1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp
Jonas Devlieghere 2c693415b7 [llvm] Migrate llvm::make_unique to std::make_unique
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013
2019-08-15 15:54:37 +00:00

549 lines
20 KiB
C++

//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
namespace {
// Promote each local-linkage entity defined by ExportM and used by ImportM by
// changing visibility and appending the given ModuleId.
void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
SetVector<GlobalValue *> &PromoteExtra) {
DenseMap<const Comdat *, Comdat *> RenamedComdats;
for (auto &ExportGV : ExportM.global_values()) {
if (!ExportGV.hasLocalLinkage())
continue;
auto Name = ExportGV.getName();
GlobalValue *ImportGV = nullptr;
if (!PromoteExtra.count(&ExportGV)) {
ImportGV = ImportM.getNamedValue(Name);
if (!ImportGV)
continue;
ImportGV->removeDeadConstantUsers();
if (ImportGV->use_empty()) {
ImportGV->eraseFromParent();
continue;
}
}
std::string NewName = (Name + ModuleId).str();
if (const auto *C = ExportGV.getComdat())
if (C->getName() == Name)
RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
ExportGV.setName(NewName);
ExportGV.setLinkage(GlobalValue::ExternalLinkage);
ExportGV.setVisibility(GlobalValue::HiddenVisibility);
if (ImportGV) {
ImportGV->setName(NewName);
ImportGV->setVisibility(GlobalValue::HiddenVisibility);
}
}
if (!RenamedComdats.empty())
for (auto &GO : ExportM.global_objects())
if (auto *C = GO.getComdat()) {
auto Replacement = RenamedComdats.find(C);
if (Replacement != RenamedComdats.end())
GO.setComdat(Replacement->second);
}
}
// Promote all internal (i.e. distinct) type ids used by the module by replacing
// them with external type ids formed using the module id.
//
// Note that this needs to be done before we clone the module because each clone
// will receive its own set of distinct metadata nodes.
void promoteTypeIds(Module &M, StringRef ModuleId) {
DenseMap<Metadata *, Metadata *> LocalToGlobal;
auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
Metadata *MD =
cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
Metadata *&GlobalMD = LocalToGlobal[MD];
if (!GlobalMD) {
std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
GlobalMD = MDString::get(M.getContext(), NewName);
}
CI->setArgOperand(ArgNo,
MetadataAsValue::get(M.getContext(), GlobalMD));
}
};
if (Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
for (const Use &U : TypeTestFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
ExternalizeTypeId(CI, 1);
}
}
if (Function *TypeCheckedLoadFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
for (const Use &U : TypeCheckedLoadFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
ExternalizeTypeId(CI, 2);
}
}
for (GlobalObject &GO : M.global_objects()) {
SmallVector<MDNode *, 1> MDs;
GO.getMetadata(LLVMContext::MD_type, MDs);
GO.eraseMetadata(LLVMContext::MD_type);
for (auto MD : MDs) {
auto I = LocalToGlobal.find(MD->getOperand(1));
if (I == LocalToGlobal.end()) {
GO.addMetadata(LLVMContext::MD_type, *MD);
continue;
}
GO.addMetadata(
LLVMContext::MD_type,
*MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
}
}
}
// Drop unused globals, and drop type information from function declarations.
// FIXME: If we made functions typeless then there would be no need to do this.
void simplifyExternals(Module &M) {
FunctionType *EmptyFT =
FunctionType::get(Type::getVoidTy(M.getContext()), false);
for (auto I = M.begin(), E = M.end(); I != E;) {
Function &F = *I++;
if (F.isDeclaration() && F.use_empty()) {
F.eraseFromParent();
continue;
}
if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
// Changing the type of an intrinsic may invalidate the IR.
F.getName().startswith("llvm."))
continue;
Function *NewF =
Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
F.getAddressSpace(), "", &M);
NewF->setVisibility(F.getVisibility());
NewF->takeName(&F);
F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
F.eraseFromParent();
}
for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
GlobalVariable &GV = *I++;
if (GV.isDeclaration() && GV.use_empty()) {
GV.eraseFromParent();
continue;
}
}
}
static void
filterModule(Module *M,
function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
std::vector<GlobalValue *> V;
for (GlobalValue &GV : M->global_values())
if (!ShouldKeepDefinition(&GV))
V.push_back(&GV);
for (GlobalValue *GV : V)
if (!convertToDeclaration(*GV))
GV->eraseFromParent();
}
void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
if (auto *F = dyn_cast<Function>(C))
return Fn(F);
if (isa<GlobalValue>(C))
return;
for (Value *Op : C->operands())
forEachVirtualFunction(cast<Constant>(Op), Fn);
}
// If it's possible to split M into regular and thin LTO parts, do so and write
// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
// regular LTO bitcode file to OS.
void splitAndWriteThinLTOBitcode(
raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter, Module &M) {
std::string ModuleId = getUniqueModuleId(&M);
if (ModuleId.empty()) {
// We couldn't generate a module ID for this module, write it out as a
// regular LTO module with an index for summary-based dead stripping.
ProfileSummaryInfo PSI(M);
M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
if (ThinLinkOS)
// We don't have a ThinLTO part, but still write the module to the
// ThinLinkOS if requested so that the expected output file is produced.
WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
&Index);
return;
}
promoteTypeIds(M, ModuleId);
// Returns whether a global or its associated global has attached type
// metadata. The former may participate in CFI or whole-program
// devirtualization, so they need to appear in the merged module instead of
// the thin LTO module. Similarly, globals that are associated with globals
// with type metadata need to appear in the merged module because they will
// reference the global's section directly.
auto HasTypeMetadata = [](const GlobalObject *GO) {
if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
if (AssocGO->hasMetadata(LLVMContext::MD_type))
return true;
return GO->hasMetadata(LLVMContext::MD_type);
};
// Collect the set of virtual functions that are eligible for virtual constant
// propagation. Each eligible function must not access memory, must return
// an integer of width <=64 bits, must take at least one argument, must not
// use its first argument (assumed to be "this") and all arguments other than
// the first one must be of <=64 bit integer type.
//
// Note that we test whether this copy of the function is readnone, rather
// than testing function attributes, which must hold for any copy of the
// function, even a less optimized version substituted at link time. This is
// sound because the virtual constant propagation optimizations effectively
// inline all implementations of the virtual function into each call site,
// rather than using function attributes to perform local optimization.
DenseSet<const Function *> EligibleVirtualFns;
// If any member of a comdat lives in MergedM, put all members of that
// comdat in MergedM to keep the comdat together.
DenseSet<const Comdat *> MergedMComdats;
for (GlobalVariable &GV : M.globals())
if (HasTypeMetadata(&GV)) {
if (const auto *C = GV.getComdat())
MergedMComdats.insert(C);
forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
auto *RT = dyn_cast<IntegerType>(F->getReturnType());
if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
!F->arg_begin()->use_empty())
return;
for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
if (!ArgT || ArgT->getBitWidth() > 64)
return;
}
if (!F->isDeclaration() &&
computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
EligibleVirtualFns.insert(F);
});
}
ValueToValueMapTy VMap;
std::unique_ptr<Module> MergedM(
CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
if (const auto *C = GV->getComdat())
if (MergedMComdats.count(C))
return true;
if (auto *F = dyn_cast<Function>(GV))
return EligibleVirtualFns.count(F);
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
return HasTypeMetadata(GVar);
return false;
}));
StripDebugInfo(*MergedM);
MergedM->setModuleInlineAsm("");
for (Function &F : *MergedM)
if (!F.isDeclaration()) {
// Reset the linkage of all functions eligible for virtual constant
// propagation. The canonical definitions live in the thin LTO module so
// that they can be imported.
F.setLinkage(GlobalValue::AvailableExternallyLinkage);
F.setComdat(nullptr);
}
SetVector<GlobalValue *> CfiFunctions;
for (auto &F : M)
if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
CfiFunctions.insert(&F);
// Remove all globals with type metadata, globals with comdats that live in
// MergedM, and aliases pointing to such globals from the thin LTO module.
filterModule(&M, [&](const GlobalValue *GV) {
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
if (HasTypeMetadata(GVar))
return false;
if (const auto *C = GV->getComdat())
if (MergedMComdats.count(C))
return false;
return true;
});
promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
auto &Ctx = MergedM->getContext();
SmallVector<MDNode *, 8> CfiFunctionMDs;
for (auto V : CfiFunctions) {
Function &F = *cast<Function>(V);
SmallVector<MDNode *, 2> Types;
F.getMetadata(LLVMContext::MD_type, Types);
SmallVector<Metadata *, 4> Elts;
Elts.push_back(MDString::get(Ctx, F.getName()));
CfiFunctionLinkage Linkage;
if (lowertypetests::isJumpTableCanonical(&F))
Linkage = CFL_Definition;
else if (F.hasExternalWeakLinkage())
Linkage = CFL_WeakDeclaration;
else
Linkage = CFL_Declaration;
Elts.push_back(ConstantAsMetadata::get(
llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
for (auto Type : Types)
Elts.push_back(Type);
CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
}
if(!CfiFunctionMDs.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
for (auto MD : CfiFunctionMDs)
NMD->addOperand(MD);
}
SmallVector<MDNode *, 8> FunctionAliases;
for (auto &A : M.aliases()) {
if (!isa<Function>(A.getAliasee()))
continue;
auto *F = cast<Function>(A.getAliasee());
Metadata *Elts[] = {
MDString::get(Ctx, A.getName()),
MDString::get(Ctx, F->getName()),
ConstantAsMetadata::get(
ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
ConstantAsMetadata::get(
ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
};
FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
}
if (!FunctionAliases.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
for (auto MD : FunctionAliases)
NMD->addOperand(MD);
}
SmallVector<MDNode *, 8> Symvers;
ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
Function *F = M.getFunction(Name);
if (!F || F->use_empty())
return;
Symvers.push_back(MDTuple::get(
Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
});
if (!Symvers.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
for (auto MD : Symvers)
NMD->addOperand(MD);
}
simplifyExternals(*MergedM);
// FIXME: Try to re-use BSI and PFI from the original module here.
ProfileSummaryInfo PSI(M);
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
// Mark the merged module as requiring full LTO. We still want an index for
// it though, so that it can participate in summary-based dead stripping.
MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
ModuleSummaryIndex MergedMIndex =
buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
SmallVector<char, 0> Buffer;
BitcodeWriter W(Buffer);
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
// produced for the full link.
ModuleHash ModHash = {{0}};
W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
/*GenerateHash=*/true, &ModHash);
W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
W.writeSymtab();
W.writeStrtab();
OS << Buffer;
// If a minimized bitcode module was requested for the thin link, only
// the information that is needed by thin link will be written in the
// given OS (the merged module will be written as usual).
if (ThinLinkOS) {
Buffer.clear();
BitcodeWriter W2(Buffer);
StripDebugInfo(M);
W2.writeThinLinkBitcode(M, Index, ModHash);
W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
&MergedMIndex);
W2.writeSymtab();
W2.writeStrtab();
*ThinLinkOS << Buffer;
}
}
// Check if the LTO Unit splitting has been enabled.
bool enableSplitLTOUnit(Module &M) {
bool EnableSplitLTOUnit = false;
if (auto *MD = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("EnableSplitLTOUnit")))
EnableSplitLTOUnit = MD->getZExtValue();
return EnableSplitLTOUnit;
}
// Returns whether this module needs to be split because it uses type metadata.
bool hasTypeMetadata(Module &M) {
for (auto &GO : M.global_objects()) {
if (GO.hasMetadata(LLVMContext::MD_type))
return true;
}
return false;
}
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter,
Module &M, const ModuleSummaryIndex *Index) {
std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
// See if this module has any type metadata. If so, we try to split it
// or at least promote type ids to enable WPD.
if (hasTypeMetadata(M)) {
if (enableSplitLTOUnit(M))
return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
// Promote type ids as needed for index-based WPD.
std::string ModuleId = getUniqueModuleId(&M);
if (!ModuleId.empty()) {
promoteTypeIds(M, ModuleId);
// Need to rebuild the index so that it contains type metadata
// for the newly promoted type ids.
// FIXME: Probably should not bother building the index at all
// in the caller of writeThinLTOBitcode (which does so via the
// ModuleSummaryIndexAnalysis pass), since we have to rebuild it
// anyway whenever there is type metadata (here or in
// splitAndWriteThinLTOBitcode). Just always build it once via the
// buildModuleSummaryIndex when Module(s) are ready.
ProfileSummaryInfo PSI(M);
NewIndex = std::make_unique<ModuleSummaryIndex>(
buildModuleSummaryIndex(M, nullptr, &PSI));
Index = NewIndex.get();
}
}
// Write it out as an unsplit ThinLTO module.
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
// produced for the full link.
ModuleHash ModHash = {{0}};
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
/*GenerateHash=*/true, &ModHash);
// If a minimized bitcode module was requested for the thin link, only
// the information that is needed by thin link will be written in the
// given OS.
if (ThinLinkOS && Index)
WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
}
class WriteThinLTOBitcode : public ModulePass {
raw_ostream &OS; // raw_ostream to print on
// The output stream on which to emit a minimized module for use
// just in the thin link, if requested.
raw_ostream *ThinLinkOS;
public:
static char ID; // Pass identification, replacement for typeid
WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
}
explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
: ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
bool runOnModule(Module &M) override {
const ModuleSummaryIndex *Index =
&(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ModuleSummaryIndexWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
} // anonymous namespace
char WriteThinLTOBitcode::ID = 0;
INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
"Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
"Write ThinLTO Bitcode", false, true)
ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
raw_ostream *ThinLinkOS) {
return new WriteThinLTOBitcode(Str, ThinLinkOS);
}
PreservedAnalyses
llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
writeThinLTOBitcode(OS, ThinLinkOS,
[&FAM](Function &F) -> AAResults & {
return FAM.getResult<AAManager>(F);
},
M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
return PreservedAnalyses::all();
}