1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00
llvm-mirror/lib/VMCore/Dominators.cpp
2012-04-13 00:50:57 +00:00

267 lines
8.8 KiB
C++

//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators. Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed. Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Instructions.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
// Always verify dominfo if expensive checking is enabled.
#ifdef XDEBUG
static bool VerifyDomInfo = true;
#else
static bool VerifyDomInfo = false;
#endif
static cl::opt<bool,true>
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
cl::desc("Verify dominator info (time consuming)"));
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// Provide public access to DominatorTree information. Implementation details
// can be found in DominatorInternals.h.
//
//===----------------------------------------------------------------------===//
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
char DominatorTree::ID = 0;
INITIALIZE_PASS(DominatorTree, "domtree",
"Dominator Tree Construction", true, true)
bool DominatorTree::runOnFunction(Function &F) {
DT->recalculate(F);
return false;
}
void DominatorTree::verifyAnalysis() const {
if (!VerifyDomInfo) return;
Function &F = *getRoot()->getParent();
DominatorTree OtherDT;
OtherDT.getBase().recalculate(F);
if (compare(OtherDT)) {
errs() << "DominatorTree is not up to date!\nComputed:\n";
print(errs());
errs() << "\nActual:\n";
OtherDT.print(errs());
abort();
}
}
void DominatorTree::print(raw_ostream &OS, const Module *) const {
DT->print(OS);
}
// dominates - Return true if Def dominates a use in User. This performs
// the special checks necessary if Def and User are in the same basic block.
// Note that Def doesn't dominate a use in Def itself!
bool DominatorTree::dominates(const Instruction *Def,
const Instruction *User) const {
const BasicBlock *UseBB = User->getParent();
const BasicBlock *DefBB = Def->getParent();
// Any unreachable use is dominated, even if Def == User.
if (!isReachableFromEntry(UseBB))
return true;
// Unreachable definitions don't dominate anything.
if (!isReachableFromEntry(DefBB))
return false;
// An instruction doesn't dominate a use in itself.
if (Def == User)
return false;
// The value defined by an invoke dominates an instruction only if
// it dominates every instruction in UseBB.
// A PHI is dominated only if the instruction dominates every possible use
// in the UseBB.
if (isa<InvokeInst>(Def) || isa<PHINode>(User))
return dominates(Def, UseBB);
if (DefBB != UseBB)
return dominates(DefBB, UseBB);
// Loop through the basic block until we find Def or User.
BasicBlock::const_iterator I = DefBB->begin();
for (; &*I != Def && &*I != User; ++I)
/*empty*/;
return &*I == Def;
}
// true if Def would dominate a use in any instruction in UseBB.
// note that dominates(Def, Def->getParent()) is false.
bool DominatorTree::dominates(const Instruction *Def,
const BasicBlock *UseBB) const {
const BasicBlock *DefBB = Def->getParent();
// Any unreachable use is dominated, even if DefBB == UseBB.
if (!isReachableFromEntry(UseBB))
return true;
// Unreachable definitions don't dominate anything.
if (!isReachableFromEntry(DefBB))
return false;
if (DefBB == UseBB)
return false;
const InvokeInst *II = dyn_cast<InvokeInst>(Def);
if (!II)
return dominates(DefBB, UseBB);
// Invoke results are only usable in the normal destination, not in the
// exceptional destination.
BasicBlock *NormalDest = II->getNormalDest();
if (!dominates(NormalDest, UseBB))
return false;
// Simple case: if the normal destination has a single predecessor, the
// fact that it dominates the use block implies that we also do.
if (NormalDest->getSinglePredecessor())
return true;
// The normal edge from the invoke is critical. Conceptually, what we would
// like to do is split it and check if the new block dominates the use.
// With X being the new block, the graph would look like:
//
// DefBB
// /\ . .
// / \ . .
// / \ . .
// / \ | |
// A X B C
// | \ | /
// . \|/
// . NormalDest
// .
//
// Given the definition of dominance, NormalDest is dominated by X iff X
// dominates all of NormalDest's predecessors (X, B, C in the example). X
// trivially dominates itself, so we only have to find if it dominates the
// other predecessors. Since the only way out of X is via NormalDest, X can
// only properly dominate a node if NormalDest dominates that node too.
for (pred_iterator PI = pred_begin(NormalDest),
E = pred_end(NormalDest); PI != E; ++PI) {
const BasicBlock *BB = *PI;
if (BB == DefBB)
continue;
if (!DT->isReachableFromEntry(BB))
continue;
if (!dominates(NormalDest, BB))
return false;
}
return true;
}
bool DominatorTree::dominates(const Instruction *Def,
const Use &U) const {
Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
// Instructions do not dominate non-instructions.
if (!UserInst)
return false;
const BasicBlock *DefBB = Def->getParent();
// Determine the block in which the use happens. PHI nodes use
// their operands on edges; simulate this by thinking of the use
// happening at the end of the predecessor block.
const BasicBlock *UseBB;
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
UseBB = PN->getIncomingBlock(U);
else
UseBB = UserInst->getParent();
// Any unreachable use is dominated, even if Def == User.
if (!isReachableFromEntry(UseBB))
return true;
// Unreachable definitions don't dominate anything.
if (!isReachableFromEntry(DefBB))
return false;
// Invoke instructions define their return values on the edges
// to their normal successors, so we have to handle them specially.
// Among other things, this means they don't dominate anything in
// their own block, except possibly a phi, so we don't need to
// walk the block in any case.
if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
// A PHI in the normal successor using the invoke's return value is
// dominated by the invoke's return value.
if (isa<PHINode>(UserInst) &&
UserInst->getParent() == II->getNormalDest() &&
cast<PHINode>(UserInst)->getIncomingBlock(U) == DefBB)
return true;
// Otherwise use the instruction-dominates-block query, which
// handles the crazy case of an invoke with a critical edge
// properly.
return dominates(Def, UseBB);
}
// If the def and use are in different blocks, do a simple CFG dominator
// tree query.
if (DefBB != UseBB)
return dominates(DefBB, UseBB);
// Ok, def and use are in the same block. If the def is an invoke, it
// doesn't dominate anything in the block. If it's a PHI, it dominates
// everything in the block.
if (isa<PHINode>(UserInst))
return true;
// Otherwise, just loop through the basic block until we find Def or User.
BasicBlock::const_iterator I = DefBB->begin();
for (; &*I != Def && &*I != UserInst; ++I)
/*empty*/;
return &*I != UserInst;
}
bool DominatorTree::isReachableFromEntry(const Use &U) const {
Instruction *I = dyn_cast<Instruction>(U.getUser());
// ConstantExprs aren't really reachable from the entry block, but they
// don't need to be treated like unreachable code either.
if (!I) return true;
// PHI nodes use their operands on their incoming edges.
if (PHINode *PN = dyn_cast<PHINode>(I))
return isReachableFromEntry(PN->getIncomingBlock(U));
// Everything else uses their operands in their own block.
return isReachableFromEntry(I->getParent());
}