1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/include/llvm/Analysis/ScalarEvolutionExpander.h
Sanjoy Das 2763237d5a [SCEVExpander] Fix comments for functions. NFC.
Bring function documentation for ScalarEvolutionExpander up to code by
not repeating the function name in the comment documenting
functionality.  Reflow the edited comments where needed.

llvm-svn: 234847
2015-04-14 03:20:40 +00:00

281 lines
11 KiB
C++

//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the classes used to generate code from scalar expressions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/ValueHandle.h"
#include <set>
namespace llvm {
class TargetTransformInfo;
/// Return true if the given expression is safe to expand in the sense that
/// all materialized values are safe to speculate.
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
/// This class uses information about analyze scalars to
/// rewrite expressions in canonical form.
///
/// Clients should create an instance of this class when rewriting is needed,
/// and destroy it when finished to allow the release of the associated
/// memory.
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
ScalarEvolution &SE;
const DataLayout &DL;
// New instructions receive a name to identifies them with the current pass.
const char* IVName;
// InsertedExpressions caches Values for reuse, so must track RAUW.
std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >
InsertedExpressions;
// InsertedValues only flags inserted instructions so needs no RAUW.
std::set<AssertingVH<Value> > InsertedValues;
std::set<AssertingVH<Value> > InsertedPostIncValues;
/// A memoization of the "relevant" loop for a given SCEV.
DenseMap<const SCEV *, const Loop *> RelevantLoops;
/// \brief Addrecs referring to any of the given loops are expanded
/// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
/// returns the add instruction that adds one to the phi for {0,+,1}<L>,
/// as opposed to a new phi starting at 1. This is only supported in
/// non-canonical mode.
PostIncLoopSet PostIncLoops;
/// \brief When this is non-null, addrecs expanded in the loop it indicates
/// should be inserted with increments at IVIncInsertPos.
const Loop *IVIncInsertLoop;
/// \brief When expanding addrecs in the IVIncInsertLoop loop, insert the IV
/// increment at this position.
Instruction *IVIncInsertPos;
/// \brief Phis that complete an IV chain. Reuse
std::set<AssertingVH<PHINode> > ChainedPhis;
/// \brief When true, expressions are expanded in "canonical" form. In
/// particular, addrecs are expanded as arithmetic based on a canonical
/// induction variable. When false, expression are expanded in a more
/// literal form.
bool CanonicalMode;
/// \brief When invoked from LSR, the expander is in "strength reduction"
/// mode. The only difference is that phi's are only reused if they are
/// already in "expanded" form.
bool LSRMode;
typedef IRBuilder<true, TargetFolder> BuilderType;
BuilderType Builder;
#ifndef NDEBUG
const char *DebugType;
#endif
friend struct SCEVVisitor<SCEVExpander, Value*>;
public:
/// \brief Construct a SCEVExpander in "canonical" mode.
explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
const char *name)
: SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
Builder(se.getContext(), TargetFolder(DL)) {
#ifndef NDEBUG
DebugType = "";
#endif
}
#ifndef NDEBUG
void setDebugType(const char* s) { DebugType = s; }
#endif
/// \brief Erase the contents of the InsertedExpressions map so that users
/// trying to expand the same expression into multiple BasicBlocks or
/// different places within the same BasicBlock can do so.
void clear() {
InsertedExpressions.clear();
InsertedValues.clear();
InsertedPostIncValues.clear();
ChainedPhis.clear();
}
/// \brief Return true for expressions that may incur non-trivial cost to
/// evaluate at runtime.
bool isHighCostExpansion(const SCEV *Expr, Loop *L) {
SmallPtrSet<const SCEV *, 8> Processed;
return isHighCostExpansionHelper(Expr, L, Processed);
}
/// \brief This method returns the canonical induction variable of the
/// specified type for the specified loop (inserting one if there is none).
/// A canonical induction variable starts at zero and steps by one on each
/// iteration.
PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
/// \brief Return the induction variable increment's IV operand.
Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
bool allowScale);
/// \brief Utility for hoisting an IV increment.
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
/// \brief replace congruent phis with their most canonical
/// representative. Return the number of phis eliminated.
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
SmallVectorImpl<WeakVH> &DeadInsts,
const TargetTransformInfo *TTI = nullptr);
/// \brief Insert code to directly compute the specified SCEV expression
/// into the program. The inserted code is inserted into the specified
/// block.
Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
/// \brief Set the current IV increment loop and position.
void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
assert(!CanonicalMode &&
"IV increment positions are not supported in CanonicalMode");
IVIncInsertLoop = L;
IVIncInsertPos = Pos;
}
/// \brief Enable post-inc expansion for addrecs referring to the given
/// loops. Post-inc expansion is only supported in non-canonical mode.
void setPostInc(const PostIncLoopSet &L) {
assert(!CanonicalMode &&
"Post-inc expansion is not supported in CanonicalMode");
PostIncLoops = L;
}
/// \brief Disable all post-inc expansion.
void clearPostInc() {
PostIncLoops.clear();
// When we change the post-inc loop set, cached expansions may no
// longer be valid.
InsertedPostIncValues.clear();
}
/// \brief Disable the behavior of expanding expressions in canonical form
/// rather than in a more literal form. Non-canonical mode is useful for
/// late optimization passes.
void disableCanonicalMode() { CanonicalMode = false; }
void enableLSRMode() { LSRMode = true; }
/// \brief Clear the current insertion point. This is useful if the
/// instruction that had been serving as the insertion point may have been
/// deleted.
void clearInsertPoint() {
Builder.ClearInsertionPoint();
}
/// \brief Return true if the specified instruction was inserted by the code
/// rewriter. If so, the client should not modify the instruction.
bool isInsertedInstruction(Instruction *I) const {
return InsertedValues.count(I) || InsertedPostIncValues.count(I);
}
void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
private:
LLVMContext &getContext() const { return SE.getContext(); }
/// \brief Recursive helper function for isHighCostExpansion.
bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
SmallPtrSetImpl<const SCEV *> &Processed);
/// \brief Insert the specified binary operator, doing a small amount
/// of work to avoid inserting an obviously redundant operation.
Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
/// \brief Arrange for there to be a cast of V to Ty at IP, reusing an
/// existing cast if a suitable one exists, moving an existing cast if a
/// suitable one exists but isn't in the right place, or or creating a new
/// one.
Value *ReuseOrCreateCast(Value *V, Type *Ty,
Instruction::CastOps Op,
BasicBlock::iterator IP);
/// \brief Insert a cast of V to the specified type, which must be possible
/// with a noop cast, doing what we can to share the casts.
Value *InsertNoopCastOfTo(Value *V, Type *Ty);
/// \brief Expand a SCEVAddExpr with a pointer type into a GEP
/// instead of using ptrtoint+arithmetic+inttoptr.
Value *expandAddToGEP(const SCEV *const *op_begin,
const SCEV *const *op_end,
PointerType *PTy, Type *Ty, Value *V);
Value *expand(const SCEV *S);
/// \brief Insert code to directly compute the specified SCEV expression
/// into the program. The inserted code is inserted into the SCEVExpander's
/// current insertion point. If a type is specified, the result will be
/// expanded to have that type, with a cast if necessary.
Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
/// \brief Determine the most "relevant" loop for the given SCEV.
const Loop *getRelevantLoop(const SCEV *);
Value *visitConstant(const SCEVConstant *S) {
return S->getValue();
}
Value *visitTruncateExpr(const SCEVTruncateExpr *S);
Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
Value *visitAddExpr(const SCEVAddExpr *S);
Value *visitMulExpr(const SCEVMulExpr *S);
Value *visitUDivExpr(const SCEVUDivExpr *S);
Value *visitAddRecExpr(const SCEVAddRecExpr *S);
Value *visitSMaxExpr(const SCEVSMaxExpr *S);
Value *visitUMaxExpr(const SCEVUMaxExpr *S);
Value *visitUnknown(const SCEVUnknown *S) {
return S->getValue();
}
void rememberInstruction(Value *I);
bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
const Loop *L,
Type *ExpandTy,
Type *IntTy,
Type *&TruncTy,
bool &InvertStep);
Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
Type *ExpandTy, Type *IntTy, bool useSubtract);
};
}
#endif