mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
95eb9cab96
One of the changes in lib/Target/AMDGPU/AMDGPUMCInstLower.cpp was a new one. Previously, bundle iterators and single-instruction iterators could be compared to each other (comparing on underlying pointers). I changed a comparison from using `MBB->end()` to using `MBB->instr_end()`, since both end iterators should point at the some place anyway. I don't think the implicit conversion between the two iterator types is a good idea since it's fairly easy to accidentally compare to the wrong thing (they aren't always end iterators). Otherwise I would have just added the conversion. Even with that, no there should be functionality change here. llvm-svn: 250218
680 lines
22 KiB
C++
680 lines
22 KiB
C++
//===-- R600ControlFlowFinalizer.cpp - Finalize Control Flow Inst----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass compute turns all control flow pseudo instructions into native one
|
|
/// computing their address on the fly ; it also sets STACK_SIZE info.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "R600Defines.h"
|
|
#include "R600InstrInfo.h"
|
|
#include "R600MachineFunctionInfo.h"
|
|
#include "R600RegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "r600cf"
|
|
|
|
namespace {
|
|
|
|
struct CFStack {
|
|
|
|
enum StackItem {
|
|
ENTRY = 0,
|
|
SUB_ENTRY = 1,
|
|
FIRST_NON_WQM_PUSH = 2,
|
|
FIRST_NON_WQM_PUSH_W_FULL_ENTRY = 3
|
|
};
|
|
|
|
const AMDGPUSubtarget *ST;
|
|
std::vector<StackItem> BranchStack;
|
|
std::vector<StackItem> LoopStack;
|
|
unsigned MaxStackSize;
|
|
unsigned CurrentEntries;
|
|
unsigned CurrentSubEntries;
|
|
|
|
CFStack(const AMDGPUSubtarget *st, unsigned ShaderType) : ST(st),
|
|
// We need to reserve a stack entry for CALL_FS in vertex shaders.
|
|
MaxStackSize(ShaderType == ShaderType::VERTEX ? 1 : 0),
|
|
CurrentEntries(0), CurrentSubEntries(0) { }
|
|
|
|
unsigned getLoopDepth();
|
|
bool branchStackContains(CFStack::StackItem);
|
|
bool requiresWorkAroundForInst(unsigned Opcode);
|
|
unsigned getSubEntrySize(CFStack::StackItem Item);
|
|
void updateMaxStackSize();
|
|
void pushBranch(unsigned Opcode, bool isWQM = false);
|
|
void pushLoop();
|
|
void popBranch();
|
|
void popLoop();
|
|
};
|
|
|
|
unsigned CFStack::getLoopDepth() {
|
|
return LoopStack.size();
|
|
}
|
|
|
|
bool CFStack::branchStackContains(CFStack::StackItem Item) {
|
|
for (std::vector<CFStack::StackItem>::const_iterator I = BranchStack.begin(),
|
|
E = BranchStack.end(); I != E; ++I) {
|
|
if (*I == Item)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CFStack::requiresWorkAroundForInst(unsigned Opcode) {
|
|
if (Opcode == AMDGPU::CF_ALU_PUSH_BEFORE && ST->hasCaymanISA() &&
|
|
getLoopDepth() > 1)
|
|
return true;
|
|
|
|
if (!ST->hasCFAluBug())
|
|
return false;
|
|
|
|
switch(Opcode) {
|
|
default: return false;
|
|
case AMDGPU::CF_ALU_PUSH_BEFORE:
|
|
case AMDGPU::CF_ALU_ELSE_AFTER:
|
|
case AMDGPU::CF_ALU_BREAK:
|
|
case AMDGPU::CF_ALU_CONTINUE:
|
|
if (CurrentSubEntries == 0)
|
|
return false;
|
|
if (ST->getWavefrontSize() == 64) {
|
|
// We are being conservative here. We only require this work-around if
|
|
// CurrentSubEntries > 3 &&
|
|
// (CurrentSubEntries % 4 == 3 || CurrentSubEntries % 4 == 0)
|
|
//
|
|
// We have to be conservative, because we don't know for certain that
|
|
// our stack allocation algorithm for Evergreen/NI is correct. Applying this
|
|
// work-around when CurrentSubEntries > 3 allows us to over-allocate stack
|
|
// resources without any problems.
|
|
return CurrentSubEntries > 3;
|
|
} else {
|
|
assert(ST->getWavefrontSize() == 32);
|
|
// We are being conservative here. We only require the work-around if
|
|
// CurrentSubEntries > 7 &&
|
|
// (CurrentSubEntries % 8 == 7 || CurrentSubEntries % 8 == 0)
|
|
// See the comment on the wavefront size == 64 case for why we are
|
|
// being conservative.
|
|
return CurrentSubEntries > 7;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned CFStack::getSubEntrySize(CFStack::StackItem Item) {
|
|
switch(Item) {
|
|
default:
|
|
return 0;
|
|
case CFStack::FIRST_NON_WQM_PUSH:
|
|
assert(!ST->hasCaymanISA());
|
|
if (ST->getGeneration() <= AMDGPUSubtarget::R700) {
|
|
// +1 For the push operation.
|
|
// +2 Extra space required.
|
|
return 3;
|
|
} else {
|
|
// Some documentation says that this is not necessary on Evergreen,
|
|
// but experimentation has show that we need to allocate 1 extra
|
|
// sub-entry for the first non-WQM push.
|
|
// +1 For the push operation.
|
|
// +1 Extra space required.
|
|
return 2;
|
|
}
|
|
case CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY:
|
|
assert(ST->getGeneration() >= AMDGPUSubtarget::EVERGREEN);
|
|
// +1 For the push operation.
|
|
// +1 Extra space required.
|
|
return 2;
|
|
case CFStack::SUB_ENTRY:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void CFStack::updateMaxStackSize() {
|
|
unsigned CurrentStackSize = CurrentEntries +
|
|
(RoundUpToAlignment(CurrentSubEntries, 4) / 4);
|
|
MaxStackSize = std::max(CurrentStackSize, MaxStackSize);
|
|
}
|
|
|
|
void CFStack::pushBranch(unsigned Opcode, bool isWQM) {
|
|
CFStack::StackItem Item = CFStack::ENTRY;
|
|
switch(Opcode) {
|
|
case AMDGPU::CF_PUSH_EG:
|
|
case AMDGPU::CF_ALU_PUSH_BEFORE:
|
|
if (!isWQM) {
|
|
if (!ST->hasCaymanISA() &&
|
|
!branchStackContains(CFStack::FIRST_NON_WQM_PUSH))
|
|
Item = CFStack::FIRST_NON_WQM_PUSH; // May not be required on Evergreen/NI
|
|
// See comment in
|
|
// CFStack::getSubEntrySize()
|
|
else if (CurrentEntries > 0 &&
|
|
ST->getGeneration() > AMDGPUSubtarget::EVERGREEN &&
|
|
!ST->hasCaymanISA() &&
|
|
!branchStackContains(CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY))
|
|
Item = CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY;
|
|
else
|
|
Item = CFStack::SUB_ENTRY;
|
|
} else
|
|
Item = CFStack::ENTRY;
|
|
break;
|
|
}
|
|
BranchStack.push_back(Item);
|
|
if (Item == CFStack::ENTRY)
|
|
CurrentEntries++;
|
|
else
|
|
CurrentSubEntries += getSubEntrySize(Item);
|
|
updateMaxStackSize();
|
|
}
|
|
|
|
void CFStack::pushLoop() {
|
|
LoopStack.push_back(CFStack::ENTRY);
|
|
CurrentEntries++;
|
|
updateMaxStackSize();
|
|
}
|
|
|
|
void CFStack::popBranch() {
|
|
CFStack::StackItem Top = BranchStack.back();
|
|
if (Top == CFStack::ENTRY)
|
|
CurrentEntries--;
|
|
else
|
|
CurrentSubEntries-= getSubEntrySize(Top);
|
|
BranchStack.pop_back();
|
|
}
|
|
|
|
void CFStack::popLoop() {
|
|
CurrentEntries--;
|
|
LoopStack.pop_back();
|
|
}
|
|
|
|
class R600ControlFlowFinalizer : public MachineFunctionPass {
|
|
|
|
private:
|
|
typedef std::pair<MachineInstr *, std::vector<MachineInstr *> > ClauseFile;
|
|
|
|
enum ControlFlowInstruction {
|
|
CF_TC,
|
|
CF_VC,
|
|
CF_CALL_FS,
|
|
CF_WHILE_LOOP,
|
|
CF_END_LOOP,
|
|
CF_LOOP_BREAK,
|
|
CF_LOOP_CONTINUE,
|
|
CF_JUMP,
|
|
CF_ELSE,
|
|
CF_POP,
|
|
CF_END
|
|
};
|
|
|
|
static char ID;
|
|
const R600InstrInfo *TII;
|
|
const R600RegisterInfo *TRI;
|
|
unsigned MaxFetchInst;
|
|
const AMDGPUSubtarget *ST;
|
|
|
|
bool IsTrivialInst(MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case AMDGPU::KILL:
|
|
case AMDGPU::RETURN:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const MCInstrDesc &getHWInstrDesc(ControlFlowInstruction CFI) const {
|
|
unsigned Opcode = 0;
|
|
bool isEg = (ST->getGeneration() >= AMDGPUSubtarget::EVERGREEN);
|
|
switch (CFI) {
|
|
case CF_TC:
|
|
Opcode = isEg ? AMDGPU::CF_TC_EG : AMDGPU::CF_TC_R600;
|
|
break;
|
|
case CF_VC:
|
|
Opcode = isEg ? AMDGPU::CF_VC_EG : AMDGPU::CF_VC_R600;
|
|
break;
|
|
case CF_CALL_FS:
|
|
Opcode = isEg ? AMDGPU::CF_CALL_FS_EG : AMDGPU::CF_CALL_FS_R600;
|
|
break;
|
|
case CF_WHILE_LOOP:
|
|
Opcode = isEg ? AMDGPU::WHILE_LOOP_EG : AMDGPU::WHILE_LOOP_R600;
|
|
break;
|
|
case CF_END_LOOP:
|
|
Opcode = isEg ? AMDGPU::END_LOOP_EG : AMDGPU::END_LOOP_R600;
|
|
break;
|
|
case CF_LOOP_BREAK:
|
|
Opcode = isEg ? AMDGPU::LOOP_BREAK_EG : AMDGPU::LOOP_BREAK_R600;
|
|
break;
|
|
case CF_LOOP_CONTINUE:
|
|
Opcode = isEg ? AMDGPU::CF_CONTINUE_EG : AMDGPU::CF_CONTINUE_R600;
|
|
break;
|
|
case CF_JUMP:
|
|
Opcode = isEg ? AMDGPU::CF_JUMP_EG : AMDGPU::CF_JUMP_R600;
|
|
break;
|
|
case CF_ELSE:
|
|
Opcode = isEg ? AMDGPU::CF_ELSE_EG : AMDGPU::CF_ELSE_R600;
|
|
break;
|
|
case CF_POP:
|
|
Opcode = isEg ? AMDGPU::POP_EG : AMDGPU::POP_R600;
|
|
break;
|
|
case CF_END:
|
|
if (ST->hasCaymanISA()) {
|
|
Opcode = AMDGPU::CF_END_CM;
|
|
break;
|
|
}
|
|
Opcode = isEg ? AMDGPU::CF_END_EG : AMDGPU::CF_END_R600;
|
|
break;
|
|
}
|
|
assert (Opcode && "No opcode selected");
|
|
return TII->get(Opcode);
|
|
}
|
|
|
|
bool isCompatibleWithClause(const MachineInstr *MI,
|
|
std::set<unsigned> &DstRegs) const {
|
|
unsigned DstMI, SrcMI;
|
|
for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
|
|
E = MI->operands_end(); I != E; ++I) {
|
|
const MachineOperand &MO = *I;
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.isDef()) {
|
|
unsigned Reg = MO.getReg();
|
|
if (AMDGPU::R600_Reg128RegClass.contains(Reg))
|
|
DstMI = Reg;
|
|
else
|
|
DstMI = TRI->getMatchingSuperReg(Reg,
|
|
TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)),
|
|
&AMDGPU::R600_Reg128RegClass);
|
|
}
|
|
if (MO.isUse()) {
|
|
unsigned Reg = MO.getReg();
|
|
if (AMDGPU::R600_Reg128RegClass.contains(Reg))
|
|
SrcMI = Reg;
|
|
else
|
|
SrcMI = TRI->getMatchingSuperReg(Reg,
|
|
TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)),
|
|
&AMDGPU::R600_Reg128RegClass);
|
|
}
|
|
}
|
|
if ((DstRegs.find(SrcMI) == DstRegs.end())) {
|
|
DstRegs.insert(DstMI);
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
ClauseFile
|
|
MakeFetchClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
|
|
const {
|
|
MachineBasicBlock::iterator ClauseHead = I;
|
|
std::vector<MachineInstr *> ClauseContent;
|
|
unsigned AluInstCount = 0;
|
|
bool IsTex = TII->usesTextureCache(ClauseHead);
|
|
std::set<unsigned> DstRegs;
|
|
for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) {
|
|
if (IsTrivialInst(I))
|
|
continue;
|
|
if (AluInstCount >= MaxFetchInst)
|
|
break;
|
|
if ((IsTex && !TII->usesTextureCache(I)) ||
|
|
(!IsTex && !TII->usesVertexCache(I)))
|
|
break;
|
|
if (!isCompatibleWithClause(I, DstRegs))
|
|
break;
|
|
AluInstCount ++;
|
|
ClauseContent.push_back(I);
|
|
}
|
|
MachineInstr *MIb = BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead),
|
|
getHWInstrDesc(IsTex?CF_TC:CF_VC))
|
|
.addImm(0) // ADDR
|
|
.addImm(AluInstCount - 1); // COUNT
|
|
return ClauseFile(MIb, std::move(ClauseContent));
|
|
}
|
|
|
|
void getLiteral(MachineInstr *MI, std::vector<int64_t> &Lits) const {
|
|
static const unsigned LiteralRegs[] = {
|
|
AMDGPU::ALU_LITERAL_X,
|
|
AMDGPU::ALU_LITERAL_Y,
|
|
AMDGPU::ALU_LITERAL_Z,
|
|
AMDGPU::ALU_LITERAL_W
|
|
};
|
|
const SmallVector<std::pair<MachineOperand *, int64_t>, 3 > Srcs =
|
|
TII->getSrcs(MI);
|
|
for (unsigned i = 0, e = Srcs.size(); i < e; ++i) {
|
|
if (Srcs[i].first->getReg() != AMDGPU::ALU_LITERAL_X)
|
|
continue;
|
|
int64_t Imm = Srcs[i].second;
|
|
std::vector<int64_t>::iterator It =
|
|
std::find(Lits.begin(), Lits.end(), Imm);
|
|
if (It != Lits.end()) {
|
|
unsigned Index = It - Lits.begin();
|
|
Srcs[i].first->setReg(LiteralRegs[Index]);
|
|
} else {
|
|
assert(Lits.size() < 4 && "Too many literals in Instruction Group");
|
|
Srcs[i].first->setReg(LiteralRegs[Lits.size()]);
|
|
Lits.push_back(Imm);
|
|
}
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator insertLiterals(
|
|
MachineBasicBlock::iterator InsertPos,
|
|
const std::vector<unsigned> &Literals) const {
|
|
MachineBasicBlock *MBB = InsertPos->getParent();
|
|
for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
|
|
unsigned LiteralPair0 = Literals[i];
|
|
unsigned LiteralPair1 = (i + 1 < e)?Literals[i + 1]:0;
|
|
InsertPos = BuildMI(MBB, InsertPos->getDebugLoc(),
|
|
TII->get(AMDGPU::LITERALS))
|
|
.addImm(LiteralPair0)
|
|
.addImm(LiteralPair1);
|
|
}
|
|
return InsertPos;
|
|
}
|
|
|
|
ClauseFile
|
|
MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
|
|
const {
|
|
MachineBasicBlock::iterator ClauseHead = I;
|
|
std::vector<MachineInstr *> ClauseContent;
|
|
I++;
|
|
for (MachineBasicBlock::instr_iterator E = MBB.instr_end(); I != E;) {
|
|
if (IsTrivialInst(I)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
if (!I->isBundle() && !TII->isALUInstr(I->getOpcode()))
|
|
break;
|
|
std::vector<int64_t> Literals;
|
|
if (I->isBundle()) {
|
|
MachineInstr *DeleteMI = I;
|
|
MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
|
|
while (++BI != E && BI->isBundledWithPred()) {
|
|
BI->unbundleFromPred();
|
|
for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = BI->getOperand(i);
|
|
if (MO.isReg() && MO.isInternalRead())
|
|
MO.setIsInternalRead(false);
|
|
}
|
|
getLiteral(&*BI, Literals);
|
|
ClauseContent.push_back(&*BI);
|
|
}
|
|
I = BI;
|
|
DeleteMI->eraseFromParent();
|
|
} else {
|
|
getLiteral(I, Literals);
|
|
ClauseContent.push_back(I);
|
|
I++;
|
|
}
|
|
for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
|
|
unsigned literal0 = Literals[i];
|
|
unsigned literal2 = (i + 1 < e)?Literals[i + 1]:0;
|
|
MachineInstr *MILit = BuildMI(MBB, I, I->getDebugLoc(),
|
|
TII->get(AMDGPU::LITERALS))
|
|
.addImm(literal0)
|
|
.addImm(literal2);
|
|
ClauseContent.push_back(MILit);
|
|
}
|
|
}
|
|
assert(ClauseContent.size() < 128 && "ALU clause is too big");
|
|
ClauseHead->getOperand(7).setImm(ClauseContent.size() - 1);
|
|
return ClauseFile(ClauseHead, std::move(ClauseContent));
|
|
}
|
|
|
|
void
|
|
EmitFetchClause(MachineBasicBlock::iterator InsertPos, ClauseFile &Clause,
|
|
unsigned &CfCount) {
|
|
CounterPropagateAddr(Clause.first, CfCount);
|
|
MachineBasicBlock *BB = Clause.first->getParent();
|
|
BuildMI(BB, InsertPos->getDebugLoc(), TII->get(AMDGPU::FETCH_CLAUSE))
|
|
.addImm(CfCount);
|
|
for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) {
|
|
BB->splice(InsertPos, BB, Clause.second[i]);
|
|
}
|
|
CfCount += 2 * Clause.second.size();
|
|
}
|
|
|
|
void
|
|
EmitALUClause(MachineBasicBlock::iterator InsertPos, ClauseFile &Clause,
|
|
unsigned &CfCount) {
|
|
Clause.first->getOperand(0).setImm(0);
|
|
CounterPropagateAddr(Clause.first, CfCount);
|
|
MachineBasicBlock *BB = Clause.first->getParent();
|
|
BuildMI(BB, InsertPos->getDebugLoc(), TII->get(AMDGPU::ALU_CLAUSE))
|
|
.addImm(CfCount);
|
|
for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) {
|
|
BB->splice(InsertPos, BB, Clause.second[i]);
|
|
}
|
|
CfCount += Clause.second.size();
|
|
}
|
|
|
|
void CounterPropagateAddr(MachineInstr *MI, unsigned Addr) const {
|
|
MI->getOperand(0).setImm(Addr + MI->getOperand(0).getImm());
|
|
}
|
|
void CounterPropagateAddr(const std::set<MachineInstr *> &MIs,
|
|
unsigned Addr) const {
|
|
for (MachineInstr *MI : MIs) {
|
|
CounterPropagateAddr(MI, Addr);
|
|
}
|
|
}
|
|
|
|
public:
|
|
R600ControlFlowFinalizer(TargetMachine &tm)
|
|
: MachineFunctionPass(ID), TII(nullptr), TRI(nullptr), ST(nullptr) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override {
|
|
ST = &MF.getSubtarget<AMDGPUSubtarget>();
|
|
MaxFetchInst = ST->getTexVTXClauseSize();
|
|
TII = static_cast<const R600InstrInfo *>(ST->getInstrInfo());
|
|
TRI = static_cast<const R600RegisterInfo *>(ST->getRegisterInfo());
|
|
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
|
|
|
|
CFStack CFStack(ST, MFI->getShaderType());
|
|
for (MachineFunction::iterator MB = MF.begin(), ME = MF.end(); MB != ME;
|
|
++MB) {
|
|
MachineBasicBlock &MBB = *MB;
|
|
unsigned CfCount = 0;
|
|
std::vector<std::pair<unsigned, std::set<MachineInstr *> > > LoopStack;
|
|
std::vector<MachineInstr * > IfThenElseStack;
|
|
if (MFI->getShaderType() == ShaderType::VERTEX) {
|
|
BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()),
|
|
getHWInstrDesc(CF_CALL_FS));
|
|
CfCount++;
|
|
}
|
|
std::vector<ClauseFile> FetchClauses, AluClauses;
|
|
std::vector<MachineInstr *> LastAlu(1);
|
|
std::vector<MachineInstr *> ToPopAfter;
|
|
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
|
|
I != E;) {
|
|
if (TII->usesTextureCache(I) || TII->usesVertexCache(I)) {
|
|
DEBUG(dbgs() << CfCount << ":"; I->dump(););
|
|
FetchClauses.push_back(MakeFetchClause(MBB, I));
|
|
CfCount++;
|
|
LastAlu.back() = nullptr;
|
|
continue;
|
|
}
|
|
|
|
MachineBasicBlock::iterator MI = I;
|
|
if (MI->getOpcode() != AMDGPU::ENDIF)
|
|
LastAlu.back() = nullptr;
|
|
if (MI->getOpcode() == AMDGPU::CF_ALU)
|
|
LastAlu.back() = MI;
|
|
I++;
|
|
bool RequiresWorkAround =
|
|
CFStack.requiresWorkAroundForInst(MI->getOpcode());
|
|
switch (MI->getOpcode()) {
|
|
case AMDGPU::CF_ALU_PUSH_BEFORE:
|
|
if (RequiresWorkAround) {
|
|
DEBUG(dbgs() << "Applying bug work-around for ALU_PUSH_BEFORE\n");
|
|
BuildMI(MBB, MI, MBB.findDebugLoc(MI), TII->get(AMDGPU::CF_PUSH_EG))
|
|
.addImm(CfCount + 1)
|
|
.addImm(1);
|
|
MI->setDesc(TII->get(AMDGPU::CF_ALU));
|
|
CfCount++;
|
|
CFStack.pushBranch(AMDGPU::CF_PUSH_EG);
|
|
} else
|
|
CFStack.pushBranch(AMDGPU::CF_ALU_PUSH_BEFORE);
|
|
|
|
case AMDGPU::CF_ALU:
|
|
I = MI;
|
|
AluClauses.push_back(MakeALUClause(MBB, I));
|
|
DEBUG(dbgs() << CfCount << ":"; MI->dump(););
|
|
CfCount++;
|
|
break;
|
|
case AMDGPU::WHILELOOP: {
|
|
CFStack.pushLoop();
|
|
MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
|
|
getHWInstrDesc(CF_WHILE_LOOP))
|
|
.addImm(1);
|
|
std::pair<unsigned, std::set<MachineInstr *> > Pair(CfCount,
|
|
std::set<MachineInstr *>());
|
|
Pair.second.insert(MIb);
|
|
LoopStack.push_back(std::move(Pair));
|
|
MI->eraseFromParent();
|
|
CfCount++;
|
|
break;
|
|
}
|
|
case AMDGPU::ENDLOOP: {
|
|
CFStack.popLoop();
|
|
std::pair<unsigned, std::set<MachineInstr *> > Pair =
|
|
std::move(LoopStack.back());
|
|
LoopStack.pop_back();
|
|
CounterPropagateAddr(Pair.second, CfCount);
|
|
BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END_LOOP))
|
|
.addImm(Pair.first + 1);
|
|
MI->eraseFromParent();
|
|
CfCount++;
|
|
break;
|
|
}
|
|
case AMDGPU::IF_PREDICATE_SET: {
|
|
LastAlu.push_back(nullptr);
|
|
MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
|
|
getHWInstrDesc(CF_JUMP))
|
|
.addImm(0)
|
|
.addImm(0);
|
|
IfThenElseStack.push_back(MIb);
|
|
DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
|
|
MI->eraseFromParent();
|
|
CfCount++;
|
|
break;
|
|
}
|
|
case AMDGPU::ELSE: {
|
|
MachineInstr * JumpInst = IfThenElseStack.back();
|
|
IfThenElseStack.pop_back();
|
|
CounterPropagateAddr(JumpInst, CfCount);
|
|
MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
|
|
getHWInstrDesc(CF_ELSE))
|
|
.addImm(0)
|
|
.addImm(0);
|
|
DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
|
|
IfThenElseStack.push_back(MIb);
|
|
MI->eraseFromParent();
|
|
CfCount++;
|
|
break;
|
|
}
|
|
case AMDGPU::ENDIF: {
|
|
CFStack.popBranch();
|
|
if (LastAlu.back()) {
|
|
ToPopAfter.push_back(LastAlu.back());
|
|
} else {
|
|
MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
|
|
getHWInstrDesc(CF_POP))
|
|
.addImm(CfCount + 1)
|
|
.addImm(1);
|
|
(void)MIb;
|
|
DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
|
|
CfCount++;
|
|
}
|
|
|
|
MachineInstr *IfOrElseInst = IfThenElseStack.back();
|
|
IfThenElseStack.pop_back();
|
|
CounterPropagateAddr(IfOrElseInst, CfCount);
|
|
IfOrElseInst->getOperand(1).setImm(1);
|
|
LastAlu.pop_back();
|
|
MI->eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::BREAK: {
|
|
CfCount ++;
|
|
MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
|
|
getHWInstrDesc(CF_LOOP_BREAK))
|
|
.addImm(0);
|
|
LoopStack.back().second.insert(MIb);
|
|
MI->eraseFromParent();
|
|
break;
|
|
}
|
|
case AMDGPU::CONTINUE: {
|
|
MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
|
|
getHWInstrDesc(CF_LOOP_CONTINUE))
|
|
.addImm(0);
|
|
LoopStack.back().second.insert(MIb);
|
|
MI->eraseFromParent();
|
|
CfCount++;
|
|
break;
|
|
}
|
|
case AMDGPU::RETURN: {
|
|
BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END));
|
|
CfCount++;
|
|
MI->eraseFromParent();
|
|
if (CfCount % 2) {
|
|
BuildMI(MBB, I, MBB.findDebugLoc(MI), TII->get(AMDGPU::PAD));
|
|
CfCount++;
|
|
}
|
|
for (unsigned i = 0, e = FetchClauses.size(); i < e; i++)
|
|
EmitFetchClause(I, FetchClauses[i], CfCount);
|
|
for (unsigned i = 0, e = AluClauses.size(); i < e; i++)
|
|
EmitALUClause(I, AluClauses[i], CfCount);
|
|
}
|
|
default:
|
|
if (TII->isExport(MI->getOpcode())) {
|
|
DEBUG(dbgs() << CfCount << ":"; MI->dump(););
|
|
CfCount++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = ToPopAfter.size(); i < e; ++i) {
|
|
MachineInstr *Alu = ToPopAfter[i];
|
|
BuildMI(MBB, Alu, MBB.findDebugLoc((MachineBasicBlock::iterator)Alu),
|
|
TII->get(AMDGPU::CF_ALU_POP_AFTER))
|
|
.addImm(Alu->getOperand(0).getImm())
|
|
.addImm(Alu->getOperand(1).getImm())
|
|
.addImm(Alu->getOperand(2).getImm())
|
|
.addImm(Alu->getOperand(3).getImm())
|
|
.addImm(Alu->getOperand(4).getImm())
|
|
.addImm(Alu->getOperand(5).getImm())
|
|
.addImm(Alu->getOperand(6).getImm())
|
|
.addImm(Alu->getOperand(7).getImm())
|
|
.addImm(Alu->getOperand(8).getImm());
|
|
Alu->eraseFromParent();
|
|
}
|
|
MFI->StackSize = CFStack.MaxStackSize;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const char *getPassName() const override {
|
|
return "R600 Control Flow Finalizer Pass";
|
|
}
|
|
};
|
|
|
|
char R600ControlFlowFinalizer::ID = 0;
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
llvm::FunctionPass *llvm::createR600ControlFlowFinalizer(TargetMachine &TM) {
|
|
return new R600ControlFlowFinalizer(TM);
|
|
}
|