mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
77e3f07d4b
extend it a bit, and make use of it in all schedulers, to ensure consistent checking. llvm-svn: 59689
282 lines
9.6 KiB
C++
282 lines
9.6 KiB
C++
//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements a top-down list scheduler, using standard algorithms.
|
|
// The basic approach uses a priority queue of available nodes to schedule.
|
|
// One at a time, nodes are taken from the priority queue (thus in priority
|
|
// order), checked for legality to schedule, and emitted if legal.
|
|
//
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
// not completed execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
|
#include "llvm/CodeGen/LatencyPriorityQueue.h"
|
|
#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/ADT/PriorityQueue.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <climits>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumNoops , "Number of noops inserted");
|
|
STATISTIC(NumStalls, "Number of pipeline stalls");
|
|
|
|
static RegisterScheduler
|
|
tdListDAGScheduler("list-td", "Top-down list scheduler",
|
|
createTDListDAGScheduler);
|
|
|
|
namespace {
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleDAGList - The actual list scheduler implementation. This supports
|
|
/// top-down scheduling.
|
|
///
|
|
class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAGSDNodes {
|
|
private:
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
///
|
|
SchedulingPriorityQueue *AvailableQueue;
|
|
|
|
/// PendingQueue - This contains all of the instructions whose operands have
|
|
/// been issued, but their results are not ready yet (due to the latency of
|
|
/// the operation). Once the operands become available, the instruction is
|
|
/// added to the AvailableQueue.
|
|
std::vector<SUnit*> PendingQueue;
|
|
|
|
/// HazardRec - The hazard recognizer to use.
|
|
HazardRecognizer *HazardRec;
|
|
|
|
public:
|
|
ScheduleDAGList(SelectionDAG *dag, MachineBasicBlock *bb,
|
|
const TargetMachine &tm,
|
|
SchedulingPriorityQueue *availqueue,
|
|
HazardRecognizer *HR)
|
|
: ScheduleDAGSDNodes(dag, bb, tm),
|
|
AvailableQueue(availqueue), HazardRec(HR) {
|
|
}
|
|
|
|
~ScheduleDAGList() {
|
|
delete HazardRec;
|
|
delete AvailableQueue;
|
|
}
|
|
|
|
void Schedule();
|
|
|
|
private:
|
|
void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
|
|
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
|
void ListScheduleTopDown();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
HazardRecognizer::~HazardRecognizer() {}
|
|
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
void ScheduleDAGList::Schedule() {
|
|
DOUT << "********** List Scheduling **********\n";
|
|
|
|
// Build scheduling units.
|
|
BuildSchedUnits();
|
|
|
|
AvailableQueue->initNodes(SUnits);
|
|
|
|
ListScheduleTopDown();
|
|
|
|
AvailableQueue->releaseState();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Down Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
|
|
void ScheduleDAGList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
|
|
--SuccSU->NumPredsLeft;
|
|
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft < 0) {
|
|
cerr << "*** Scheduling failed! ***\n";
|
|
SuccSU->dump(this);
|
|
cerr << " has been released too many times!\n";
|
|
assert(0);
|
|
}
|
|
#endif
|
|
|
|
// Compute the cycle when this SUnit actually becomes available. This
|
|
// is the max of the start time of all predecessors plus their latencies.
|
|
// If this is a token edge, we don't need to wait for the latency of the
|
|
// preceeding instruction (e.g. a long-latency load) unless there is also
|
|
// some other data dependence.
|
|
unsigned PredDoneCycle = SU->Cycle;
|
|
if (!isChain)
|
|
PredDoneCycle += SU->Latency;
|
|
else if (SU->Latency)
|
|
PredDoneCycle += 1;
|
|
SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
|
|
|
|
if (SuccSU->NumPredsLeft == 0) {
|
|
PendingQueue.push_back(SuccSU);
|
|
}
|
|
}
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
|
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
|
DEBUG(SU->dump(this));
|
|
|
|
Sequence.push_back(SU);
|
|
SU->Cycle = CurCycle;
|
|
|
|
// Top down: release successors.
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
ReleaseSucc(SU, I->Dep, I->isCtrl);
|
|
|
|
SU->isScheduled = true;
|
|
AvailableQueue->ScheduledNode(SU);
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void ScheduleDAGList::ListScheduleTopDown() {
|
|
unsigned CurCycle = 0;
|
|
|
|
// All leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
if (SUnits[i].Preds.empty()) {
|
|
AvailableQueue->push(&SUnits[i]);
|
|
SUnits[i].isAvailable = true;
|
|
}
|
|
}
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
Sequence.reserve(SUnits.size());
|
|
while (!AvailableQueue->empty() || !PendingQueue.empty()) {
|
|
// Check to see if any of the pending instructions are ready to issue. If
|
|
// so, add them to the available queue.
|
|
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
|
|
if (PendingQueue[i]->CycleBound == CurCycle) {
|
|
AvailableQueue->push(PendingQueue[i]);
|
|
PendingQueue[i]->isAvailable = true;
|
|
PendingQueue[i] = PendingQueue.back();
|
|
PendingQueue.pop_back();
|
|
--i; --e;
|
|
} else {
|
|
assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?");
|
|
}
|
|
}
|
|
|
|
// If there are no instructions available, don't try to issue anything, and
|
|
// don't advance the hazard recognizer.
|
|
if (AvailableQueue->empty()) {
|
|
++CurCycle;
|
|
continue;
|
|
}
|
|
|
|
SUnit *FoundSUnit = 0;
|
|
SDNode *FoundNode = 0;
|
|
|
|
bool HasNoopHazards = false;
|
|
while (!AvailableQueue->empty()) {
|
|
SUnit *CurSUnit = AvailableQueue->pop();
|
|
|
|
// Get the node represented by this SUnit.
|
|
FoundNode = CurSUnit->getNode();
|
|
|
|
// If this is a pseudo op, like copyfromreg, look to see if there is a
|
|
// real target node flagged to it. If so, use the target node.
|
|
while (!FoundNode->isMachineOpcode()) {
|
|
SDNode *N = FoundNode->getFlaggedNode();
|
|
if (!N) break;
|
|
FoundNode = N;
|
|
}
|
|
|
|
HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
|
|
if (HT == HazardRecognizer::NoHazard) {
|
|
FoundSUnit = CurSUnit;
|
|
break;
|
|
}
|
|
|
|
// Remember if this is a noop hazard.
|
|
HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
|
|
|
|
NotReady.push_back(CurSUnit);
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
if (!NotReady.empty()) {
|
|
AvailableQueue->push_all(NotReady);
|
|
NotReady.clear();
|
|
}
|
|
|
|
// If we found a node to schedule, do it now.
|
|
if (FoundSUnit) {
|
|
ScheduleNodeTopDown(FoundSUnit, CurCycle);
|
|
HazardRec->EmitInstruction(FoundNode);
|
|
|
|
// If this is a pseudo-op node, we don't want to increment the current
|
|
// cycle.
|
|
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
|
|
++CurCycle;
|
|
} else if (!HasNoopHazards) {
|
|
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
|
// the current cycle and try again.
|
|
DOUT << "*** Advancing cycle, no work to do\n";
|
|
HazardRec->AdvanceCycle();
|
|
++NumStalls;
|
|
++CurCycle;
|
|
} else {
|
|
// Otherwise, we have no instructions to issue and we have instructions
|
|
// that will fault if we don't do this right. This is the case for
|
|
// processors without pipeline interlocks and other cases.
|
|
DOUT << "*** Emitting noop\n";
|
|
HazardRec->EmitNoop();
|
|
Sequence.push_back(0); // NULL SUnit* -> noop
|
|
++NumNoops;
|
|
++CurCycle;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
VerifySchedule(/*isBottomUp=*/false);
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// createTDListDAGScheduler - This creates a top-down list scheduler with a
|
|
/// new hazard recognizer. This scheduler takes ownership of the hazard
|
|
/// recognizer and deletes it when done.
|
|
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
const TargetMachine *TM,
|
|
MachineBasicBlock *BB, bool Fast) {
|
|
return new ScheduleDAGList(DAG, BB, *TM,
|
|
new LatencyPriorityQueue(),
|
|
IS->CreateTargetHazardRecognizer());
|
|
}
|