1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 21:13:02 +02:00
llvm-mirror/lib/Target/AVR/AsmParser/AVRAsmParser.cpp
Alex Bradbury 2fa138eff6 [TableGen] Move OperandMatchResultTy enum to MCTargetAsmParser.h
As it stands, the OperandMatchResultTy is only included in the generated
header if there is custom operand parsing. However, almost all backends
make use of MatchOperand_Success and friends from OperandMatchResultTy for
e.g. parseRegister. This is a pain when starting an AsmParser for a new
backend that doesn't yet have custom operand parsing. Move the enum to
MCTargetAsmParser.h.

This patch is a prerequisite for D23563

Differential Revision: https://reviews.llvm.org/D23496

llvm-svn: 285705
2016-11-01 16:32:05 +00:00

632 lines
19 KiB
C++

//===---- AVRAsmParser.cpp - Parse AVR assembly to MCInst instructions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "AVR.h"
#include "AVRRegisterInfo.h"
#include "MCTargetDesc/AVRMCExpr.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include <sstream>
#define DEBUG_TYPE "avr-asm-parser"
namespace llvm {
/// Parses AVR assembly from a stream.
class AVRAsmParser : public MCTargetAsmParser {
const MCSubtargetInfo &STI;
MCAsmParser &Parser;
const MCRegisterInfo *MRI;
#define GET_ASSEMBLER_HEADER
#include "AVRGenAsmMatcher.inc"
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken directiveID) override;
OperandMatchResultTy parseMemriOperand(OperandVector &Operands);
bool parseOperand(OperandVector &Operands);
int parseRegisterName(unsigned (*matchFn)(StringRef));
int parseRegisterName();
int parseRegister();
bool tryParseRegisterOperand(OperandVector &Operands);
bool tryParseExpression(OperandVector &Operands);
bool tryParseRelocExpression(OperandVector &Operands);
void eatComma();
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
unsigned toDREG(unsigned Reg, unsigned From = AVR::sub_lo) {
MCRegisterClass const *Class = &AVRMCRegisterClasses[AVR::DREGSRegClassID];
return MRI->getMatchingSuperReg(Reg, From, Class);
}
bool emit(MCInst &Instruction, SMLoc const &Loc, MCStreamer &Out) const;
bool invalidOperand(SMLoc const &Loc, OperandVector const &Operands,
uint64_t const &ErrorInfo);
bool missingFeature(SMLoc const &Loc, uint64_t const &ErrorInfo);
public:
AVRAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI), STI(STI), Parser(Parser) {
MCAsmParserExtension::Initialize(Parser);
MRI = getContext().getRegisterInfo();
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
};
/// An parsed AVR assembly operand.
class AVROperand : public MCParsedAsmOperand {
typedef MCParsedAsmOperand Base;
enum KindTy { k_Immediate, k_Register, k_Token, k_Memri } Kind;
public:
AVROperand(StringRef Tok, SMLoc const &S)
: Base(), Kind(k_Token), Tok(Tok), Start(S), End(S) {}
AVROperand(unsigned Reg, SMLoc const &S, SMLoc const &E)
: Base(), Kind(k_Register), RegImm({Reg, nullptr}), Start(S), End(E) {}
AVROperand(MCExpr const *Imm, SMLoc const &S, SMLoc const &E)
: Base(), Kind(k_Immediate), RegImm({0, Imm}), Start(S), End(E) {}
AVROperand(unsigned Reg, MCExpr const *Imm, SMLoc const &S, SMLoc const &E)
: Base(), Kind(k_Memri), RegImm({Reg, Imm}), Start(S), End(E) {}
struct RegisterImmediate {
unsigned Reg;
MCExpr const *Imm;
};
union {
StringRef Tok;
RegisterImmediate RegImm;
};
SMLoc Start, End;
public:
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Register && "Unexpected operand kind");
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediate when possible
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Immediate && "Unexpected operand kind");
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
/// Adds the contained reg+imm operand to an instruction.
void addMemriOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Memri && "Unexpected operand kind");
assert(N == 2 && "Invalid number of operands");
Inst.addOperand(MCOperand::createReg(getReg()));
addExpr(Inst, getImm());
}
bool isReg() const { return Kind == k_Register; }
bool isImm() const { return Kind == k_Immediate; }
bool isToken() const { return Kind == k_Token; }
bool isMem() const { return Kind == k_Memri; }
bool isMemri() const { return Kind == k_Memri; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return Tok;
}
unsigned getReg() const {
assert((Kind == k_Register || Kind == k_Memri) && "Invalid access!");
return RegImm.Reg;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate || Kind == k_Memri) && "Invalid access!");
return RegImm.Imm;
}
static std::unique_ptr<AVROperand> CreateToken(StringRef Str, SMLoc S) {
return make_unique<AVROperand>(Str, S);
}
static std::unique_ptr<AVROperand> CreateReg(unsigned RegNum, SMLoc S,
SMLoc E) {
return make_unique<AVROperand>(RegNum, S, E);
}
static std::unique_ptr<AVROperand> CreateImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
return make_unique<AVROperand>(Val, S, E);
}
static std::unique_ptr<AVROperand>
CreateMemri(unsigned RegNum, const MCExpr *Val, SMLoc S, SMLoc E) {
return make_unique<AVROperand>(RegNum, Val, S, E);
}
void makeToken(StringRef Token) {
Kind = k_Token;
Tok = Token;
}
void makeReg(unsigned RegNo) {
Kind = k_Register;
RegImm = {RegNo, nullptr};
}
void makeImm(MCExpr const *Ex) {
Kind = k_Immediate;
RegImm = {0, Ex};
}
void makeMemri(unsigned RegNo, MCExpr const *Imm) {
Kind = k_Memri;
RegImm = {RegNo, Imm};
}
SMLoc getStartLoc() const { return Start; }
SMLoc getEndLoc() const { return End; }
virtual void print(raw_ostream &O) const {
switch (Kind) {
case k_Token:
O << "Token: \"" << getToken() << "\"";
break;
case k_Register:
O << "Register: " << getReg();
break;
case k_Immediate:
O << "Immediate: \"" << *getImm() << "\"";
break;
case k_Memri: {
// only manually print the size for non-negative values,
// as the sign is inserted automatically.
O << "Memri: \"" << getReg() << '+' << *getImm() << "\"";
break;
}
}
O << "\n";
}
};
// Auto-generated Match Functions
/// Maps from the set of all register names to a register number.
/// \note Generated by TableGen.
static unsigned MatchRegisterName(StringRef Name);
/// Maps from the set of all alternative registernames to a register number.
/// \note Generated by TableGen.
static unsigned MatchRegisterAltName(StringRef Name);
bool AVRAsmParser::invalidOperand(SMLoc const &Loc,
OperandVector const &Operands,
uint64_t const &ErrorInfo) {
SMLoc ErrorLoc = Loc;
char const *Diag = 0;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size()) {
Diag = "too few operands for instruction.";
} else {
AVROperand const &Op = (AVROperand const &)*Operands[ErrorInfo];
// TODO: See if we can do a better error than just "invalid ...".
if (Op.getStartLoc() != SMLoc()) {
ErrorLoc = Op.getStartLoc();
}
}
}
if (!Diag) {
Diag = "invalid operand for instruction";
}
return Error(ErrorLoc, Diag);
}
bool AVRAsmParser::missingFeature(llvm::SMLoc const &Loc,
uint64_t const &ErrorInfo) {
return Error(Loc, "instruction requires a CPU feature not currently enabled");
}
bool AVRAsmParser::emit(MCInst &Inst, SMLoc const &Loc, MCStreamer &Out) const {
Inst.setLoc(Loc);
Out.EmitInstruction(Inst, STI);
return false;
}
bool AVRAsmParser::MatchAndEmitInstruction(SMLoc Loc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
case Match_Success: return emit(Inst, Loc, Out);
case Match_MissingFeature: return missingFeature(Loc, ErrorInfo);
case Match_InvalidOperand: return invalidOperand(Loc, Operands, ErrorInfo);
case Match_MnemonicFail: return Error(Loc, "invalid instruction");
default: return true;
}
}
/// Parses a register name using a given matching function.
/// Checks for lowercase or uppercase if necessary.
int AVRAsmParser::parseRegisterName(unsigned (*matchFn)(StringRef)) {
StringRef Name = Parser.getTok().getString();
int RegNum = matchFn(Name);
// GCC supports case insensitive register names. Some of the AVR registers
// are all lower case, some are all upper case but non are mixed. We prefer
// to use the original names in the register definitions. That is why we
// have to test both upper and lower case here.
if (RegNum == AVR::NoRegister) {
RegNum = matchFn(Name.lower());
}
if (RegNum == AVR::NoRegister) {
RegNum = matchFn(Name.upper());
}
return RegNum;
}
int AVRAsmParser::parseRegisterName() {
int RegNum = parseRegisterName(&MatchRegisterName);
if (RegNum == AVR::NoRegister)
RegNum = parseRegisterName(&MatchRegisterAltName);
return RegNum;
}
int AVRAsmParser::parseRegister() {
int RegNum = AVR::NoRegister;
if (Parser.getTok().is(AsmToken::Identifier)) {
// Check for register pair syntax
if (Parser.getLexer().peekTok().is(AsmToken::Colon)) {
Parser.Lex();
Parser.Lex(); // Eat high (odd) register and colon
if (Parser.getTok().is(AsmToken::Identifier)) {
// Convert lower (even) register to DREG
RegNum = toDREG(parseRegisterName());
}
} else {
RegNum = parseRegisterName();
}
}
return RegNum;
}
bool AVRAsmParser::tryParseRegisterOperand(OperandVector &Operands) {
int RegNo = parseRegister();
if (RegNo == AVR::NoRegister)
return true;
AsmToken const &T = Parser.getTok();
Operands.push_back(AVROperand::CreateReg(RegNo, T.getLoc(), T.getEndLoc()));
Parser.Lex(); // Eat register token.
return false;
}
bool AVRAsmParser::tryParseExpression(OperandVector &Operands) {
SMLoc S = Parser.getTok().getLoc();
if (!tryParseRelocExpression(Operands))
return false;
if ((Parser.getTok().getKind() == AsmToken::Plus ||
Parser.getTok().getKind() == AsmToken::Minus) &&
Parser.getLexer().peekTok().getKind() == AsmToken::Identifier) {
// Don't handle this case - it should be split into two
// separate tokens.
return true;
}
// Parse (potentially inner) expression
MCExpr const *Expression;
if (getParser().parseExpression(Expression))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(AVROperand::CreateImm(Expression, S, E));
return false;
}
bool AVRAsmParser::tryParseRelocExpression(OperandVector &Operands) {
bool isNegated = false;
AVRMCExpr::VariantKind ModifierKind = AVRMCExpr::VK_AVR_None;
SMLoc S = Parser.getTok().getLoc();
// Check for sign
AsmToken tokens[2];
size_t ReadCount = Parser.getLexer().peekTokens(tokens);
if (ReadCount == 2) {
if (tokens[0].getKind() == AsmToken::Identifier &&
tokens[1].getKind() == AsmToken::LParen) {
AsmToken::TokenKind CurTok = Parser.getLexer().getKind();
if (CurTok == AsmToken::Minus) {
isNegated = true;
} else {
assert(CurTok == AsmToken::Plus);
isNegated = false;
}
// Eat the sign
Parser.Lex();
}
}
// Check if we have a target specific modifier (lo8, hi8, &c)
if (Parser.getTok().getKind() != AsmToken::Identifier ||
Parser.getLexer().peekTok().getKind() != AsmToken::LParen) {
// Not a reloc expr
return true;
}
StringRef ModifierName = Parser.getTok().getString();
ModifierKind = AVRMCExpr::getKindByName(ModifierName.str().c_str());
if (ModifierKind != AVRMCExpr::VK_AVR_None) {
Parser.Lex();
Parser.Lex(); // Eat modifier name and parenthesis
} else {
return Error(Parser.getTok().getLoc(), "unknown modifier");
}
MCExpr const *InnerExpression;
if (getParser().parseExpression(InnerExpression))
return true;
// If we have a modifier wrap the inner expression
assert(Parser.getTok().getKind() == AsmToken::RParen);
Parser.Lex(); // Eat closing parenthesis
MCExpr const *Expression = AVRMCExpr::create(ModifierKind, InnerExpression,
isNegated, getContext());
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(AVROperand::CreateImm(Expression, S, E));
return false;
}
bool AVRAsmParser::parseOperand(OperandVector &Operands) {
DEBUG(dbgs() << "parseOperand\n");
switch (getLexer().getKind()) {
default:
return Error(Parser.getTok().getLoc(), "unexpected token in operand");
case AsmToken::Identifier:
// Try to parse a register, if it fails,
// fall through to the next case.
if (!tryParseRegisterOperand(Operands)) {
return false;
}
case AsmToken::LParen:
case AsmToken::Integer:
case AsmToken::Dot:
return tryParseExpression(Operands);
case AsmToken::Plus:
case AsmToken::Minus: {
// If the sign preceeds a number, parse the number,
// otherwise treat the sign a an independent token.
switch (getLexer().peekTok().getKind()) {
case AsmToken::Integer:
case AsmToken::BigNum:
case AsmToken::Identifier:
case AsmToken::Real:
if (!tryParseExpression(Operands))
return false;
default:
break;
}
// Treat the token as an independent token.
Operands.push_back(AVROperand::CreateToken(Parser.getTok().getString(),
Parser.getTok().getLoc()));
Parser.Lex(); // Eat the token.
return false;
}
}
// Could not parse operand
return true;
}
OperandMatchResultTy
AVRAsmParser::parseMemriOperand(OperandVector &Operands) {
DEBUG(dbgs() << "parseMemriOperand()\n");
SMLoc E, S;
MCExpr const *Expression;
int RegNo;
// Parse register.
{
RegNo = parseRegister();
if (RegNo == AVR::NoRegister)
return MatchOperand_ParseFail;
S = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat register token.
}
// Parse immediate;
{
if (getParser().parseExpression(Expression))
return MatchOperand_ParseFail;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
}
Operands.push_back(AVROperand::CreateMemri(RegNo, Expression, S, E));
return MatchOperand_Success;
}
bool AVRAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = parseRegister();
EndLoc = Parser.getTok().getLoc();
return (RegNo == AVR::NoRegister);
}
void AVRAsmParser::eatComma() {
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
} else {
// GCC allows commas to be omitted.
}
}
bool AVRAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Mnemonic, SMLoc NameLoc,
OperandVector &Operands) {
Operands.push_back(AVROperand::CreateToken(Mnemonic, NameLoc));
bool first = true;
while (getLexer().isNot(AsmToken::EndOfStatement)) {
if (!first) eatComma();
first = false;
auto MatchResult = MatchOperandParserImpl(Operands, Mnemonic);
if (MatchResult == MatchOperand_Success) {
continue;
}
if (MatchResult == MatchOperand_ParseFail) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "failed to parse register and immediate pair");
}
if (parseOperand(Operands)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool AVRAsmParser::ParseDirective(llvm::AsmToken DirectiveID) { return true; }
extern "C" void LLVMInitializeAVRAsmParser() {
RegisterMCAsmParser<AVRAsmParser> X(getTheAVRTarget());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "AVRGenAsmMatcher.inc"
// Uses enums defined in AVRGenAsmMatcher.inc
unsigned AVRAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned ExpectedKind) {
AVROperand &Op = static_cast<AVROperand &>(AsmOp);
MatchClassKind Expected = static_cast<MatchClassKind>(ExpectedKind);
// If need be, GCC converts bare numbers to register names
// It's ugly, but GCC supports it.
if (Op.isImm()) {
if (MCConstantExpr const *Const = dyn_cast<MCConstantExpr>(Op.getImm())) {
int64_t RegNum = Const->getValue();
std::ostringstream RegName;
RegName << "r" << RegNum;
RegNum = MatchRegisterName(RegName.str().c_str());
if (RegNum != AVR::NoRegister) {
Op.makeReg(RegNum);
if (validateOperandClass(Op, Expected) == Match_Success) {
return Match_Success;
}
}
// Let the other quirks try their magic.
}
}
if (Op.isReg()) {
// If the instruction uses a register pair but we got a single, lower
// register we perform a "class cast".
if (isSubclass(Expected, MCK_DREGS)) {
unsigned correspondingDREG = toDREG(Op.getReg());
if (correspondingDREG != AVR::NoRegister) {
Op.makeReg(correspondingDREG);
return validateOperandClass(Op, Expected);
}
}
}
return Match_InvalidOperand;
}
} // end of namespace llvm