mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 11:42:57 +01:00
cde3a46455
as Eli noticed. llvm-svn: 154641
267 lines
8.8 KiB
C++
267 lines
8.8 KiB
C++
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simple dominator construction algorithms for finding
|
|
// forward dominators. Postdominators are available in libanalysis, but are not
|
|
// included in libvmcore, because it's not needed. Forward dominators are
|
|
// needed to support the Verifier pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/DominatorInternals.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
// Always verify dominfo if expensive checking is enabled.
|
|
#ifdef XDEBUG
|
|
static bool VerifyDomInfo = true;
|
|
#else
|
|
static bool VerifyDomInfo = false;
|
|
#endif
|
|
static cl::opt<bool,true>
|
|
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
|
|
cl::desc("Verify dominator info (time consuming)"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Provide public access to DominatorTree information. Implementation details
|
|
// can be found in DominatorInternals.h.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
|
|
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
|
|
|
|
char DominatorTree::ID = 0;
|
|
INITIALIZE_PASS(DominatorTree, "domtree",
|
|
"Dominator Tree Construction", true, true)
|
|
|
|
bool DominatorTree::runOnFunction(Function &F) {
|
|
DT->recalculate(F);
|
|
return false;
|
|
}
|
|
|
|
void DominatorTree::verifyAnalysis() const {
|
|
if (!VerifyDomInfo) return;
|
|
|
|
Function &F = *getRoot()->getParent();
|
|
|
|
DominatorTree OtherDT;
|
|
OtherDT.getBase().recalculate(F);
|
|
if (compare(OtherDT)) {
|
|
errs() << "DominatorTree is not up to date!\nComputed:\n";
|
|
print(errs());
|
|
errs() << "\nActual:\n";
|
|
OtherDT.print(errs());
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void DominatorTree::print(raw_ostream &OS, const Module *) const {
|
|
DT->print(OS);
|
|
}
|
|
|
|
// dominates - Return true if Def dominates a use in User. This performs
|
|
// the special checks necessary if Def and User are in the same basic block.
|
|
// Note that Def doesn't dominate a use in Def itself!
|
|
bool DominatorTree::dominates(const Instruction *Def,
|
|
const Instruction *User) const {
|
|
const BasicBlock *UseBB = User->getParent();
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Any unreachable use is dominated, even if Def == User.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
// An instruction doesn't dominate a use in itself.
|
|
if (Def == User)
|
|
return false;
|
|
|
|
// The value defined by an invoke dominates an instruction only if
|
|
// it dominates every instruction in UseBB.
|
|
// A PHI is dominated only if the instruction dominates every possible use
|
|
// in the UseBB.
|
|
if (isa<InvokeInst>(Def) || isa<PHINode>(User))
|
|
return dominates(Def, UseBB);
|
|
|
|
if (DefBB != UseBB)
|
|
return dominates(DefBB, UseBB);
|
|
|
|
// Loop through the basic block until we find Def or User.
|
|
BasicBlock::const_iterator I = DefBB->begin();
|
|
for (; &*I != Def && &*I != User; ++I)
|
|
/*empty*/;
|
|
|
|
return &*I == Def;
|
|
}
|
|
|
|
// true if Def would dominate a use in any instruction in UseBB.
|
|
// note that dominates(Def, Def->getParent()) is false.
|
|
bool DominatorTree::dominates(const Instruction *Def,
|
|
const BasicBlock *UseBB) const {
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Any unreachable use is dominated, even if DefBB == UseBB.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
if (DefBB == UseBB)
|
|
return false;
|
|
|
|
const InvokeInst *II = dyn_cast<InvokeInst>(Def);
|
|
if (!II)
|
|
return dominates(DefBB, UseBB);
|
|
|
|
// Invoke results are only usable in the normal destination, not in the
|
|
// exceptional destination.
|
|
BasicBlock *NormalDest = II->getNormalDest();
|
|
if (!dominates(NormalDest, UseBB))
|
|
return false;
|
|
|
|
// Simple case: if the normal destination has a single predecessor, the
|
|
// fact that it dominates the use block implies that we also do.
|
|
if (NormalDest->getSinglePredecessor())
|
|
return true;
|
|
|
|
// The normal edge from the invoke is critical. Conceptually, what we would
|
|
// like to do is split it and check if the new block dominates the use.
|
|
// With X being the new block, the graph would look like:
|
|
//
|
|
// DefBB
|
|
// /\ . .
|
|
// / \ . .
|
|
// / \ . .
|
|
// / \ | |
|
|
// A X B C
|
|
// | \ | /
|
|
// . \|/
|
|
// . NormalDest
|
|
// .
|
|
//
|
|
// Given the definition of dominance, NormalDest is dominated by X iff X
|
|
// dominates all of NormalDest's predecessors (X, B, C in the example). X
|
|
// trivially dominates itself, so we only have to find if it dominates the
|
|
// other predecessors. Since the only way out of X is via NormalDest, X can
|
|
// only properly dominate a node if NormalDest dominates that node too.
|
|
for (pred_iterator PI = pred_begin(NormalDest),
|
|
E = pred_end(NormalDest); PI != E; ++PI) {
|
|
const BasicBlock *BB = *PI;
|
|
if (BB == DefBB)
|
|
continue;
|
|
|
|
if (!DT->isReachableFromEntry(BB))
|
|
continue;
|
|
|
|
if (!dominates(NormalDest, BB))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DominatorTree::dominates(const Instruction *Def,
|
|
const Use &U) const {
|
|
Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
|
|
|
|
// Instructions do not dominate non-instructions.
|
|
if (!UserInst)
|
|
return false;
|
|
|
|
const BasicBlock *DefBB = Def->getParent();
|
|
|
|
// Determine the block in which the use happens. PHI nodes use
|
|
// their operands on edges; simulate this by thinking of the use
|
|
// happening at the end of the predecessor block.
|
|
const BasicBlock *UseBB;
|
|
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
|
|
UseBB = PN->getIncomingBlock(U);
|
|
else
|
|
UseBB = UserInst->getParent();
|
|
|
|
// Any unreachable use is dominated, even if Def == User.
|
|
if (!isReachableFromEntry(UseBB))
|
|
return true;
|
|
|
|
// Unreachable definitions don't dominate anything.
|
|
if (!isReachableFromEntry(DefBB))
|
|
return false;
|
|
|
|
// Invoke instructions define their return values on the edges
|
|
// to their normal successors, so we have to handle them specially.
|
|
// Among other things, this means they don't dominate anything in
|
|
// their own block, except possibly a phi, so we don't need to
|
|
// walk the block in any case.
|
|
if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
|
|
// A PHI in the normal successor using the invoke's return value is
|
|
// dominated by the invoke's return value.
|
|
if (isa<PHINode>(UserInst) &&
|
|
UserInst->getParent() == II->getNormalDest() &&
|
|
cast<PHINode>(UserInst)->getIncomingBlock(U) == DefBB)
|
|
return true;
|
|
|
|
// Otherwise use the instruction-dominates-block query, which
|
|
// handles the crazy case of an invoke with a critical edge
|
|
// properly.
|
|
return dominates(Def, UseBB);
|
|
}
|
|
|
|
// If the def and use are in different blocks, do a simple CFG dominator
|
|
// tree query.
|
|
if (DefBB != UseBB)
|
|
return dominates(DefBB, UseBB);
|
|
|
|
// Ok, def and use are in the same block. If the def is an invoke, it
|
|
// doesn't dominate anything in the block. If it's a PHI, it dominates
|
|
// everything in the block.
|
|
if (isa<PHINode>(UserInst))
|
|
return true;
|
|
|
|
// Otherwise, just loop through the basic block until we find Def or User.
|
|
BasicBlock::const_iterator I = DefBB->begin();
|
|
for (; &*I != Def && &*I != UserInst; ++I)
|
|
/*empty*/;
|
|
|
|
return &*I != UserInst;
|
|
}
|
|
|
|
bool DominatorTree::isReachableFromEntry(const Use &U) const {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
|
|
// ConstantExprs aren't really reachable from the entry block, but they
|
|
// don't need to be treated like unreachable code either.
|
|
if (!I) return true;
|
|
|
|
// PHI nodes use their operands on their incoming edges.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I))
|
|
return isReachableFromEntry(PN->getIncomingBlock(U));
|
|
|
|
// Everything else uses their operands in their own block.
|
|
return isReachableFromEntry(I->getParent());
|
|
}
|