1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/utils/TableGen/DAGISelMatcherGen.cpp
Ulrich Weigand 535942804d [TableGen] Support multi-alternative pattern fragments
A TableGen instruction record usually contains a DAG pattern that will
describe the SelectionDAG operation that can be implemented by this
instruction. However, there will be cases where several different DAG
patterns can all be implemented by the same instruction. The way to
represent this today is to write additional patterns in the Pattern
(or usually Pat) class that map those extra DAG patterns to the
instruction. This usually also works fine.

However, I've noticed cases where the current setup seems to require
quite a bit of extra (and duplicated) text in the target .td files.
For example, in the SystemZ back-end, there are quite a number of
instructions that can implement an "add-with-overflow" operation.
The same instructions also need to be used to implement just plain
addition (simply ignoring the extra overflow output). The current
solution requires creating extra Pat pattern for every instruction,
duplicating the information about which particular add operands
map best to which particular instruction.

This patch enhances TableGen to support a new PatFrags class, which
can be used to encapsulate multiple alternative patterns that may
all match to the same instruction.  It operates the same way as the
existing PatFrag class, except that it accepts a list of DAG patterns
to match instead of just a single one.  As an example, we can now define
a PatFrags to match either an "add-with-overflow" or a regular add
operation:

  def z_sadd : PatFrags<(ops node:$src1, node:$src2),
                        [(z_saddo node:$src1, node:$src2),
                         (add node:$src1, node:$src2)]>;

and then use this in the add instruction pattern:

  defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;

These SystemZ target changes are implemented here as well.


Note that PatFrag is now defined as a subclass of PatFrags, which
means that some users of internals of PatFrag need to be updated.
(E.g. instead of using PatFrag.Fragment you now need to use
!head(PatFrag.Fragments).)


The implementation is based on the following main ideas:
- InlinePatternFragments may now replace each original pattern
  with several result patterns, not just one.
- parseInstructionPattern delays calling InlinePatternFragments
  and InferAllTypes.  Instead, it extracts a single DAG match
  pattern from the main instruction pattern.
- Processing of the DAG match pattern part of the main instruction
  pattern now shares most code with processing match patterns from
  the Pattern class.
- Direct use of main instruction patterns in InferFromPattern and
  EmitResultInstructionAsOperand is removed; everything now operates
  solely on DAG match patterns.


Reviewed by: hfinkel

Differential Revision: https://reviews.llvm.org/D48545

llvm-svn: 336999
2018-07-13 13:18:00 +00:00

993 lines
40 KiB
C++

//===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DAGISelMatcher.h"
#include "CodeGenDAGPatterns.h"
#include "CodeGenRegisters.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <utility>
using namespace llvm;
/// getRegisterValueType - Look up and return the ValueType of the specified
/// register. If the register is a member of multiple register classes which
/// have different associated types, return MVT::Other.
static MVT::SimpleValueType getRegisterValueType(Record *R,
const CodeGenTarget &T) {
bool FoundRC = false;
MVT::SimpleValueType VT = MVT::Other;
const CodeGenRegister *Reg = T.getRegBank().getReg(R);
for (const auto &RC : T.getRegBank().getRegClasses()) {
if (!RC.contains(Reg))
continue;
if (!FoundRC) {
FoundRC = true;
ValueTypeByHwMode VVT = RC.getValueTypeNum(0);
if (VVT.isSimple())
VT = VVT.getSimple().SimpleTy;
continue;
}
// If this occurs in multiple register classes, they all have to agree.
#ifndef NDEBUG
ValueTypeByHwMode T = RC.getValueTypeNum(0);
assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
"ValueType mismatch between register classes for this register");
#endif
}
return VT;
}
namespace {
class MatcherGen {
const PatternToMatch &Pattern;
const CodeGenDAGPatterns &CGP;
/// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
/// out with all of the types removed. This allows us to insert type checks
/// as we scan the tree.
TreePatternNodePtr PatWithNoTypes;
/// VariableMap - A map from variable names ('$dst') to the recorded operand
/// number that they were captured as. These are biased by 1 to make
/// insertion easier.
StringMap<unsigned> VariableMap;
/// This maintains the recorded operand number that OPC_CheckComplexPattern
/// drops each sub-operand into. We don't want to insert these into
/// VariableMap because that leads to identity checking if they are
/// encountered multiple times. Biased by 1 like VariableMap for
/// consistency.
StringMap<unsigned> NamedComplexPatternOperands;
/// NextRecordedOperandNo - As we emit opcodes to record matched values in
/// the RecordedNodes array, this keeps track of which slot will be next to
/// record into.
unsigned NextRecordedOperandNo;
/// MatchedChainNodes - This maintains the position in the recorded nodes
/// array of all of the recorded input nodes that have chains.
SmallVector<unsigned, 2> MatchedChainNodes;
/// MatchedComplexPatterns - This maintains a list of all of the
/// ComplexPatterns that we need to check. The second element of each pair
/// is the recorded operand number of the input node.
SmallVector<std::pair<const TreePatternNode*,
unsigned>, 2> MatchedComplexPatterns;
/// PhysRegInputs - List list has an entry for each explicitly specified
/// physreg input to the pattern. The first elt is the Register node, the
/// second is the recorded slot number the input pattern match saved it in.
SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
/// Matcher - This is the top level of the generated matcher, the result.
Matcher *TheMatcher;
/// CurPredicate - As we emit matcher nodes, this points to the latest check
/// which should have future checks stuck into its Next position.
Matcher *CurPredicate;
public:
MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
bool EmitMatcherCode(unsigned Variant);
void EmitResultCode();
Matcher *GetMatcher() const { return TheMatcher; }
private:
void AddMatcher(Matcher *NewNode);
void InferPossibleTypes(unsigned ForceMode);
// Matcher Generation.
void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
unsigned ForceMode);
void EmitLeafMatchCode(const TreePatternNode *N);
void EmitOperatorMatchCode(const TreePatternNode *N,
TreePatternNode *NodeNoTypes,
unsigned ForceMode);
/// If this is the first time a node with unique identifier Name has been
/// seen, record it. Otherwise, emit a check to make sure this is the same
/// node. Returns true if this is the first encounter.
bool recordUniqueNode(const std::string &Name);
// Result Code Generation.
unsigned getNamedArgumentSlot(StringRef Name) {
unsigned VarMapEntry = VariableMap[Name];
assert(VarMapEntry != 0 &&
"Variable referenced but not defined and not caught earlier!");
return VarMapEntry-1;
}
void EmitResultOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
void EmitResultOfNamedOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
void EmitResultLeafAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
void EmitResultInstructionAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps);
};
} // end anon namespace.
MatcherGen::MatcherGen(const PatternToMatch &pattern,
const CodeGenDAGPatterns &cgp)
: Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
TheMatcher(nullptr), CurPredicate(nullptr) {
// We need to produce the matcher tree for the patterns source pattern. To do
// this we need to match the structure as well as the types. To do the type
// matching, we want to figure out the fewest number of type checks we need to
// emit. For example, if there is only one integer type supported by a
// target, there should be no type comparisons at all for integer patterns!
//
// To figure out the fewest number of type checks needed, clone the pattern,
// remove the types, then perform type inference on the pattern as a whole.
// If there are unresolved types, emit an explicit check for those types,
// apply the type to the tree, then rerun type inference. Iterate until all
// types are resolved.
//
PatWithNoTypes = Pattern.getSrcPattern()->clone();
PatWithNoTypes->RemoveAllTypes();
// If there are types that are manifestly known, infer them.
InferPossibleTypes(Pattern.ForceMode);
}
/// InferPossibleTypes - As we emit the pattern, we end up generating type
/// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
/// want to propagate implied types as far throughout the tree as possible so
/// that we avoid doing redundant type checks. This does the type propagation.
void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
// TP - Get *SOME* tree pattern, we don't care which. It is only used for
// diagnostics, which we know are impossible at this point.
TreePattern &TP = *CGP.pf_begin()->second;
TP.getInfer().CodeGen = true;
TP.getInfer().ForceMode = ForceMode;
bool MadeChange = true;
while (MadeChange)
MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
true/*Ignore reg constraints*/);
}
/// AddMatcher - Add a matcher node to the current graph we're building.
void MatcherGen::AddMatcher(Matcher *NewNode) {
if (CurPredicate)
CurPredicate->setNext(NewNode);
else
TheMatcher = NewNode;
CurPredicate = NewNode;
}
//===----------------------------------------------------------------------===//
// Pattern Match Generation
//===----------------------------------------------------------------------===//
/// EmitLeafMatchCode - Generate matching code for leaf nodes.
void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
assert(N->isLeaf() && "Not a leaf?");
// Direct match against an integer constant.
if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
// If this is the root of the dag we're matching, we emit a redundant opcode
// check to ensure that this gets folded into the normal top-level
// OpcodeSwitch.
if (N == Pattern.getSrcPattern()) {
const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
AddMatcher(new CheckOpcodeMatcher(NI));
}
return AddMatcher(new CheckIntegerMatcher(II->getValue()));
}
// An UnsetInit represents a named node without any constraints.
if (isa<UnsetInit>(N->getLeafValue())) {
assert(N->hasName() && "Unnamed ? leaf");
return;
}
DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
if (!DI) {
errs() << "Unknown leaf kind: " << *N << "\n";
abort();
}
Record *LeafRec = DI->getDef();
// A ValueType leaf node can represent a register when named, or itself when
// unnamed.
if (LeafRec->isSubClassOf("ValueType")) {
// A named ValueType leaf always matches: (add i32:$a, i32:$b).
if (N->hasName())
return;
// An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
}
if (// Handle register references. Nothing to do here, they always match.
LeafRec->isSubClassOf("RegisterClass") ||
LeafRec->isSubClassOf("RegisterOperand") ||
LeafRec->isSubClassOf("PointerLikeRegClass") ||
LeafRec->isSubClassOf("SubRegIndex") ||
// Place holder for SRCVALUE nodes. Nothing to do here.
LeafRec->getName() == "srcvalue")
return;
// If we have a physreg reference like (mul gpr:$src, EAX) then we need to
// record the register
if (LeafRec->isSubClassOf("Register")) {
AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
NextRecordedOperandNo));
PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
return;
}
if (LeafRec->isSubClassOf("CondCode"))
return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
if (LeafRec->isSubClassOf("ComplexPattern")) {
// We can't model ComplexPattern uses that don't have their name taken yet.
// The OPC_CheckComplexPattern operation implicitly records the results.
if (N->getName().empty()) {
std::string S;
raw_string_ostream OS(S);
OS << "We expect complex pattern uses to have names: " << *N;
PrintFatalError(OS.str());
}
// Remember this ComplexPattern so that we can emit it after all the other
// structural matches are done.
unsigned InputOperand = VariableMap[N->getName()] - 1;
MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
return;
}
errs() << "Unknown leaf kind: " << *N << "\n";
abort();
}
void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
TreePatternNode *NodeNoTypes,
unsigned ForceMode) {
assert(!N->isLeaf() && "Not an operator?");
if (N->getOperator()->isSubClassOf("ComplexPattern")) {
// The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
// "MY_PAT:op1:op2". We should already have validated that the uses are
// consistent.
std::string PatternName = N->getOperator()->getName();
for (unsigned i = 0; i < N->getNumChildren(); ++i) {
PatternName += ":";
PatternName += N->getChild(i)->getName();
}
if (recordUniqueNode(PatternName)) {
auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
MatchedComplexPatterns.push_back(NodeAndOpNum);
}
return;
}
const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
// If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
// a constant without a predicate fn that has more than one bit set, handle
// this as a special case. This is usually for targets that have special
// handling of certain large constants (e.g. alpha with it's 8/16/32-bit
// handling stuff). Using these instructions is often far more efficient
// than materializing the constant. Unfortunately, both the instcombiner
// and the dag combiner can often infer that bits are dead, and thus drop
// them from the mask in the dag. For example, it might turn 'AND X, 255'
// into 'AND X, 254' if it knows the low bit is set. Emit code that checks
// to handle this.
if ((N->getOperator()->getName() == "and" ||
N->getOperator()->getName() == "or") &&
N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
N->getPredicateFns().empty()) {
if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
// If this is at the root of the pattern, we emit a redundant
// CheckOpcode so that the following checks get factored properly under
// a single opcode check.
if (N == Pattern.getSrcPattern())
AddMatcher(new CheckOpcodeMatcher(CInfo));
// Emit the CheckAndImm/CheckOrImm node.
if (N->getOperator()->getName() == "and")
AddMatcher(new CheckAndImmMatcher(II->getValue()));
else
AddMatcher(new CheckOrImmMatcher(II->getValue()));
// Match the LHS of the AND as appropriate.
AddMatcher(new MoveChildMatcher(0));
EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
AddMatcher(new MoveParentMatcher());
return;
}
}
}
// Check that the current opcode lines up.
AddMatcher(new CheckOpcodeMatcher(CInfo));
// If this node has memory references (i.e. is a load or store), tell the
// interpreter to capture them in the memref array.
if (N->NodeHasProperty(SDNPMemOperand, CGP))
AddMatcher(new RecordMemRefMatcher());
// If this node has a chain, then the chain is operand #0 is the SDNode, and
// the child numbers of the node are all offset by one.
unsigned OpNo = 0;
if (N->NodeHasProperty(SDNPHasChain, CGP)) {
// Record the node and remember it in our chained nodes list.
AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
"' chained node",
NextRecordedOperandNo));
// Remember all of the input chains our pattern will match.
MatchedChainNodes.push_back(NextRecordedOperandNo++);
// Don't look at the input chain when matching the tree pattern to the
// SDNode.
OpNo = 1;
// If this node is not the root and the subtree underneath it produces a
// chain, then the result of matching the node is also produce a chain.
// Beyond that, this means that we're also folding (at least) the root node
// into the node that produce the chain (for example, matching
// "(add reg, (load ptr))" as a add_with_memory on X86). This is
// problematic, if the 'reg' node also uses the load (say, its chain).
// Graphically:
//
// [LD]
// ^ ^
// | \ DAG's like cheese.
// / |
// / [YY]
// | ^
// [XX]--/
//
// It would be invalid to fold XX and LD. In this case, folding the two
// nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
// To prevent this, we emit a dynamic check for legality before allowing
// this to be folded.
//
const TreePatternNode *Root = Pattern.getSrcPattern();
if (N != Root) { // Not the root of the pattern.
// If there is a node between the root and this node, then we definitely
// need to emit the check.
bool NeedCheck = !Root->hasChild(N);
// If it *is* an immediate child of the root, we can still need a check if
// the root SDNode has multiple inputs. For us, this means that it is an
// intrinsic, has multiple operands, or has other inputs like chain or
// glue).
if (!NeedCheck) {
const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
NeedCheck =
Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
PInfo.getNumOperands() > 1 ||
PInfo.hasProperty(SDNPHasChain) ||
PInfo.hasProperty(SDNPInGlue) ||
PInfo.hasProperty(SDNPOptInGlue);
}
if (NeedCheck)
AddMatcher(new CheckFoldableChainNodeMatcher());
}
}
// If this node has an output glue and isn't the root, remember it.
if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
N != Pattern.getSrcPattern()) {
// TODO: This redundantly records nodes with both glues and chains.
// Record the node and remember it in our chained nodes list.
AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
"' glue output node",
NextRecordedOperandNo));
}
// If this node is known to have an input glue or if it *might* have an input
// glue, capture it as the glue input of the pattern.
if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
N->NodeHasProperty(SDNPInGlue, CGP))
AddMatcher(new CaptureGlueInputMatcher());
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
// Get the code suitable for matching this child. Move to the child, check
// it then move back to the parent.
AddMatcher(new MoveChildMatcher(OpNo));
EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
AddMatcher(new MoveParentMatcher());
}
}
bool MatcherGen::recordUniqueNode(const std::string &Name) {
unsigned &VarMapEntry = VariableMap[Name];
if (VarMapEntry == 0) {
// If it is a named node, we must emit a 'Record' opcode.
AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
VarMapEntry = ++NextRecordedOperandNo;
return true;
}
// If we get here, this is a second reference to a specific name. Since
// we already have checked that the first reference is valid, we don't
// have to recursively match it, just check that it's the same as the
// previously named thing.
AddMatcher(new CheckSameMatcher(VarMapEntry-1));
return false;
}
void MatcherGen::EmitMatchCode(const TreePatternNode *N,
TreePatternNode *NodeNoTypes,
unsigned ForceMode) {
// If N and NodeNoTypes don't agree on a type, then this is a case where we
// need to do a type check. Emit the check, apply the type to NodeNoTypes and
// reinfer any correlated types.
SmallVector<unsigned, 2> ResultsToTypeCheck;
for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
NodeNoTypes->setType(i, N->getExtType(i));
InferPossibleTypes(ForceMode);
ResultsToTypeCheck.push_back(i);
}
// If this node has a name associated with it, capture it in VariableMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!N->getName().empty())
if (!recordUniqueNode(N->getName()))
return;
if (N->isLeaf())
EmitLeafMatchCode(N);
else
EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
// If there are node predicates for this node, generate their checks.
for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
ResultsToTypeCheck[i]));
}
/// EmitMatcherCode - Generate the code that matches the predicate of this
/// pattern for the specified Variant. If the variant is invalid this returns
/// true and does not generate code, if it is valid, it returns false.
bool MatcherGen::EmitMatcherCode(unsigned Variant) {
// If the root of the pattern is a ComplexPattern and if it is specified to
// match some number of root opcodes, these are considered to be our variants.
// Depending on which variant we're generating code for, emit the root opcode
// check.
if (const ComplexPattern *CP =
Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
const std::vector<Record*> &OpNodes = CP->getRootNodes();
assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
if (Variant >= OpNodes.size()) return true;
AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
} else {
if (Variant != 0) return true;
}
// Emit the matcher for the pattern structure and types.
EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
Pattern.ForceMode);
// If the pattern has a predicate on it (e.g. only enabled when a subtarget
// feature is around, do the check).
if (!Pattern.getPredicateCheck().empty())
AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
// Now that we've completed the structural type match, emit any ComplexPattern
// checks (e.g. addrmode matches). We emit this after the structural match
// because they are generally more expensive to evaluate and more difficult to
// factor.
for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
auto N = MatchedComplexPatterns[i].first;
// Remember where the results of this match get stuck.
if (N->isLeaf()) {
NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
} else {
unsigned CurOp = NextRecordedOperandNo;
for (unsigned i = 0; i < N->getNumChildren(); ++i) {
NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
CurOp += N->getChild(i)->getNumMIResults(CGP);
}
}
// Get the slot we recorded the value in from the name on the node.
unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
// Emit a CheckComplexPat operation, which does the match (aborting if it
// fails) and pushes the matched operands onto the recorded nodes list.
AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
N->getName(), NextRecordedOperandNo));
// Record the right number of operands.
NextRecordedOperandNo += CP.getNumOperands();
if (CP.hasProperty(SDNPHasChain)) {
// If the complex pattern has a chain, then we need to keep track of the
// fact that we just recorded a chain input. The chain input will be
// matched as the last operand of the predicate if it was successful.
++NextRecordedOperandNo; // Chained node operand.
// It is the last operand recorded.
assert(NextRecordedOperandNo > 1 &&
"Should have recorded input/result chains at least!");
MatchedChainNodes.push_back(NextRecordedOperandNo-1);
}
// TODO: Complex patterns can't have output glues, if they did, we'd want
// to record them.
}
return false;
}
//===----------------------------------------------------------------------===//
// Node Result Generation
//===----------------------------------------------------------------------===//
void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps){
assert(!N->getName().empty() && "Operand not named!");
if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
// Complex operands have already been completely selected, just find the
// right slot ant add the arguments directly.
for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
ResultOps.push_back(SlotNo - 1 + i);
return;
}
unsigned SlotNo = getNamedArgumentSlot(N->getName());
// If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
// version of the immediate so that it doesn't get selected due to some other
// node use.
if (!N->isLeaf()) {
StringRef OperatorName = N->getOperator()->getName();
if (OperatorName == "imm" || OperatorName == "fpimm") {
AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
}
for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
ResultOps.push_back(SlotNo + i);
}
void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps) {
assert(N->isLeaf() && "Must be a leaf");
if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
// If this is an explicit register reference, handle it.
if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
Record *Def = DI->getDef();
if (Def->isSubClassOf("Register")) {
const CodeGenRegister *Reg =
CGP.getTargetInfo().getRegBank().getReg(Def);
AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
if (Def->getName() == "zero_reg") {
AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
// Handle a reference to a register class. This is used
// in COPY_TO_SUBREG instructions.
if (Def->isSubClassOf("RegisterOperand"))
Def = Def->getValueAsDef("RegClass");
if (Def->isSubClassOf("RegisterClass")) {
std::string Value = getQualifiedName(Def) + "RegClassID";
AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
// Handle a subregister index. This is used for INSERT_SUBREG etc.
if (Def->isSubClassOf("SubRegIndex")) {
std::string Value = getQualifiedName(Def);
AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
ResultOps.push_back(NextRecordedOperandNo++);
return;
}
}
errs() << "unhandled leaf node: \n";
N->dump();
}
static bool
mayInstNodeLoadOrStore(const TreePatternNode *N,
const CodeGenDAGPatterns &CGP) {
Record *Op = N->getOperator();
const CodeGenTarget &CGT = CGP.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op);
return II.mayLoad || II.mayStore;
}
static unsigned
numNodesThatMayLoadOrStore(const TreePatternNode *N,
const CodeGenDAGPatterns &CGP) {
if (N->isLeaf())
return 0;
Record *OpRec = N->getOperator();
if (!OpRec->isSubClassOf("Instruction"))
return 0;
unsigned Count = 0;
if (mayInstNodeLoadOrStore(N, CGP))
++Count;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
return Count;
}
void MatcherGen::
EmitResultInstructionAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &OutputOps) {
Record *Op = N->getOperator();
const CodeGenTarget &CGT = CGP.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op);
const DAGInstruction &Inst = CGP.getInstruction(Op);
bool isRoot = N == Pattern.getDstPattern();
// TreeHasOutGlue - True if this tree has glue.
bool TreeHasInGlue = false, TreeHasOutGlue = false;
if (isRoot) {
const TreePatternNode *SrcPat = Pattern.getSrcPattern();
TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
SrcPat->TreeHasProperty(SDNPInGlue, CGP);
// FIXME2: this is checking the entire pattern, not just the node in
// question, doing this just for the root seems like a total hack.
TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
}
// NumResults - This is the number of results produced by the instruction in
// the "outs" list.
unsigned NumResults = Inst.getNumResults();
// Number of operands we know the output instruction must have. If it is
// variadic, we could have more operands.
unsigned NumFixedOperands = II.Operands.size();
SmallVector<unsigned, 8> InstOps;
// Loop over all of the fixed operands of the instruction pattern, emitting
// code to fill them all in. The node 'N' usually has number children equal to
// the number of input operands of the instruction. However, in cases where
// there are predicate operands for an instruction, we need to fill in the
// 'execute always' values. Match up the node operands to the instruction
// operands to do this.
unsigned ChildNo = 0;
for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
InstOpNo != e; ++InstOpNo) {
// Determine what to emit for this operand.
Record *OperandNode = II.Operands[InstOpNo].Rec;
if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
!CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
// This is a predicate or optional def operand; emit the
// 'default ops' operands.
const DAGDefaultOperand &DefaultOp
= CGP.getDefaultOperand(OperandNode);
for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
continue;
}
// Otherwise this is a normal operand or a predicate operand without
// 'execute always'; emit it.
// For operands with multiple sub-operands we may need to emit
// multiple child patterns to cover them all. However, ComplexPattern
// children may themselves emit multiple MI operands.
unsigned NumSubOps = 1;
if (OperandNode->isSubClassOf("Operand")) {
DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
if (unsigned NumArgs = MIOpInfo->getNumArgs())
NumSubOps = NumArgs;
}
unsigned FinalNumOps = InstOps.size() + NumSubOps;
while (InstOps.size() < FinalNumOps) {
const TreePatternNode *Child = N->getChild(ChildNo);
unsigned BeforeAddingNumOps = InstOps.size();
EmitResultOperand(Child, InstOps);
assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
// If the operand is an instruction and it produced multiple results, just
// take the first one.
if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
InstOps.resize(BeforeAddingNumOps+1);
++ChildNo;
}
}
// If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
// expand suboperands, use default operands, or other features determined from
// the CodeGenInstruction after the fixed operands, which were handled
// above. Emit the remaining instructions implicitly added by the use for
// variable_ops.
if (II.Operands.isVariadic) {
for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
EmitResultOperand(N->getChild(I), InstOps);
}
// If this node has input glue or explicitly specified input physregs, we
// need to add chained and glued copyfromreg nodes and materialize the glue
// input.
if (isRoot && !PhysRegInputs.empty()) {
// Emit all of the CopyToReg nodes for the input physical registers. These
// occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
PhysRegInputs[i].first));
// Even if the node has no other glue inputs, the resultant node must be
// glued to the CopyFromReg nodes we just generated.
TreeHasInGlue = true;
}
// Result order: node results, chain, glue
// Determine the result types.
SmallVector<MVT::SimpleValueType, 4> ResultVTs;
for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
ResultVTs.push_back(N->getSimpleType(i));
// If this is the root instruction of a pattern that has physical registers in
// its result pattern, add output VTs for them. For example, X86 has:
// (set AL, (mul ...))
// This also handles implicit results like:
// (implicit EFLAGS)
if (isRoot && !Pattern.getDstRegs().empty()) {
// If the root came from an implicit def in the instruction handling stuff,
// don't re-add it.
Record *HandledReg = nullptr;
if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
HandledReg = II.ImplicitDefs[0];
for (Record *Reg : Pattern.getDstRegs()) {
if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
ResultVTs.push_back(getRegisterValueType(Reg, CGT));
}
}
// If this is the root of the pattern and the pattern we're matching includes
// a node that is variadic, mark the generated node as variadic so that it
// gets the excess operands from the input DAG.
int NumFixedArityOperands = -1;
if (isRoot &&
Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
// If this is the root node and multiple matched nodes in the input pattern
// have MemRefs in them, have the interpreter collect them and plop them onto
// this node. If there is just one node with MemRefs, leave them on that node
// even if it is not the root.
//
// FIXME3: This is actively incorrect for result patterns with multiple
// memory-referencing instructions.
bool PatternHasMemOperands =
Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
bool NodeHasMemRefs = false;
if (PatternHasMemOperands) {
unsigned NumNodesThatLoadOrStore =
numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
NumNodesThatLoadOrStore == 1;
NodeHasMemRefs =
NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
NumNodesThatLoadOrStore != 1));
}
// Determine whether we need to attach a chain to this node.
bool NodeHasChain = false;
if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
// For some instructions, we were able to infer from the pattern whether
// they should have a chain. Otherwise, attach the chain to the root.
//
// FIXME2: This is extremely dubious for several reasons, not the least of
// which it gives special status to instructions with patterns that Pat<>
// nodes can't duplicate.
if (II.hasChain_Inferred)
NodeHasChain = II.hasChain;
else
NodeHasChain = isRoot;
// Instructions which load and store from memory should have a chain,
// regardless of whether they happen to have a pattern saying so.
if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
II.hasSideEffects)
NodeHasChain = true;
}
assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
"Node has no result");
AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
ResultVTs, InstOps,
NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
NodeHasMemRefs, NumFixedArityOperands,
NextRecordedOperandNo));
// The non-chain and non-glue results of the newly emitted node get recorded.
for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
OutputOps.push_back(NextRecordedOperandNo++);
}
}
void MatcherGen::
EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps) {
assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
// Emit the operand.
SmallVector<unsigned, 8> InputOps;
// FIXME2: Could easily generalize this to support multiple inputs and outputs
// to the SDNodeXForm. For now we just support one input and one output like
// the old instruction selector.
assert(N->getNumChildren() == 1);
EmitResultOperand(N->getChild(0), InputOps);
// The input currently must have produced exactly one result.
assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
ResultOps.push_back(NextRecordedOperandNo++);
}
void MatcherGen::EmitResultOperand(const TreePatternNode *N,
SmallVectorImpl<unsigned> &ResultOps) {
// This is something selected from the pattern we matched.
if (!N->getName().empty())
return EmitResultOfNamedOperand(N, ResultOps);
if (N->isLeaf())
return EmitResultLeafAsOperand(N, ResultOps);
Record *OpRec = N->getOperator();
if (OpRec->isSubClassOf("Instruction"))
return EmitResultInstructionAsOperand(N, ResultOps);
if (OpRec->isSubClassOf("SDNodeXForm"))
return EmitResultSDNodeXFormAsOperand(N, ResultOps);
errs() << "Unknown result node to emit code for: " << *N << '\n';
PrintFatalError("Unknown node in result pattern!");
}
void MatcherGen::EmitResultCode() {
// Patterns that match nodes with (potentially multiple) chain inputs have to
// merge them together into a token factor. This informs the generated code
// what all the chained nodes are.
if (!MatchedChainNodes.empty())
AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
// Codegen the root of the result pattern, capturing the resulting values.
SmallVector<unsigned, 8> Ops;
EmitResultOperand(Pattern.getDstPattern(), Ops);
// At this point, we have however many values the result pattern produces.
// However, the input pattern might not need all of these. If there are
// excess values at the end (such as implicit defs of condition codes etc)
// just lop them off. This doesn't need to worry about glue or chains, just
// explicit results.
//
unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
// If the pattern also has (implicit) results, count them as well.
if (!Pattern.getDstRegs().empty()) {
// If the root came from an implicit def in the instruction handling stuff,
// don't re-add it.
Record *HandledReg = nullptr;
const TreePatternNode *DstPat = Pattern.getDstPattern();
if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
const CodeGenTarget &CGT = CGP.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
HandledReg = II.ImplicitDefs[0];
}
for (Record *Reg : Pattern.getDstRegs()) {
if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
++NumSrcResults;
}
}
assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
Ops.resize(NumSrcResults);
AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
}
/// ConvertPatternToMatcher - Create the matcher for the specified pattern with
/// the specified variant. If the variant number is invalid, this returns null.
Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
unsigned Variant,
const CodeGenDAGPatterns &CGP) {
MatcherGen Gen(Pattern, CGP);
// Generate the code for the matcher.
if (Gen.EmitMatcherCode(Variant))
return nullptr;
// FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
// FIXME2: Split result code out to another table, and make the matcher end
// with an "Emit <index>" command. This allows result generation stuff to be
// shared and factored?
// If the match succeeds, then we generate Pattern.
Gen.EmitResultCode();
// Unconditional match.
return Gen.GetMatcher();
}