mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
1c866d4e4f
This is a followup to D103422. The DenseMapInfo implementations for ArrayRef and StringRef are moved into the ArrayRef.h and StringRef.h headers, which means that these two headers no longer need to be included by DenseMapInfo.h. This required adding a few additional includes, as many files were relying on various things pulled in by ArrayRef.h. Differential Revision: https://reviews.llvm.org/D103491
606 lines
20 KiB
C++
606 lines
20 KiB
C++
//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_ARRAYREF_H
|
|
#define LLVM_ADT_ARRAYREF_H
|
|
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
template<typename T> struct DenseMapInfo;
|
|
|
|
/// ArrayRef - Represent a constant reference to an array (0 or more elements
|
|
/// consecutively in memory), i.e. a start pointer and a length. It allows
|
|
/// various APIs to take consecutive elements easily and conveniently.
|
|
///
|
|
/// This class does not own the underlying data, it is expected to be used in
|
|
/// situations where the data resides in some other buffer, whose lifetime
|
|
/// extends past that of the ArrayRef. For this reason, it is not in general
|
|
/// safe to store an ArrayRef.
|
|
///
|
|
/// This is intended to be trivially copyable, so it should be passed by
|
|
/// value.
|
|
template<typename T>
|
|
class LLVM_GSL_POINTER LLVM_NODISCARD ArrayRef {
|
|
public:
|
|
using value_type = T;
|
|
using pointer = value_type *;
|
|
using const_pointer = const value_type *;
|
|
using reference = value_type &;
|
|
using const_reference = const value_type &;
|
|
using iterator = const_pointer;
|
|
using const_iterator = const_pointer;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
using size_type = size_t;
|
|
using difference_type = ptrdiff_t;
|
|
|
|
private:
|
|
/// The start of the array, in an external buffer.
|
|
const T *Data = nullptr;
|
|
|
|
/// The number of elements.
|
|
size_type Length = 0;
|
|
|
|
public:
|
|
/// @name Constructors
|
|
/// @{
|
|
|
|
/// Construct an empty ArrayRef.
|
|
/*implicit*/ ArrayRef() = default;
|
|
|
|
/// Construct an empty ArrayRef from None.
|
|
/*implicit*/ ArrayRef(NoneType) {}
|
|
|
|
/// Construct an ArrayRef from a single element.
|
|
/*implicit*/ ArrayRef(const T &OneElt)
|
|
: Data(&OneElt), Length(1) {}
|
|
|
|
/// Construct an ArrayRef from a pointer and length.
|
|
/*implicit*/ ArrayRef(const T *data, size_t length)
|
|
: Data(data), Length(length) {}
|
|
|
|
/// Construct an ArrayRef from a range.
|
|
ArrayRef(const T *begin, const T *end)
|
|
: Data(begin), Length(end - begin) {}
|
|
|
|
/// Construct an ArrayRef from a SmallVector. This is templated in order to
|
|
/// avoid instantiating SmallVectorTemplateCommon<T> whenever we
|
|
/// copy-construct an ArrayRef.
|
|
template<typename U>
|
|
/*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
|
|
: Data(Vec.data()), Length(Vec.size()) {
|
|
}
|
|
|
|
/// Construct an ArrayRef from a std::vector.
|
|
template<typename A>
|
|
/*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
|
|
: Data(Vec.data()), Length(Vec.size()) {}
|
|
|
|
/// Construct an ArrayRef from a std::array
|
|
template <size_t N>
|
|
/*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
|
|
: Data(Arr.data()), Length(N) {}
|
|
|
|
/// Construct an ArrayRef from a C array.
|
|
template <size_t N>
|
|
/*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
|
|
|
|
/// Construct an ArrayRef from a std::initializer_list.
|
|
#if LLVM_GNUC_PREREQ(9, 0, 0)
|
|
// Disable gcc's warning in this constructor as it generates an enormous amount
|
|
// of messages. Anyone using ArrayRef should already be aware of the fact that
|
|
// it does not do lifetime extension.
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Winit-list-lifetime"
|
|
#endif
|
|
/*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
|
|
: Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()),
|
|
Length(Vec.size()) {}
|
|
#if LLVM_GNUC_PREREQ(9, 0, 0)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
/// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
|
|
/// ensure that only ArrayRefs of pointers can be converted.
|
|
template <typename U>
|
|
ArrayRef(const ArrayRef<U *> &A,
|
|
std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
|
|
* = nullptr)
|
|
: Data(A.data()), Length(A.size()) {}
|
|
|
|
/// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
|
|
/// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
|
|
/// whenever we copy-construct an ArrayRef.
|
|
template <typename U, typename DummyT>
|
|
/*implicit*/ ArrayRef(
|
|
const SmallVectorTemplateCommon<U *, DummyT> &Vec,
|
|
std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
|
|
nullptr)
|
|
: Data(Vec.data()), Length(Vec.size()) {}
|
|
|
|
/// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
|
|
/// to ensure that only vectors of pointers can be converted.
|
|
template <typename U, typename A>
|
|
ArrayRef(const std::vector<U *, A> &Vec,
|
|
std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
|
|
* = 0)
|
|
: Data(Vec.data()), Length(Vec.size()) {}
|
|
|
|
/// @}
|
|
/// @name Simple Operations
|
|
/// @{
|
|
|
|
iterator begin() const { return Data; }
|
|
iterator end() const { return Data + Length; }
|
|
|
|
reverse_iterator rbegin() const { return reverse_iterator(end()); }
|
|
reverse_iterator rend() const { return reverse_iterator(begin()); }
|
|
|
|
/// empty - Check if the array is empty.
|
|
bool empty() const { return Length == 0; }
|
|
|
|
const T *data() const { return Data; }
|
|
|
|
/// size - Get the array size.
|
|
size_t size() const { return Length; }
|
|
|
|
/// front - Get the first element.
|
|
const T &front() const {
|
|
assert(!empty());
|
|
return Data[0];
|
|
}
|
|
|
|
/// back - Get the last element.
|
|
const T &back() const {
|
|
assert(!empty());
|
|
return Data[Length-1];
|
|
}
|
|
|
|
// copy - Allocate copy in Allocator and return ArrayRef<T> to it.
|
|
template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
|
|
T *Buff = A.template Allocate<T>(Length);
|
|
std::uninitialized_copy(begin(), end(), Buff);
|
|
return ArrayRef<T>(Buff, Length);
|
|
}
|
|
|
|
/// equals - Check for element-wise equality.
|
|
bool equals(ArrayRef RHS) const {
|
|
if (Length != RHS.Length)
|
|
return false;
|
|
return std::equal(begin(), end(), RHS.begin());
|
|
}
|
|
|
|
/// slice(n, m) - Chop off the first N elements of the array, and keep M
|
|
/// elements in the array.
|
|
ArrayRef<T> slice(size_t N, size_t M) const {
|
|
assert(N+M <= size() && "Invalid specifier");
|
|
return ArrayRef<T>(data()+N, M);
|
|
}
|
|
|
|
/// slice(n) - Chop off the first N elements of the array.
|
|
ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
|
|
|
|
/// Drop the first \p N elements of the array.
|
|
ArrayRef<T> drop_front(size_t N = 1) const {
|
|
assert(size() >= N && "Dropping more elements than exist");
|
|
return slice(N, size() - N);
|
|
}
|
|
|
|
/// Drop the last \p N elements of the array.
|
|
ArrayRef<T> drop_back(size_t N = 1) const {
|
|
assert(size() >= N && "Dropping more elements than exist");
|
|
return slice(0, size() - N);
|
|
}
|
|
|
|
/// Return a copy of *this with the first N elements satisfying the
|
|
/// given predicate removed.
|
|
template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
|
|
return ArrayRef<T>(find_if_not(*this, Pred), end());
|
|
}
|
|
|
|
/// Return a copy of *this with the first N elements not satisfying
|
|
/// the given predicate removed.
|
|
template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
|
|
return ArrayRef<T>(find_if(*this, Pred), end());
|
|
}
|
|
|
|
/// Return a copy of *this with only the first \p N elements.
|
|
ArrayRef<T> take_front(size_t N = 1) const {
|
|
if (N >= size())
|
|
return *this;
|
|
return drop_back(size() - N);
|
|
}
|
|
|
|
/// Return a copy of *this with only the last \p N elements.
|
|
ArrayRef<T> take_back(size_t N = 1) const {
|
|
if (N >= size())
|
|
return *this;
|
|
return drop_front(size() - N);
|
|
}
|
|
|
|
/// Return the first N elements of this Array that satisfy the given
|
|
/// predicate.
|
|
template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
|
|
return ArrayRef<T>(begin(), find_if_not(*this, Pred));
|
|
}
|
|
|
|
/// Return the first N elements of this Array that don't satisfy the
|
|
/// given predicate.
|
|
template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
|
|
return ArrayRef<T>(begin(), find_if(*this, Pred));
|
|
}
|
|
|
|
/// @}
|
|
/// @name Operator Overloads
|
|
/// @{
|
|
const T &operator[](size_t Index) const {
|
|
assert(Index < Length && "Invalid index!");
|
|
return Data[Index];
|
|
}
|
|
|
|
/// Disallow accidental assignment from a temporary.
|
|
///
|
|
/// The declaration here is extra complicated so that "arrayRef = {}"
|
|
/// continues to select the move assignment operator.
|
|
template <typename U>
|
|
std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
|
|
operator=(U &&Temporary) = delete;
|
|
|
|
/// Disallow accidental assignment from a temporary.
|
|
///
|
|
/// The declaration here is extra complicated so that "arrayRef = {}"
|
|
/// continues to select the move assignment operator.
|
|
template <typename U>
|
|
std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
|
|
operator=(std::initializer_list<U>) = delete;
|
|
|
|
/// @}
|
|
/// @name Expensive Operations
|
|
/// @{
|
|
std::vector<T> vec() const {
|
|
return std::vector<T>(Data, Data+Length);
|
|
}
|
|
|
|
/// @}
|
|
/// @name Conversion operators
|
|
/// @{
|
|
operator std::vector<T>() const {
|
|
return std::vector<T>(Data, Data+Length);
|
|
}
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// MutableArrayRef - Represent a mutable reference to an array (0 or more
|
|
/// elements consecutively in memory), i.e. a start pointer and a length. It
|
|
/// allows various APIs to take and modify consecutive elements easily and
|
|
/// conveniently.
|
|
///
|
|
/// This class does not own the underlying data, it is expected to be used in
|
|
/// situations where the data resides in some other buffer, whose lifetime
|
|
/// extends past that of the MutableArrayRef. For this reason, it is not in
|
|
/// general safe to store a MutableArrayRef.
|
|
///
|
|
/// This is intended to be trivially copyable, so it should be passed by
|
|
/// value.
|
|
template<typename T>
|
|
class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> {
|
|
public:
|
|
using value_type = T;
|
|
using pointer = value_type *;
|
|
using const_pointer = const value_type *;
|
|
using reference = value_type &;
|
|
using const_reference = const value_type &;
|
|
using iterator = pointer;
|
|
using const_iterator = const_pointer;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
using size_type = size_t;
|
|
using difference_type = ptrdiff_t;
|
|
|
|
/// Construct an empty MutableArrayRef.
|
|
/*implicit*/ MutableArrayRef() = default;
|
|
|
|
/// Construct an empty MutableArrayRef from None.
|
|
/*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
|
|
|
|
/// Construct a MutableArrayRef from a single element.
|
|
/*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
|
|
|
|
/// Construct a MutableArrayRef from a pointer and length.
|
|
/*implicit*/ MutableArrayRef(T *data, size_t length)
|
|
: ArrayRef<T>(data, length) {}
|
|
|
|
/// Construct a MutableArrayRef from a range.
|
|
MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
|
|
|
|
/// Construct a MutableArrayRef from a SmallVector.
|
|
/*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
|
|
: ArrayRef<T>(Vec) {}
|
|
|
|
/// Construct a MutableArrayRef from a std::vector.
|
|
/*implicit*/ MutableArrayRef(std::vector<T> &Vec)
|
|
: ArrayRef<T>(Vec) {}
|
|
|
|
/// Construct a MutableArrayRef from a std::array
|
|
template <size_t N>
|
|
/*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
|
|
: ArrayRef<T>(Arr) {}
|
|
|
|
/// Construct a MutableArrayRef from a C array.
|
|
template <size_t N>
|
|
/*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
|
|
|
|
T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
|
|
|
|
iterator begin() const { return data(); }
|
|
iterator end() const { return data() + this->size(); }
|
|
|
|
reverse_iterator rbegin() const { return reverse_iterator(end()); }
|
|
reverse_iterator rend() const { return reverse_iterator(begin()); }
|
|
|
|
/// front - Get the first element.
|
|
T &front() const {
|
|
assert(!this->empty());
|
|
return data()[0];
|
|
}
|
|
|
|
/// back - Get the last element.
|
|
T &back() const {
|
|
assert(!this->empty());
|
|
return data()[this->size()-1];
|
|
}
|
|
|
|
/// slice(n, m) - Chop off the first N elements of the array, and keep M
|
|
/// elements in the array.
|
|
MutableArrayRef<T> slice(size_t N, size_t M) const {
|
|
assert(N + M <= this->size() && "Invalid specifier");
|
|
return MutableArrayRef<T>(this->data() + N, M);
|
|
}
|
|
|
|
/// slice(n) - Chop off the first N elements of the array.
|
|
MutableArrayRef<T> slice(size_t N) const {
|
|
return slice(N, this->size() - N);
|
|
}
|
|
|
|
/// Drop the first \p N elements of the array.
|
|
MutableArrayRef<T> drop_front(size_t N = 1) const {
|
|
assert(this->size() >= N && "Dropping more elements than exist");
|
|
return slice(N, this->size() - N);
|
|
}
|
|
|
|
MutableArrayRef<T> drop_back(size_t N = 1) const {
|
|
assert(this->size() >= N && "Dropping more elements than exist");
|
|
return slice(0, this->size() - N);
|
|
}
|
|
|
|
/// Return a copy of *this with the first N elements satisfying the
|
|
/// given predicate removed.
|
|
template <class PredicateT>
|
|
MutableArrayRef<T> drop_while(PredicateT Pred) const {
|
|
return MutableArrayRef<T>(find_if_not(*this, Pred), end());
|
|
}
|
|
|
|
/// Return a copy of *this with the first N elements not satisfying
|
|
/// the given predicate removed.
|
|
template <class PredicateT>
|
|
MutableArrayRef<T> drop_until(PredicateT Pred) const {
|
|
return MutableArrayRef<T>(find_if(*this, Pred), end());
|
|
}
|
|
|
|
/// Return a copy of *this with only the first \p N elements.
|
|
MutableArrayRef<T> take_front(size_t N = 1) const {
|
|
if (N >= this->size())
|
|
return *this;
|
|
return drop_back(this->size() - N);
|
|
}
|
|
|
|
/// Return a copy of *this with only the last \p N elements.
|
|
MutableArrayRef<T> take_back(size_t N = 1) const {
|
|
if (N >= this->size())
|
|
return *this;
|
|
return drop_front(this->size() - N);
|
|
}
|
|
|
|
/// Return the first N elements of this Array that satisfy the given
|
|
/// predicate.
|
|
template <class PredicateT>
|
|
MutableArrayRef<T> take_while(PredicateT Pred) const {
|
|
return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
|
|
}
|
|
|
|
/// Return the first N elements of this Array that don't satisfy the
|
|
/// given predicate.
|
|
template <class PredicateT>
|
|
MutableArrayRef<T> take_until(PredicateT Pred) const {
|
|
return MutableArrayRef<T>(begin(), find_if(*this, Pred));
|
|
}
|
|
|
|
/// @}
|
|
/// @name Operator Overloads
|
|
/// @{
|
|
T &operator[](size_t Index) const {
|
|
assert(Index < this->size() && "Invalid index!");
|
|
return data()[Index];
|
|
}
|
|
};
|
|
|
|
/// This is a MutableArrayRef that owns its array.
|
|
template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
|
|
public:
|
|
OwningArrayRef() = default;
|
|
OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {}
|
|
|
|
OwningArrayRef(ArrayRef<T> Data)
|
|
: MutableArrayRef<T>(new T[Data.size()], Data.size()) {
|
|
std::copy(Data.begin(), Data.end(), this->begin());
|
|
}
|
|
|
|
OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); }
|
|
|
|
OwningArrayRef &operator=(OwningArrayRef &&Other) {
|
|
delete[] this->data();
|
|
this->MutableArrayRef<T>::operator=(Other);
|
|
Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
|
|
return *this;
|
|
}
|
|
|
|
~OwningArrayRef() { delete[] this->data(); }
|
|
};
|
|
|
|
/// @name ArrayRef Convenience constructors
|
|
/// @{
|
|
|
|
/// Construct an ArrayRef from a single element.
|
|
template<typename T>
|
|
ArrayRef<T> makeArrayRef(const T &OneElt) {
|
|
return OneElt;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a pointer and length.
|
|
template<typename T>
|
|
ArrayRef<T> makeArrayRef(const T *data, size_t length) {
|
|
return ArrayRef<T>(data, length);
|
|
}
|
|
|
|
/// Construct an ArrayRef from a range.
|
|
template<typename T>
|
|
ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
|
|
return ArrayRef<T>(begin, end);
|
|
}
|
|
|
|
/// Construct an ArrayRef from a SmallVector.
|
|
template <typename T>
|
|
ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
|
|
return Vec;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a SmallVector.
|
|
template <typename T, unsigned N>
|
|
ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
|
|
return Vec;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a std::vector.
|
|
template<typename T>
|
|
ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
|
|
return Vec;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a std::array.
|
|
template <typename T, std::size_t N>
|
|
ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) {
|
|
return Arr;
|
|
}
|
|
|
|
/// Construct an ArrayRef from an ArrayRef (no-op) (const)
|
|
template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
|
|
return Vec;
|
|
}
|
|
|
|
/// Construct an ArrayRef from an ArrayRef (no-op)
|
|
template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
|
|
return Vec;
|
|
}
|
|
|
|
/// Construct an ArrayRef from a C array.
|
|
template<typename T, size_t N>
|
|
ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
|
|
return ArrayRef<T>(Arr);
|
|
}
|
|
|
|
/// Construct a MutableArrayRef from a single element.
|
|
template<typename T>
|
|
MutableArrayRef<T> makeMutableArrayRef(T &OneElt) {
|
|
return OneElt;
|
|
}
|
|
|
|
/// Construct a MutableArrayRef from a pointer and length.
|
|
template<typename T>
|
|
MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) {
|
|
return MutableArrayRef<T>(data, length);
|
|
}
|
|
|
|
/// @}
|
|
/// @name ArrayRef Comparison Operators
|
|
/// @{
|
|
|
|
template<typename T>
|
|
inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
|
|
return LHS.equals(RHS);
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
|
|
return ArrayRef<T>(LHS).equals(RHS);
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
/// @}
|
|
|
|
template <typename T> hash_code hash_value(ArrayRef<T> S) {
|
|
return hash_combine_range(S.begin(), S.end());
|
|
}
|
|
|
|
// Provide DenseMapInfo for ArrayRefs.
|
|
template <typename T> struct DenseMapInfo<ArrayRef<T>> {
|
|
static inline ArrayRef<T> getEmptyKey() {
|
|
return ArrayRef<T>(
|
|
reinterpret_cast<const T *>(~static_cast<uintptr_t>(0)), size_t(0));
|
|
}
|
|
|
|
static inline ArrayRef<T> getTombstoneKey() {
|
|
return ArrayRef<T>(
|
|
reinterpret_cast<const T *>(~static_cast<uintptr_t>(1)), size_t(0));
|
|
}
|
|
|
|
static unsigned getHashValue(ArrayRef<T> Val) {
|
|
assert(Val.data() != getEmptyKey().data() &&
|
|
"Cannot hash the empty key!");
|
|
assert(Val.data() != getTombstoneKey().data() &&
|
|
"Cannot hash the tombstone key!");
|
|
return (unsigned)(hash_value(Val));
|
|
}
|
|
|
|
static bool isEqual(ArrayRef<T> LHS, ArrayRef<T> RHS) {
|
|
if (RHS.data() == getEmptyKey().data())
|
|
return LHS.data() == getEmptyKey().data();
|
|
if (RHS.data() == getTombstoneKey().data())
|
|
return LHS.data() == getTombstoneKey().data();
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ADT_ARRAYREF_H
|