mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
65d638a918
natural loop canonicalization (which does many cfg xforms) by 4.3x, for example. This also fixes a bug in postdom dfnumber computation. llvm-svn: 40920
262 lines
8.6 KiB
C++
262 lines
8.6 KiB
C++
//===- PostDominators.cpp - Post-Dominator Calculation --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the post-dominator construction algorithms.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PostDominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char PostDominatorTree::ID = 0;
|
|
char PostDominanceFrontier::ID = 0;
|
|
static RegisterPass<PostDominatorTree>
|
|
F("postdomtree", "Post-Dominator Tree Construction", true);
|
|
|
|
unsigned PostDominatorTree::DFSPass(BasicBlock *V, unsigned N) {
|
|
std::vector<BasicBlock *> workStack;
|
|
SmallPtrSet<BasicBlock *, 32> Visited;
|
|
workStack.push_back(V);
|
|
|
|
do {
|
|
BasicBlock *currentBB = workStack.back();
|
|
InfoRec &CurVInfo = Info[currentBB];
|
|
|
|
// Visit each block only once.
|
|
if (Visited.insert(currentBB)) {
|
|
CurVInfo.Semi = ++N;
|
|
CurVInfo.Label = currentBB;
|
|
|
|
Vertex.push_back(currentBB); // Vertex[n] = current;
|
|
// Info[currentBB].Ancestor = 0;
|
|
// Ancestor[n] = 0
|
|
// Child[currentBB] = 0;
|
|
CurVInfo.Size = 1; // Size[currentBB] = 1
|
|
}
|
|
|
|
// Visit children
|
|
bool visitChild = false;
|
|
for (pred_iterator PI = pred_begin(currentBB), PE = pred_end(currentBB);
|
|
PI != PE && !visitChild; ++PI) {
|
|
InfoRec &SuccVInfo = Info[*PI];
|
|
if (SuccVInfo.Semi == 0) {
|
|
SuccVInfo.Parent = currentBB;
|
|
if (!Visited.count(*PI)) {
|
|
workStack.push_back(*PI);
|
|
visitChild = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If all children are visited or if this block has no child then pop this
|
|
// block out of workStack.
|
|
if (!visitChild)
|
|
workStack.pop_back();
|
|
|
|
} while (!workStack.empty());
|
|
|
|
return N;
|
|
}
|
|
|
|
void PostDominatorTree::Compress(BasicBlock *V, InfoRec &VInfo) {
|
|
BasicBlock *VAncestor = VInfo.Ancestor;
|
|
InfoRec &VAInfo = Info[VAncestor];
|
|
if (VAInfo.Ancestor == 0)
|
|
return;
|
|
|
|
Compress(VAncestor, VAInfo);
|
|
|
|
BasicBlock *VAncestorLabel = VAInfo.Label;
|
|
BasicBlock *VLabel = VInfo.Label;
|
|
if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
|
|
VInfo.Label = VAncestorLabel;
|
|
|
|
VInfo.Ancestor = VAInfo.Ancestor;
|
|
}
|
|
|
|
BasicBlock *PostDominatorTree::Eval(BasicBlock *V) {
|
|
InfoRec &VInfo = Info[V];
|
|
|
|
// Higher-complexity but faster implementation
|
|
if (VInfo.Ancestor == 0)
|
|
return V;
|
|
Compress(V, VInfo);
|
|
return VInfo.Label;
|
|
}
|
|
|
|
void PostDominatorTree::Link(BasicBlock *V, BasicBlock *W,
|
|
InfoRec &WInfo) {
|
|
// Higher-complexity but faster implementation
|
|
WInfo.Ancestor = V;
|
|
}
|
|
|
|
void PostDominatorTree::calculate(Function &F) {
|
|
// Step #0: Scan the function looking for the root nodes of the post-dominance
|
|
// relationships. These blocks, which have no successors, end with return and
|
|
// unwind instructions.
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
|
TerminatorInst *Insn = I->getTerminator();
|
|
if (Insn->getNumSuccessors() == 0) {
|
|
// Unreachable block is not a root node.
|
|
if (!isa<UnreachableInst>(Insn))
|
|
Roots.push_back(I);
|
|
}
|
|
|
|
// Prepopulate maps so that we don't get iterator invalidation issues later.
|
|
IDoms[I] = 0;
|
|
DomTreeNodes[I] = 0;
|
|
}
|
|
|
|
Vertex.push_back(0);
|
|
|
|
// Step #1: Number blocks in depth-first order and initialize variables used
|
|
// in later stages of the algorithm.
|
|
unsigned N = 0;
|
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
|
N = DFSPass(Roots[i], N);
|
|
|
|
for (unsigned i = N; i >= 2; --i) {
|
|
BasicBlock *W = Vertex[i];
|
|
InfoRec &WInfo = Info[W];
|
|
|
|
// Step #2: Calculate the semidominators of all vertices
|
|
for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
|
|
if (Info.count(*SI)) { // Only if this predecessor is reachable!
|
|
unsigned SemiU = Info[Eval(*SI)].Semi;
|
|
if (SemiU < WInfo.Semi)
|
|
WInfo.Semi = SemiU;
|
|
}
|
|
|
|
Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
|
|
|
|
BasicBlock *WParent = WInfo.Parent;
|
|
Link(WParent, W, WInfo);
|
|
|
|
// Step #3: Implicitly define the immediate dominator of vertices
|
|
std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
|
|
while (!WParentBucket.empty()) {
|
|
BasicBlock *V = WParentBucket.back();
|
|
WParentBucket.pop_back();
|
|
BasicBlock *U = Eval(V);
|
|
IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
|
|
}
|
|
}
|
|
|
|
// Step #4: Explicitly define the immediate dominator of each vertex
|
|
for (unsigned i = 2; i <= N; ++i) {
|
|
BasicBlock *W = Vertex[i];
|
|
BasicBlock *&WIDom = IDoms[W];
|
|
if (WIDom != Vertex[Info[W].Semi])
|
|
WIDom = IDoms[WIDom];
|
|
}
|
|
|
|
if (Roots.empty()) return;
|
|
|
|
// Add a node for the root. This node might be the actual root, if there is
|
|
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
|
|
// which postdominates all real exits if there are multiple exit blocks.
|
|
BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
|
|
DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
|
|
|
|
// Loop over all of the reachable blocks in the function...
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
if (BasicBlock *ImmPostDom = getIDom(I)) { // Reachable block.
|
|
DomTreeNode *&BBNode = DomTreeNodes[I];
|
|
if (!BBNode) { // Haven't calculated this node yet?
|
|
// Get or calculate the node for the immediate dominator
|
|
DomTreeNode *IPDomNode = getNodeForBlock(ImmPostDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
DomTreeNode *C = new DomTreeNode(I, IPDomNode);
|
|
DomTreeNodes[I] = C;
|
|
BBNode = IPDomNode->addChild(C);
|
|
}
|
|
}
|
|
|
|
// Free temporary memory used to construct idom's
|
|
IDoms.clear();
|
|
Info.clear();
|
|
std::vector<BasicBlock*>().swap(Vertex);
|
|
|
|
// Start out with the DFS numbers being invalid. Let them be computed if
|
|
// demanded.
|
|
DFSInfoValid = false;
|
|
}
|
|
|
|
|
|
DomTreeNode *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
|
|
DomTreeNode *&BBNode = DomTreeNodes[BB];
|
|
if (BBNode) return BBNode;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate postdominator.
|
|
BasicBlock *IPDom = getIDom(BB);
|
|
DomTreeNode *IPDomNode = getNodeForBlock(IPDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
DomTreeNode *C = new DomTreeNode(BB, IPDomNode);
|
|
return DomTreeNodes[BB] = IPDomNode->addChild(C);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PostDominanceFrontier Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterPass<PostDominanceFrontier>
|
|
H("postdomfrontier", "Post-Dominance Frontier Construction", true);
|
|
|
|
const DominanceFrontier::DomSetType &
|
|
PostDominanceFrontier::calculate(const PostDominatorTree &DT,
|
|
const DomTreeNode *Node) {
|
|
// Loop over CFG successors to calculate DFlocal[Node]
|
|
BasicBlock *BB = Node->getBlock();
|
|
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
|
if (getRoots().empty()) return S;
|
|
|
|
if (BB)
|
|
for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
|
|
SI != SE; ++SI) {
|
|
// Does Node immediately dominate this predecessor?
|
|
DomTreeNode *SINode = DT[*SI];
|
|
if (SINode && SINode->getIDom() != Node)
|
|
S.insert(*SI);
|
|
}
|
|
|
|
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
|
// Loop through and visit the nodes that Node immediately dominates (Node's
|
|
// children in the IDomTree)
|
|
//
|
|
for (DomTreeNode::const_iterator
|
|
NI = Node->begin(), NE = Node->end(); NI != NE; ++NI) {
|
|
DomTreeNode *IDominee = *NI;
|
|
const DomSetType &ChildDF = calculate(DT, IDominee);
|
|
|
|
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
|
|
for (; CDFI != CDFE; ++CDFI) {
|
|
if (!DT.properlyDominates(Node, DT[*CDFI]))
|
|
S.insert(*CDFI);
|
|
}
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
// Ensure that this .cpp file gets linked when PostDominators.h is used.
|
|
DEFINING_FILE_FOR(PostDominanceFrontier)
|