mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
2763237d5a
Bring function documentation for ScalarEvolutionExpander up to code by not repeating the function name in the comment documenting functionality. Reflow the edited comments where needed. llvm-svn: 234847
281 lines
11 KiB
C++
281 lines
11 KiB
C++
//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the classes used to generate code from scalar expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
|
|
#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
|
|
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include <set>
|
|
|
|
namespace llvm {
|
|
class TargetTransformInfo;
|
|
|
|
/// Return true if the given expression is safe to expand in the sense that
|
|
/// all materialized values are safe to speculate.
|
|
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
|
|
|
|
/// This class uses information about analyze scalars to
|
|
/// rewrite expressions in canonical form.
|
|
///
|
|
/// Clients should create an instance of this class when rewriting is needed,
|
|
/// and destroy it when finished to allow the release of the associated
|
|
/// memory.
|
|
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
|
|
ScalarEvolution &SE;
|
|
const DataLayout &DL;
|
|
|
|
// New instructions receive a name to identifies them with the current pass.
|
|
const char* IVName;
|
|
|
|
// InsertedExpressions caches Values for reuse, so must track RAUW.
|
|
std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >
|
|
InsertedExpressions;
|
|
// InsertedValues only flags inserted instructions so needs no RAUW.
|
|
std::set<AssertingVH<Value> > InsertedValues;
|
|
std::set<AssertingVH<Value> > InsertedPostIncValues;
|
|
|
|
/// A memoization of the "relevant" loop for a given SCEV.
|
|
DenseMap<const SCEV *, const Loop *> RelevantLoops;
|
|
|
|
/// \brief Addrecs referring to any of the given loops are expanded
|
|
/// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
|
|
/// returns the add instruction that adds one to the phi for {0,+,1}<L>,
|
|
/// as opposed to a new phi starting at 1. This is only supported in
|
|
/// non-canonical mode.
|
|
PostIncLoopSet PostIncLoops;
|
|
|
|
/// \brief When this is non-null, addrecs expanded in the loop it indicates
|
|
/// should be inserted with increments at IVIncInsertPos.
|
|
const Loop *IVIncInsertLoop;
|
|
|
|
/// \brief When expanding addrecs in the IVIncInsertLoop loop, insert the IV
|
|
/// increment at this position.
|
|
Instruction *IVIncInsertPos;
|
|
|
|
/// \brief Phis that complete an IV chain. Reuse
|
|
std::set<AssertingVH<PHINode> > ChainedPhis;
|
|
|
|
/// \brief When true, expressions are expanded in "canonical" form. In
|
|
/// particular, addrecs are expanded as arithmetic based on a canonical
|
|
/// induction variable. When false, expression are expanded in a more
|
|
/// literal form.
|
|
bool CanonicalMode;
|
|
|
|
/// \brief When invoked from LSR, the expander is in "strength reduction"
|
|
/// mode. The only difference is that phi's are only reused if they are
|
|
/// already in "expanded" form.
|
|
bool LSRMode;
|
|
|
|
typedef IRBuilder<true, TargetFolder> BuilderType;
|
|
BuilderType Builder;
|
|
|
|
#ifndef NDEBUG
|
|
const char *DebugType;
|
|
#endif
|
|
|
|
friend struct SCEVVisitor<SCEVExpander, Value*>;
|
|
|
|
public:
|
|
/// \brief Construct a SCEVExpander in "canonical" mode.
|
|
explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
|
|
const char *name)
|
|
: SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
|
|
IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
|
|
Builder(se.getContext(), TargetFolder(DL)) {
|
|
#ifndef NDEBUG
|
|
DebugType = "";
|
|
#endif
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void setDebugType(const char* s) { DebugType = s; }
|
|
#endif
|
|
|
|
/// \brief Erase the contents of the InsertedExpressions map so that users
|
|
/// trying to expand the same expression into multiple BasicBlocks or
|
|
/// different places within the same BasicBlock can do so.
|
|
void clear() {
|
|
InsertedExpressions.clear();
|
|
InsertedValues.clear();
|
|
InsertedPostIncValues.clear();
|
|
ChainedPhis.clear();
|
|
}
|
|
|
|
/// \brief Return true for expressions that may incur non-trivial cost to
|
|
/// evaluate at runtime.
|
|
bool isHighCostExpansion(const SCEV *Expr, Loop *L) {
|
|
SmallPtrSet<const SCEV *, 8> Processed;
|
|
return isHighCostExpansionHelper(Expr, L, Processed);
|
|
}
|
|
|
|
/// \brief This method returns the canonical induction variable of the
|
|
/// specified type for the specified loop (inserting one if there is none).
|
|
/// A canonical induction variable starts at zero and steps by one on each
|
|
/// iteration.
|
|
PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
|
|
|
|
/// \brief Return the induction variable increment's IV operand.
|
|
Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
|
|
bool allowScale);
|
|
|
|
/// \brief Utility for hoisting an IV increment.
|
|
bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
|
|
|
|
/// \brief replace congruent phis with their most canonical
|
|
/// representative. Return the number of phis eliminated.
|
|
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
|
|
SmallVectorImpl<WeakVH> &DeadInsts,
|
|
const TargetTransformInfo *TTI = nullptr);
|
|
|
|
/// \brief Insert code to directly compute the specified SCEV expression
|
|
/// into the program. The inserted code is inserted into the specified
|
|
/// block.
|
|
Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
|
|
|
|
/// \brief Set the current IV increment loop and position.
|
|
void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
|
|
assert(!CanonicalMode &&
|
|
"IV increment positions are not supported in CanonicalMode");
|
|
IVIncInsertLoop = L;
|
|
IVIncInsertPos = Pos;
|
|
}
|
|
|
|
/// \brief Enable post-inc expansion for addrecs referring to the given
|
|
/// loops. Post-inc expansion is only supported in non-canonical mode.
|
|
void setPostInc(const PostIncLoopSet &L) {
|
|
assert(!CanonicalMode &&
|
|
"Post-inc expansion is not supported in CanonicalMode");
|
|
PostIncLoops = L;
|
|
}
|
|
|
|
/// \brief Disable all post-inc expansion.
|
|
void clearPostInc() {
|
|
PostIncLoops.clear();
|
|
|
|
// When we change the post-inc loop set, cached expansions may no
|
|
// longer be valid.
|
|
InsertedPostIncValues.clear();
|
|
}
|
|
|
|
/// \brief Disable the behavior of expanding expressions in canonical form
|
|
/// rather than in a more literal form. Non-canonical mode is useful for
|
|
/// late optimization passes.
|
|
void disableCanonicalMode() { CanonicalMode = false; }
|
|
|
|
void enableLSRMode() { LSRMode = true; }
|
|
|
|
/// \brief Clear the current insertion point. This is useful if the
|
|
/// instruction that had been serving as the insertion point may have been
|
|
/// deleted.
|
|
void clearInsertPoint() {
|
|
Builder.ClearInsertionPoint();
|
|
}
|
|
|
|
/// \brief Return true if the specified instruction was inserted by the code
|
|
/// rewriter. If so, the client should not modify the instruction.
|
|
bool isInsertedInstruction(Instruction *I) const {
|
|
return InsertedValues.count(I) || InsertedPostIncValues.count(I);
|
|
}
|
|
|
|
void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
|
|
|
|
private:
|
|
LLVMContext &getContext() const { return SE.getContext(); }
|
|
|
|
/// \brief Recursive helper function for isHighCostExpansion.
|
|
bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
|
|
SmallPtrSetImpl<const SCEV *> &Processed);
|
|
|
|
/// \brief Insert the specified binary operator, doing a small amount
|
|
/// of work to avoid inserting an obviously redundant operation.
|
|
Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
|
|
|
|
/// \brief Arrange for there to be a cast of V to Ty at IP, reusing an
|
|
/// existing cast if a suitable one exists, moving an existing cast if a
|
|
/// suitable one exists but isn't in the right place, or or creating a new
|
|
/// one.
|
|
Value *ReuseOrCreateCast(Value *V, Type *Ty,
|
|
Instruction::CastOps Op,
|
|
BasicBlock::iterator IP);
|
|
|
|
/// \brief Insert a cast of V to the specified type, which must be possible
|
|
/// with a noop cast, doing what we can to share the casts.
|
|
Value *InsertNoopCastOfTo(Value *V, Type *Ty);
|
|
|
|
/// \brief Expand a SCEVAddExpr with a pointer type into a GEP
|
|
/// instead of using ptrtoint+arithmetic+inttoptr.
|
|
Value *expandAddToGEP(const SCEV *const *op_begin,
|
|
const SCEV *const *op_end,
|
|
PointerType *PTy, Type *Ty, Value *V);
|
|
|
|
Value *expand(const SCEV *S);
|
|
|
|
/// \brief Insert code to directly compute the specified SCEV expression
|
|
/// into the program. The inserted code is inserted into the SCEVExpander's
|
|
/// current insertion point. If a type is specified, the result will be
|
|
/// expanded to have that type, with a cast if necessary.
|
|
Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
|
|
|
|
/// \brief Determine the most "relevant" loop for the given SCEV.
|
|
const Loop *getRelevantLoop(const SCEV *);
|
|
|
|
Value *visitConstant(const SCEVConstant *S) {
|
|
return S->getValue();
|
|
}
|
|
|
|
Value *visitTruncateExpr(const SCEVTruncateExpr *S);
|
|
|
|
Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
|
|
|
|
Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
|
|
|
|
Value *visitAddExpr(const SCEVAddExpr *S);
|
|
|
|
Value *visitMulExpr(const SCEVMulExpr *S);
|
|
|
|
Value *visitUDivExpr(const SCEVUDivExpr *S);
|
|
|
|
Value *visitAddRecExpr(const SCEVAddRecExpr *S);
|
|
|
|
Value *visitSMaxExpr(const SCEVSMaxExpr *S);
|
|
|
|
Value *visitUMaxExpr(const SCEVUMaxExpr *S);
|
|
|
|
Value *visitUnknown(const SCEVUnknown *S) {
|
|
return S->getValue();
|
|
}
|
|
|
|
void rememberInstruction(Value *I);
|
|
|
|
bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
|
|
|
|
bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
|
|
|
|
Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
|
|
PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
|
|
const Loop *L,
|
|
Type *ExpandTy,
|
|
Type *IntTy,
|
|
Type *&TruncTy,
|
|
bool &InvertStep);
|
|
Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
|
|
Type *ExpandTy, Type *IntTy, bool useSubtract);
|
|
};
|
|
}
|
|
|
|
#endif
|