysis> {
|
|
struct Result {
|
|
Result(TestIndirectSCCAnalysis::Result &IDep) : IDep(IDep) {}
|
|
TestIndirectSCCAnalysis::Result &IDep;
|
|
|
|
bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
|
|
CGSCCAnalysisManager::Invalidator &Inv) {
|
|
auto PAC = PA.getChecker<TestDoublyIndirectSCCAnalysis>();
|
|
return !(PAC.preserved() ||
|
|
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) ||
|
|
Inv.invalidate<TestIndirectSCCAnalysis>(C, PA);
|
|
}
|
|
};
|
|
|
|
TestDoublyIndirectSCCAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
/// Run the analysis pass over the function and return a result.
|
|
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG) {
|
|
++Runs;
|
|
auto &IDep = AM.getResult<TestIndirectSCCAnalysis>(C, CG);
|
|
return Result(IDep);
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestDoublyIndirectSCCAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestDoublyIndirectSCCAnalysis::Key;
|
|
|
|
/// A test analysis pass which caches results from three different IR unit
|
|
/// layers and requires intermediate layers to correctly propagate the entire
|
|
/// distance.
|
|
struct TestIndirectFunctionAnalysis
|
|
: public AnalysisInfoMixin<TestIndirectFunctionAnalysis> {
|
|
struct Result {
|
|
Result(TestFunctionAnalysis::Result &FDep, TestModuleAnalysis::Result &MDep,
|
|
TestSCCAnalysis::Result &SCCDep)
|
|
: FDep(FDep), MDep(MDep), SCCDep(SCCDep) {}
|
|
TestFunctionAnalysis::Result &FDep;
|
|
TestModuleAnalysis::Result &MDep;
|
|
TestSCCAnalysis::Result &SCCDep;
|
|
|
|
bool invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv) {
|
|
auto PAC = PA.getChecker<TestIndirectFunctionAnalysis>();
|
|
return !(PAC.preserved() ||
|
|
PAC.preservedSet<AllAnalysesOn<Function>>()) ||
|
|
Inv.invalidate<TestFunctionAnalysis>(F, PA);
|
|
}
|
|
};
|
|
|
|
TestIndirectFunctionAnalysis(int &Runs, ModuleAnalysisManager &MAM,
|
|
CGSCCAnalysisManager &CGAM)
|
|
: Runs(Runs), MAM(MAM), CGAM(CGAM) {}
|
|
|
|
/// Run the analysis pass over the function and return a result.
|
|
Result run(Function &F, FunctionAnalysisManager &AM) {
|
|
++Runs;
|
|
auto &FDep = AM.getResult<TestFunctionAnalysis>(F);
|
|
|
|
auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
// For the test, we insist that the module analysis starts off in the
|
|
// cache. Getting a cached result that isn't stateless triggers an assert.
|
|
// Use MAM, for the purposes of this unittest.
|
|
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
|
|
// Register the dependency as module analysis dependencies have to be
|
|
// pre-registered on the proxy.
|
|
ModuleProxy.registerOuterAnalysisInvalidation<
|
|
TestModuleAnalysis, TestIndirectFunctionAnalysis>();
|
|
|
|
// For the test we assume this is run inside a CGSCC pass manager.
|
|
// Use MAM, for the purposes of this unittest.
|
|
const LazyCallGraph &CG =
|
|
*MAM.getCachedResult<LazyCallGraphAnalysis>(*F.getParent());
|
|
auto &CGSCCProxy = AM.getResult<CGSCCAnalysisManagerFunctionProxy>(F);
|
|
// For the test, we insist that the CGSCC analysis starts off in the cache.
|
|
// Getting a cached result that isn't stateless triggers an assert.
|
|
// Use CGAM, for the purposes of this unittest.
|
|
auto &SCCDep =
|
|
*CGAM.getCachedResult<TestSCCAnalysis>(*CG.lookupSCC(*CG.lookup(F)));
|
|
// Register the dependency as CGSCC analysis dependencies have to be
|
|
// pre-registered on the proxy.
|
|
CGSCCProxy.registerOuterAnalysisInvalidation<
|
|
TestSCCAnalysis, TestIndirectFunctionAnalysis>();
|
|
|
|
return Result(FDep, MDep, SCCDep);
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestIndirectFunctionAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
ModuleAnalysisManager &MAM;
|
|
CGSCCAnalysisManager &CGAM;
|
|
};
|
|
|
|
AnalysisKey TestIndirectFunctionAnalysis::Key;
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestIndirectAnalysisInvalidation) {
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
int SCCAnalysisRuns = 0, IndirectSCCAnalysisRuns = 0,
|
|
DoublyIndirectSCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
CGAM.registerPass(
|
|
[&] { return TestIndirectSCCAnalysis(IndirectSCCAnalysisRuns, MAM); });
|
|
CGAM.registerPass([&] {
|
|
return TestDoublyIndirectSCCAnalysis(DoublyIndirectSCCAnalysisRuns);
|
|
});
|
|
|
|
int FunctionAnalysisRuns = 0, IndirectFunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
FAM.registerPass([&] {
|
|
return TestIndirectFunctionAnalysis(IndirectFunctionAnalysisRuns, MAM,
|
|
CGAM);
|
|
});
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
int FunctionCount = 0;
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
// First just use the analysis to get the function count and preserve
|
|
// everything.
|
|
CGPM.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &) {
|
|
auto &DoublyIndirectResult =
|
|
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
auto &IndirectResult = DoublyIndirectResult.IDep;
|
|
FunctionCount += IndirectResult.SCCDep.FunctionCount;
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
|
|
|
|
// Next, invalidate
|
|
// - both analyses for the (f) and (x) SCCs,
|
|
// - just the underlying (indirect) analysis for (g) SCC, and
|
|
// - just the direct analysis for (h1,h2,h3) SCC.
|
|
CGPM.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &) {
|
|
auto &DoublyIndirectResult =
|
|
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
auto &IndirectResult = DoublyIndirectResult.IDep;
|
|
FunctionCount += IndirectResult.SCCDep.FunctionCount;
|
|
auto PA = PreservedAnalyses::none();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserveSet<AllAnalysesOn<Function>>();
|
|
if (C.getName() == "(g)")
|
|
PA.preserve<TestSCCAnalysis>();
|
|
else if (C.getName() == "(h3, h1, h2)")
|
|
PA.preserve<TestIndirectSCCAnalysis>();
|
|
return PA;
|
|
}));
|
|
// Finally, use the analysis again on each SCC (and function), forcing
|
|
// re-computation for all of them.
|
|
CGPM.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &) {
|
|
auto &DoublyIndirectResult =
|
|
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
auto &IndirectResult = DoublyIndirectResult.IDep;
|
|
FunctionCount += IndirectResult.SCCDep.FunctionCount;
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
|
|
|
|
// Create a second CGSCC pass manager. This will cause the module-level
|
|
// invalidation to occur, which will force yet another invalidation of the
|
|
// indirect SCC-level analysis as the module analysis it depends on gets
|
|
// invalidated.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &) {
|
|
auto &DoublyIndirectResult =
|
|
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
auto &IndirectResult = DoublyIndirectResult.IDep;
|
|
FunctionCount += IndirectResult.SCCDep.FunctionCount;
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
|
|
|
|
// Add a requires pass to populate the module analysis and then our CGSCC
|
|
// pass pipeline.
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
// Now require the module analysis again (it will have been invalidated once)
|
|
// and then use it again from our second CGSCC pipeline..
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
MPM.run(*M, MAM);
|
|
|
|
// There are generally two possible runs for each of the four SCCs. But
|
|
// for one SCC, we only invalidate the indirect analysis so the base one
|
|
// only gets run seven times.
|
|
EXPECT_EQ(7, SCCAnalysisRuns);
|
|
// The module analysis pass should be run twice here.
|
|
EXPECT_EQ(2, ModuleAnalysisRuns);
|
|
// The indirect analysis is invalidated (either directly or indirectly) three
|
|
// times for each of four SCCs.
|
|
EXPECT_EQ(3 * 4, IndirectSCCAnalysisRuns);
|
|
EXPECT_EQ(3 * 4, DoublyIndirectSCCAnalysisRuns);
|
|
|
|
// We run the indirect function analysis once per function the first time.
|
|
// Then we re-run it for every SCC but "(g)". Then we re-run it for every
|
|
// function again.
|
|
EXPECT_EQ(6 + 5 + 6, IndirectFunctionAnalysisRuns);
|
|
|
|
// Four passes count each of six functions once (via SCCs).
|
|
EXPECT_EQ(4 * 6, FunctionCount);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestAnalysisInvalidationCGSCCUpdate) {
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
int SCCAnalysisRuns = 0, IndirectSCCAnalysisRuns = 0,
|
|
DoublyIndirectSCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
CGAM.registerPass(
|
|
[&] { return TestIndirectSCCAnalysis(IndirectSCCAnalysisRuns, MAM); });
|
|
CGAM.registerPass([&] {
|
|
return TestDoublyIndirectSCCAnalysis(DoublyIndirectSCCAnalysisRuns);
|
|
});
|
|
|
|
int FunctionAnalysisRuns = 0, IndirectFunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
FAM.registerPass([&] {
|
|
return TestIndirectFunctionAnalysis(IndirectFunctionAnalysisRuns, MAM,
|
|
CGAM);
|
|
});
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
// First just use the analysis to get the function count and preserve
|
|
// everything.
|
|
using RequireTestIndirectFunctionAnalysisPass =
|
|
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>;
|
|
using RequireTestDoublyIndirectSCCAnalysisPass =
|
|
RequireAnalysisPass<TestDoublyIndirectSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>;
|
|
CGPM.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Next, we inject an SCC pass that invalidates everything for the `(h3, h1,
|
|
// h2)` SCC but also deletes the call edge from `h2` to `h3` and updates the
|
|
// CG. This should successfully invalidate (and force to be re-run) all the
|
|
// analyses for that SCC and for the functions.
|
|
CGPM.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
(void)AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
if (C.getName() != "(h3, h1, h2)")
|
|
return PreservedAnalyses::all();
|
|
|
|
// Build the preserved set.
|
|
auto PA = PreservedAnalyses::none();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<TestIndirectSCCAnalysis>();
|
|
PA.preserve<TestDoublyIndirectSCCAnalysis>();
|
|
|
|
// Delete the call from `h2` to `h3`.
|
|
auto &H2N = *llvm::find_if(
|
|
C, [](LazyCallGraph::Node &N) { return N.getName() == "h2"; });
|
|
auto &H2F = H2N.getFunction();
|
|
auto &H3F = *cast<CallInst>(H2F.begin()->begin())->getCalledFunction();
|
|
assert(H3F.getName() == "h3" && "Wrong called function!");
|
|
H2F.begin()->begin()->eraseFromParent();
|
|
// Insert a bitcast of `h3` so that we retain a ref edge to it.
|
|
(void)CastInst::CreatePointerCast(&H3F,
|
|
Type::getInt8PtrTy(H2F.getContext()),
|
|
"dummy", &*H2F.begin()->begin());
|
|
|
|
// Now update the call graph.
|
|
auto &NewC =
|
|
updateCGAndAnalysisManagerForFunctionPass(CG, C, H2N, AM, UR, FAM);
|
|
assert(&NewC != &C && "Should get a new SCC due to update!");
|
|
(void)&NewC;
|
|
|
|
return PA;
|
|
}));
|
|
// Now use the analysis again on each SCC and function, forcing
|
|
// re-computation for all of them.
|
|
CGPM.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Create another CGSCC pipeline that requires all the analyses again.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Next we inject an SCC pass that finds the `(h2)` SCC, adds a call to `h3`
|
|
// back to `h2`, and then invalidates everything for what will then be the
|
|
// `(h3, h1, h2)` SCC again.
|
|
CGSCCPassManager CGPM3(/*DebugLogging*/ true);
|
|
CGPM3.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
(void)AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
if (C.getName() != "(h2)")
|
|
return PreservedAnalyses::all();
|
|
|
|
// Build the preserved set.
|
|
auto PA = PreservedAnalyses::none();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<TestIndirectSCCAnalysis>();
|
|
PA.preserve<TestDoublyIndirectSCCAnalysis>();
|
|
|
|
// Delete the bitcast of `h3` that we added earlier.
|
|
auto &H2N = *C.begin();
|
|
auto &H2F = H2N.getFunction();
|
|
auto &H3F = *cast<Function>(cast<BitCastInst>(H2F.begin()->begin())->getOperand(0));
|
|
assert(H3F.getName() == "h3" && "Wrong called function!");
|
|
H2F.begin()->begin()->eraseFromParent();
|
|
// And insert a call to `h3`.
|
|
(void)CallInst::Create(&H3F, {}, "", &*H2F.begin()->begin());
|
|
|
|
// Now update the call graph.
|
|
auto &NewC =
|
|
updateCGAndAnalysisManagerForFunctionPass(CG, C, H2N, AM, UR, FAM);
|
|
assert(&NewC != &C && "Should get a new SCC due to update!");
|
|
(void)&NewC;
|
|
|
|
return PA;
|
|
}));
|
|
// Now use the analysis again on each SCC and function, forcing
|
|
// re-computation for all of them.
|
|
CGPM3.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM3.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Create a second CGSCC pass manager. This will cause the module-level
|
|
// invalidation to occur, which will force yet another invalidation of the
|
|
// indirect SCC-level analysis as the module analysis it depends on gets
|
|
// invalidated.
|
|
CGSCCPassManager CGPM4(/*DebugLogging*/ true);
|
|
CGPM4.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM4.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Add a requires pass to populate the module analysis and then one of our
|
|
// CGSCC pipelines. Repeat for all four CGSCC pipelines.
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM4)));
|
|
MPM.run(*M, MAM);
|
|
|
|
// We run over four SCCs the first time. But then we split an SCC into three.
|
|
// And then we merge those three back into one. However, this also
|
|
// invalidates all three SCCs further down in the PO walk.
|
|
EXPECT_EQ(4 + 3 + 3, SCCAnalysisRuns);
|
|
// The module analysis pass should be run three times.
|
|
EXPECT_EQ(3, ModuleAnalysisRuns);
|
|
// We run over four SCCs the first time. Then over the two new ones. Then the
|
|
// entire module is invalidated causing a full run over all seven. Then we
|
|
// fold three SCCs back to one, re-compute for it and the two SCCs above it
|
|
// in the graph, and then run over the whole module again.
|
|
EXPECT_EQ(4 + 2 + 7 + 3 + 4, IndirectSCCAnalysisRuns);
|
|
EXPECT_EQ(4 + 2 + 7 + 3 + 4, DoublyIndirectSCCAnalysisRuns);
|
|
|
|
// First we run over all six functions. Then we re-run it over three when we
|
|
// split their SCCs. Then we re-run over the whole module. Then we re-run
|
|
// over three functions merged back into a single SCC, then those three
|
|
// functions again, the two functions in SCCs above it in the graph, and then
|
|
// over the whole module again.
|
|
EXPECT_EQ(6 + 3 + 6 + 3 + 2 + 6, FunctionAnalysisRuns);
|
|
|
|
// Re run the function analysis over the entire module, and then re-run it
|
|
// over the `(h3, h1, h2)` SCC due to invalidation. Then we re-run it over
|
|
// the entire module, then the three functions merged back into a single SCC,
|
|
// those three functions again, then the two functions in SCCs above it in
|
|
// the graph, and then over the whole module.
|
|
EXPECT_EQ(6 + 3 + 6 + 3 + 2 + 6, IndirectFunctionAnalysisRuns);
|
|
}
|
|
|
|
// The (negative) tests below check for assertions so we only run them if NDEBUG
|
|
// is not defined.
|
|
#ifndef NDEBUG
|
|
|
|
struct LambdaSCCPassNoPreserve : public PassInfoMixin<LambdaSCCPassNoPreserve> {
|
|
template <typename T>
|
|
LambdaSCCPassNoPreserve(T &&Arg) : Func(std::forward<T>(Arg)) {}
|
|
|
|
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
Func(C, AM, CG, UR);
|
|
PreservedAnalyses PA;
|
|
// We update the core CGSCC data structures and so can preserve the proxy to
|
|
// the function analysis manager.
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
return PA;
|
|
}
|
|
|
|
std::function<void(LazyCallGraph::SCC &, CGSCCAnalysisManager &,
|
|
LazyCallGraph &, CGSCCUpdateResult &)>
|
|
Func;
|
|
};
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses0) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(h3, h1, h2)")
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
Function *FnX = M->getFunction("x");
|
|
Function *FnH1 = M->getFunction("h1");
|
|
Function *FnH2 = M->getFunction("h2");
|
|
Function *FnH3 = M->getFunction("h3");
|
|
ASSERT_NE(FnX, nullptr);
|
|
ASSERT_NE(FnH1, nullptr);
|
|
ASSERT_NE(FnH2, nullptr);
|
|
ASSERT_NE(FnH3, nullptr);
|
|
|
|
// And insert a call to `h1`, `h2`, and `h3`.
|
|
Instruction *IP = &FnH2->getEntryBlock().front();
|
|
(void)CallInst::Create(FnH1, {}, "", IP);
|
|
(void)CallInst::Create(FnH2, {}, "", IP);
|
|
(void)CallInst::Create(FnH3, {}, "", IP);
|
|
|
|
auto &H2N = *llvm::find_if(
|
|
C, [](LazyCallGraph::Node &N) { return N.getName() == "h2"; });
|
|
ASSERT_NO_FATAL_FAILURE(
|
|
updateCGAndAnalysisManagerForCGSCCPass(CG, C, H2N, AM, UR, FAM));
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses1) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(h3, h1, h2)")
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
Function *FnX = M->getFunction("x");
|
|
Function *FnH1 = M->getFunction("h1");
|
|
Function *FnH2 = M->getFunction("h2");
|
|
Function *FnH3 = M->getFunction("h3");
|
|
ASSERT_NE(FnX, nullptr);
|
|
ASSERT_NE(FnH1, nullptr);
|
|
ASSERT_NE(FnH2, nullptr);
|
|
ASSERT_NE(FnH3, nullptr);
|
|
|
|
// And insert a call to `h1`, `h2`, and `h3`.
|
|
Instruction *IP = &FnH2->getEntryBlock().front();
|
|
(void)CallInst::Create(FnH1, {}, "", IP);
|
|
(void)CallInst::Create(FnH2, {}, "", IP);
|
|
(void)CallInst::Create(FnH3, {}, "", IP);
|
|
|
|
auto &H2N = *llvm::find_if(
|
|
C, [](LazyCallGraph::Node &N) { return N.getName() == "h2"; });
|
|
ASSERT_DEATH(
|
|
updateCGAndAnalysisManagerForFunctionPass(CG, C, H2N, AM, UR, FAM),
|
|
"Any new calls should be modeled as");
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses2) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(f)")
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
Function *FnF = M->getFunction("f");
|
|
Function *FnH2 = M->getFunction("h2");
|
|
ASSERT_NE(FnF, nullptr);
|
|
ASSERT_NE(FnH2, nullptr);
|
|
|
|
// And insert a call to `h2`
|
|
Instruction *IP = &FnF->getEntryBlock().front();
|
|
(void)CallInst::Create(FnH2, {}, "", IP);
|
|
|
|
auto &FN = *llvm::find_if(
|
|
C, [](LazyCallGraph::Node &N) { return N.getName() == "f"; });
|
|
ASSERT_NO_FATAL_FAILURE(
|
|
updateCGAndAnalysisManagerForCGSCCPass(CG, C, FN, AM, UR, FAM));
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses3) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(f)")
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
Function *FnF = M->getFunction("f");
|
|
Function *FnH2 = M->getFunction("h2");
|
|
ASSERT_NE(FnF, nullptr);
|
|
ASSERT_NE(FnH2, nullptr);
|
|
|
|
// And insert a call to `h2`
|
|
Instruction *IP = &FnF->getEntryBlock().front();
|
|
(void)CallInst::Create(FnH2, {}, "", IP);
|
|
|
|
auto &FN = *llvm::find_if(
|
|
C, [](LazyCallGraph::Node &N) { return N.getName() == "f"; });
|
|
ASSERT_DEATH(
|
|
updateCGAndAnalysisManagerForFunctionPass(CG, C, FN, AM, UR, FAM),
|
|
"Any new calls should be modeled as");
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses4) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(f)")
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
Function *FnF = M->getFunction("f");
|
|
Function *FnewF = Function::Create(FnF->getFunctionType(),
|
|
FnF->getLinkage(), "newF", *M);
|
|
BasicBlock *BB = BasicBlock::Create(FnewF->getContext(), "", FnewF);
|
|
ReturnInst::Create(FnewF->getContext(), BB);
|
|
|
|
// And insert a call to `newF`
|
|
Instruction *IP = &FnF->getEntryBlock().front();
|
|
(void)CallInst::Create(FnewF, {}, "", IP);
|
|
|
|
// Use the CallGraphUpdater to update the call graph for the new
|
|
// function.
|
|
CallGraphUpdater CGU;
|
|
CGU.initialize(CG, C, AM, UR);
|
|
CGU.registerOutlinedFunction(*FnF, *FnewF);
|
|
|
|
auto &FN = *llvm::find_if(
|
|
C, [](LazyCallGraph::Node &N) { return N.getName() == "f"; });
|
|
|
|
ASSERT_NO_FATAL_FAILURE(
|
|
updateCGAndAnalysisManagerForCGSCCPass(CG, C, FN, AM, UR, FAM));
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses5) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(f)")
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
Function *FnF = M->getFunction("f");
|
|
Function *FnewF =
|
|
Function::Create(FnF->getFunctionType(), FnF->getLinkage(), "newF", *M);
|
|
BasicBlock *BB = BasicBlock::Create(FnewF->getContext(), "", FnewF);
|
|
ReturnInst::Create(FnewF->getContext(), BB);
|
|
|
|
// Use the CallGraphUpdater to update the call graph for the new
|
|
// function.
|
|
CallGraphUpdater CGU;
|
|
CGU.initialize(CG, C, AM, UR);
|
|
|
|
// And insert a call to `newF`
|
|
Instruction *IP = &FnF->getEntryBlock().front();
|
|
(void)CallInst::Create(FnewF, {}, "", IP);
|
|
|
|
auto &FN = *llvm::find_if(
|
|
C, [](LazyCallGraph::Node &N) { return N.getName() == "f"; });
|
|
|
|
ASSERT_DEATH(updateCGAndAnalysisManagerForCGSCCPass(CG, C, FN, AM, UR, FAM),
|
|
"should already have an associated node");
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses6) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(h3, h1, h2)")
|
|
return;
|
|
|
|
Function *FnX = M->getFunction("x");
|
|
Function *FnH1 = M->getFunction("h1");
|
|
Function *FnH2 = M->getFunction("h2");
|
|
Function *FnH3 = M->getFunction("h3");
|
|
ASSERT_NE(FnX, nullptr);
|
|
ASSERT_NE(FnH1, nullptr);
|
|
ASSERT_NE(FnH2, nullptr);
|
|
ASSERT_NE(FnH3, nullptr);
|
|
|
|
// And insert a call to `h1`, `h2`, and `h3`.
|
|
Instruction *IP = &FnH2->getEntryBlock().front();
|
|
(void)CallInst::Create(FnH1, {}, "", IP);
|
|
(void)CallInst::Create(FnH2, {}, "", IP);
|
|
(void)CallInst::Create(FnH3, {}, "", IP);
|
|
|
|
// Use the CallGraphUpdater to update the call graph for the new
|
|
// function.
|
|
CallGraphUpdater CGU;
|
|
CGU.initialize(CG, C, AM, UR);
|
|
ASSERT_NO_FATAL_FAILURE(CGU.reanalyzeFunction(*FnH2));
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses7) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(f)")
|
|
return;
|
|
|
|
Function *FnF = M->getFunction("f");
|
|
Function *FnH2 = M->getFunction("h2");
|
|
ASSERT_NE(FnF, nullptr);
|
|
ASSERT_NE(FnH2, nullptr);
|
|
|
|
// And insert a call to `h2`
|
|
Instruction *IP = &FnF->getEntryBlock().front();
|
|
(void)CallInst::Create(FnH2, {}, "", IP);
|
|
|
|
// Use the CallGraphUpdater to update the call graph for the new
|
|
// function.
|
|
CallGraphUpdater CGU;
|
|
CGU.initialize(CG, C, AM, UR);
|
|
ASSERT_NO_FATAL_FAILURE(CGU.reanalyzeFunction(*FnF));
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses8) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(f)")
|
|
return;
|
|
|
|
Function *FnF = M->getFunction("f");
|
|
Function *FnewF = Function::Create(FnF->getFunctionType(),
|
|
FnF->getLinkage(), "newF", *M);
|
|
BasicBlock *BB = BasicBlock::Create(FnewF->getContext(), "", FnewF);
|
|
auto *RI = ReturnInst::Create(FnewF->getContext(), BB);
|
|
while (FnF->getEntryBlock().size() > 1)
|
|
FnF->getEntryBlock().front().moveBefore(RI);
|
|
ASSERT_NE(FnF, nullptr);
|
|
|
|
// Create an unsused constant that is referencing the old (=replaced)
|
|
// function.
|
|
ConstantExpr::getBitCast(FnF, Type::getInt8PtrTy(FnF->getContext()));
|
|
|
|
// Use the CallGraphUpdater to update the call graph.
|
|
CallGraphUpdater CGU;
|
|
CGU.initialize(CG, C, AM, UR);
|
|
ASSERT_NO_FATAL_FAILURE(CGU.replaceFunctionWith(*FnF, *FnewF));
|
|
ASSERT_TRUE(FnF->isDeclaration());
|
|
ASSERT_EQ(FnF->getNumUses(), 0U);
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses9) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(f)")
|
|
return;
|
|
|
|
Function *FnF = M->getFunction("f");
|
|
|
|
// Use the CallGraphUpdater to update the call graph.
|
|
{
|
|
CallGraphUpdater CGU;
|
|
CGU.initialize(CG, C, AM, UR);
|
|
ASSERT_NO_FATAL_FAILURE(CGU.removeFunction(*FnF));
|
|
ASSERT_EQ(M->getFunctionList().size(), 6U);
|
|
}
|
|
ASSERT_EQ(M->getFunctionList().size(), 5U);
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses10) {
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (C.getName() != "(h3, h1, h2)")
|
|
return;
|
|
|
|
Function *FnX = M->getFunction("x");
|
|
Function *FnH1 = M->getFunction("h1");
|
|
Function *FnH2 = M->getFunction("h2");
|
|
Function *FnH3 = M->getFunction("h3");
|
|
ASSERT_NE(FnX, nullptr);
|
|
ASSERT_NE(FnH1, nullptr);
|
|
ASSERT_NE(FnH2, nullptr);
|
|
ASSERT_NE(FnH3, nullptr);
|
|
|
|
// And insert a call to `h1`, and `h3`.
|
|
Instruction *IP = &FnH1->getEntryBlock().front();
|
|
(void)CallInst::Create(FnH1, {}, "", IP);
|
|
(void)CallInst::Create(FnH3, {}, "", IP);
|
|
|
|
// Remove the `h2` call.
|
|
ASSERT_TRUE(isa<CallBase>(IP));
|
|
ASSERT_EQ(cast<CallBase>(IP)->getCalledFunction(), FnH2);
|
|
IP->eraseFromParent();
|
|
|
|
// Use the CallGraphUpdater to update the call graph.
|
|
CallGraphUpdater CGU;
|
|
CGU.initialize(CG, C, AM, UR);
|
|
ASSERT_NO_FATAL_FAILURE(CGU.reanalyzeFunction(*FnH1));
|
|
ASSERT_NO_FATAL_FAILURE(CGU.removeFunction(*FnH2));
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
}
|
|
|
|
// Returns a vector containing the SCC's nodes. Useful for not iterating over an
|
|
// SCC while mutating it.
|
|
static SmallVector<LazyCallGraph::Node *> SCCNodes(LazyCallGraph::SCC &C) {
|
|
SmallVector<LazyCallGraph::Node *> Nodes;
|
|
for (auto &N : C)
|
|
Nodes.push_back(&N);
|
|
|
|
return Nodes;
|
|
}
|
|
|
|
// Start with call recursive f, create f -> g and ref recursive f.
|
|
TEST_F(CGSCCPassManagerTest, TestInsertionOfNewFunctions1) {
|
|
std::unique_ptr<Module> M = parseIR("define void @f() {\n"
|
|
"entry:\n"
|
|
" call void @f()\n"
|
|
" ret void\n"
|
|
"}\n");
|
|
|
|
bool Ran = false;
|
|
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve(
|
|
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (Ran)
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
|
|
for (LazyCallGraph::Node *N : SCCNodes(C)) {
|
|
Function &F = N->getFunction();
|
|
if (F.getName() != "f")
|
|
continue;
|
|
|
|
// Create a new function 'g'.
|
|
auto *G = Function::Create(F.getFunctionType(), F.getLinkage(),
|
|
F.getAddressSpace(), "g", F.getParent());
|
|
auto *GBB =
|
|
BasicBlock::Create(F.getParent()->getContext(), "entry", G);
|
|
(void)ReturnInst::Create(G->getContext(), GBB);
|
|
// Instruct the LazyCallGraph to create a new node for 'g', as the
|
|
// single node in a new SCC, into the call graph. As a result
|
|
// the call graph is composed of a single RefSCC with two SCCs:
|
|
// [(f), (g)].
|
|
|
|
// "Demote" the 'f -> f' call edge to a ref edge.
|
|
// 1. Erase the call edge from 'f' to 'f'.
|
|
F.getEntryBlock().front().eraseFromParent();
|
|
// 2. Insert a ref edge from 'f' to 'f'.
|
|
(void)CastInst::CreatePointerCast(
|
|
&F, Type::getInt8PtrTy(F.getContext()), "f.ref",
|
|
&F.getEntryBlock().front());
|
|
// 3. Insert a ref edge from 'f' to 'g'.
|
|
(void)CastInst::CreatePointerCast(
|
|
G, Type::getInt8PtrTy(F.getContext()), "g.ref",
|
|
&F.getEntryBlock().front());
|
|
|
|
CG.addSplitFunction(F, *G);
|
|
|
|
ASSERT_FALSE(verifyModule(*F.getParent(), &errs()));
|
|
|
|
ASSERT_NO_FATAL_FAILURE(
|
|
updateCGAndAnalysisManagerForCGSCCPass(CG, C, *N, AM, UR, FAM))
|
|
<< "Updating the call graph with a demoted, self-referential "
|
|
"call edge 'f -> f', and a newly inserted ref edge 'f -> g', "
|
|
"caused a fatal failure";
|
|
|
|
Ran = true;
|
|
}
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
ASSERT_TRUE(Ran);
|
|
}
|
|
|
|
// Start with f, end with f -> g1, f -> g2, and f -ref-> (h1 <-ref-> h2).
|
|
TEST_F(CGSCCPassManagerTest, TestInsertionOfNewFunctions2) {
|
|
std::unique_ptr<Module> M = parseIR("define void @f() {\n"
|
|
"entry:\n"
|
|
" ret void\n"
|
|
"}\n");
|
|
|
|
bool Ran = false;
|
|
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (Ran)
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
|
|
for (LazyCallGraph::Node *N : SCCNodes(C)) {
|
|
Function &F = N->getFunction();
|
|
if (F.getName() != "f")
|
|
continue;
|
|
|
|
// Create g1 and g2.
|
|
auto *G1 = Function::Create(F.getFunctionType(), F.getLinkage(),
|
|
F.getAddressSpace(), "g1", F.getParent());
|
|
auto *G2 = Function::Create(F.getFunctionType(), F.getLinkage(),
|
|
F.getAddressSpace(), "g2", F.getParent());
|
|
BasicBlock *G1BB =
|
|
BasicBlock::Create(F.getParent()->getContext(), "entry", G1);
|
|
BasicBlock *G2BB =
|
|
BasicBlock::Create(F.getParent()->getContext(), "entry", G2);
|
|
(void)ReturnInst::Create(G1->getContext(), G1BB);
|
|
(void)ReturnInst::Create(G2->getContext(), G2BB);
|
|
|
|
// Add 'f -> g1' call edge.
|
|
(void)CallInst::Create(G1, {}, "", &F.getEntryBlock().front());
|
|
// Add 'f -> g2' call edge.
|
|
(void)CallInst::Create(G2, {}, "", &F.getEntryBlock().front());
|
|
|
|
CG.addSplitFunction(F, *G1);
|
|
CG.addSplitFunction(F, *G2);
|
|
|
|
// Create mutually recursive functions (ref only) 'h1' and 'h2'.
|
|
auto *H1 = Function::Create(F.getFunctionType(), F.getLinkage(),
|
|
F.getAddressSpace(), "h1", F.getParent());
|
|
auto *H2 = Function::Create(F.getFunctionType(), F.getLinkage(),
|
|
F.getAddressSpace(), "h2", F.getParent());
|
|
BasicBlock *H1BB =
|
|
BasicBlock::Create(F.getParent()->getContext(), "entry", H1);
|
|
BasicBlock *H2BB =
|
|
BasicBlock::Create(F.getParent()->getContext(), "entry", H2);
|
|
(void)CastInst::CreatePointerCast(H2, Type::getInt8PtrTy(F.getContext()),
|
|
"h2.ref", H1BB);
|
|
(void)ReturnInst::Create(H1->getContext(), H1BB);
|
|
(void)CastInst::CreatePointerCast(H1, Type::getInt8PtrTy(F.getContext()),
|
|
"h1.ref", H2BB);
|
|
(void)ReturnInst::Create(H2->getContext(), H2BB);
|
|
|
|
// Add 'f -> h1' ref edge.
|
|
(void)CastInst::CreatePointerCast(H1, Type::getInt8PtrTy(F.getContext()),
|
|
"h1.ref", &F.getEntryBlock().front());
|
|
// Add 'f -> h2' ref edge.
|
|
(void)CastInst::CreatePointerCast(H2, Type::getInt8PtrTy(F.getContext()),
|
|
"h2.ref", &F.getEntryBlock().front());
|
|
|
|
CG.addSplitRefRecursiveFunctions(F, SmallVector<Function *, 2>({H1, H2}));
|
|
|
|
ASSERT_FALSE(verifyModule(*F.getParent(), &errs()));
|
|
|
|
ASSERT_NO_FATAL_FAILURE(
|
|
updateCGAndAnalysisManagerForCGSCCPass(CG, C, *N, AM, UR, FAM))
|
|
<< "Updating the call graph with mutually recursive g1 <-> g2, h1 "
|
|
"<-> h2 caused a fatal failure";
|
|
|
|
Ran = true;
|
|
}
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
ASSERT_TRUE(Ran);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestInsertionOfNewNonTrivialCallEdge) {
|
|
std::unique_ptr<Module> M = parseIR("define void @f1() {\n"
|
|
"entry:\n"
|
|
" %a = bitcast void ()* @f4 to i8*\n"
|
|
" %b = bitcast void ()* @f2 to i8*\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @f2() {\n"
|
|
"entry:\n"
|
|
" %a = bitcast void ()* @f1 to i8*\n"
|
|
" %b = bitcast void ()* @f3 to i8*\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @f3() {\n"
|
|
"entry:\n"
|
|
" %a = bitcast void ()* @f2 to i8*\n"
|
|
" %b = bitcast void ()* @f4 to i8*\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @f4() {\n"
|
|
"entry:\n"
|
|
" %a = bitcast void ()* @f3 to i8*\n"
|
|
" %b = bitcast void ()* @f1 to i8*\n"
|
|
" ret void\n"
|
|
"}\n");
|
|
|
|
bool Ran = false;
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (Ran)
|
|
return;
|
|
|
|
auto &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
|
|
for (LazyCallGraph::Node *N : SCCNodes(C)) {
|
|
Function &F = N->getFunction();
|
|
if (F.getName() != "f1")
|
|
continue;
|
|
|
|
Function *F3 = F.getParent()->getFunction("f3");
|
|
ASSERT_TRUE(F3 != nullptr);
|
|
|
|
// Create call from f1 to f3.
|
|
(void)CallInst::Create(F3, {}, "", F.getEntryBlock().getTerminator());
|
|
|
|
ASSERT_NO_FATAL_FAILURE(
|
|
updateCGAndAnalysisManagerForCGSCCPass(CG, C, *N, AM, UR, FAM))
|
|
<< "Updating the call graph with mutually recursive g1 <-> g2, h1 "
|
|
"<-> h2 caused a fatal failure";
|
|
|
|
Ran = true;
|
|
}
|
|
}));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
|
|
ASSERT_TRUE(Ran);
|
|
}
|
|
|
|
#endif
|
|
} // namespace
|