1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Analysis/DemandedBits.cpp
Simon Pilgrim 8366289c89 [DemandedBits] Improve accuracy of Add propagator
The current demand propagator for addition will mark all input bits at and right of the alive output bit as alive. But carry won't propagate beyond a bit for which both operands are zero (or one/zero in the case of subtraction) so a more accurate answer is possible given known bits.

I derived a propagator by working through truth tables and using a bit-reversed addition to make demand ripple to the right, but I'm not sure how to make a convincing argument for its correctness in the comments yet. Nevertheless, here's a minimal implementation and test to get feedback.

This would help in a situation where, for example, four bytes (<128) packed into an int are added with four others SIMD-style but only one of the four results is actually read.

Known A:     0_______0_______0_______0_______
Known B:     0_______0_______0_______0_______
AOut:        00000000001000000000000000000000
AB, current: 00000000001111111111111111111111
AB, patch:   00000000001111111000000000000000

Committed on behalf of: @rrika (Erika)

Differential Revision: https://reviews.llvm.org/D72423
2020-08-17 12:54:09 +01:00

584 lines
20 KiB
C++

//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements a demanded bits analysis. A demanded bit is one that
// contributes to a result; bits that are not demanded can be either zero or
// one without affecting control or data flow. For example in this sequence:
//
// %1 = add i32 %x, %y
// %2 = trunc i32 %1 to i16
//
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
// trunc.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "demanded-bits"
char DemandedBitsWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
"Demanded bits analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
"Demanded bits analysis", false, false)
DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
}
void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.setPreservesAll();
}
void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
DB->print(OS);
}
static bool isAlwaysLive(Instruction *I) {
return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
I->mayHaveSideEffects();
}
void DemandedBits::determineLiveOperandBits(
const Instruction *UserI, const Value *Val, unsigned OperandNo,
const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
bool &KnownBitsComputed) {
unsigned BitWidth = AB.getBitWidth();
// We're called once per operand, but for some instructions, we need to
// compute known bits of both operands in order to determine the live bits of
// either (when both operands are instructions themselves). We don't,
// however, want to do this twice, so we cache the result in APInts that live
// in the caller. For the two-relevant-operands case, both operand values are
// provided here.
auto ComputeKnownBits =
[&](unsigned BitWidth, const Value *V1, const Value *V2) {
if (KnownBitsComputed)
return;
KnownBitsComputed = true;
const DataLayout &DL = UserI->getModule()->getDataLayout();
Known = KnownBits(BitWidth);
computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
if (V2) {
Known2 = KnownBits(BitWidth);
computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
}
};
switch (UserI->getOpcode()) {
default: break;
case Instruction::Call:
case Instruction::Invoke:
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::bswap:
// The alive bits of the input are the swapped alive bits of
// the output.
AB = AOut.byteSwap();
break;
case Intrinsic::bitreverse:
// The alive bits of the input are the reversed alive bits of
// the output.
AB = AOut.reverseBits();
break;
case Intrinsic::ctlz:
if (OperandNo == 0) {
// We need some output bits, so we need all bits of the
// input to the left of, and including, the leftmost bit
// known to be one.
ComputeKnownBits(BitWidth, Val, nullptr);
AB = APInt::getHighBitsSet(BitWidth,
std::min(BitWidth, Known.countMaxLeadingZeros()+1));
}
break;
case Intrinsic::cttz:
if (OperandNo == 0) {
// We need some output bits, so we need all bits of the
// input to the right of, and including, the rightmost bit
// known to be one.
ComputeKnownBits(BitWidth, Val, nullptr);
AB = APInt::getLowBitsSet(BitWidth,
std::min(BitWidth, Known.countMaxTrailingZeros()+1));
}
break;
case Intrinsic::fshl:
case Intrinsic::fshr: {
const APInt *SA;
if (OperandNo == 2) {
// Shift amount is modulo the bitwidth. For powers of two we have
// SA % BW == SA & (BW - 1).
if (isPowerOf2_32(BitWidth))
AB = BitWidth - 1;
} else if (match(II->getOperand(2), m_APInt(SA))) {
// Normalize to funnel shift left. APInt shifts of BitWidth are well-
// defined, so no need to special-case zero shifts here.
uint64_t ShiftAmt = SA->urem(BitWidth);
if (II->getIntrinsicID() == Intrinsic::fshr)
ShiftAmt = BitWidth - ShiftAmt;
if (OperandNo == 0)
AB = AOut.lshr(ShiftAmt);
else if (OperandNo == 1)
AB = AOut.shl(BitWidth - ShiftAmt);
}
break;
}
}
break;
case Instruction::Add:
if (AOut.isMask()) {
AB = AOut;
} else {
ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
AB = determineLiveOperandBitsAdd(OperandNo, AOut, Known, Known2);
}
break;
case Instruction::Sub:
if (AOut.isMask()) {
AB = AOut;
} else {
ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
AB = determineLiveOperandBitsSub(OperandNo, AOut, Known, Known2);
}
break;
case Instruction::Mul:
// Find the highest live output bit. We don't need any more input
// bits than that (adds, and thus subtracts, ripple only to the
// left).
AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
break;
case Instruction::Shl:
if (OperandNo == 0) {
const APInt *ShiftAmtC;
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
AB = AOut.lshr(ShiftAmt);
// If the shift is nuw/nsw, then the high bits are not dead
// (because we've promised that they *must* be zero).
const ShlOperator *S = cast<ShlOperator>(UserI);
if (S->hasNoSignedWrap())
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
else if (S->hasNoUnsignedWrap())
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
}
}
break;
case Instruction::LShr:
if (OperandNo == 0) {
const APInt *ShiftAmtC;
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
AB = AOut.shl(ShiftAmt);
// If the shift is exact, then the low bits are not dead
// (they must be zero).
if (cast<LShrOperator>(UserI)->isExact())
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
}
}
break;
case Instruction::AShr:
if (OperandNo == 0) {
const APInt *ShiftAmtC;
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
AB = AOut.shl(ShiftAmt);
// Because the high input bit is replicated into the
// high-order bits of the result, if we need any of those
// bits, then we must keep the highest input bit.
if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
.getBoolValue())
AB.setSignBit();
// If the shift is exact, then the low bits are not dead
// (they must be zero).
if (cast<AShrOperator>(UserI)->isExact())
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
}
}
break;
case Instruction::And:
AB = AOut;
// For bits that are known zero, the corresponding bits in the
// other operand are dead (unless they're both zero, in which
// case they can't both be dead, so just mark the LHS bits as
// dead).
ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
if (OperandNo == 0)
AB &= ~Known2.Zero;
else
AB &= ~(Known.Zero & ~Known2.Zero);
break;
case Instruction::Or:
AB = AOut;
// For bits that are known one, the corresponding bits in the
// other operand are dead (unless they're both one, in which
// case they can't both be dead, so just mark the LHS bits as
// dead).
ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
if (OperandNo == 0)
AB &= ~Known2.One;
else
AB &= ~(Known.One & ~Known2.One);
break;
case Instruction::Xor:
case Instruction::PHI:
AB = AOut;
break;
case Instruction::Trunc:
AB = AOut.zext(BitWidth);
break;
case Instruction::ZExt:
AB = AOut.trunc(BitWidth);
break;
case Instruction::SExt:
AB = AOut.trunc(BitWidth);
// Because the high input bit is replicated into the
// high-order bits of the result, if we need any of those
// bits, then we must keep the highest input bit.
if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
AOut.getBitWidth() - BitWidth))
.getBoolValue())
AB.setSignBit();
break;
case Instruction::Select:
if (OperandNo != 0)
AB = AOut;
break;
case Instruction::ExtractElement:
if (OperandNo == 0)
AB = AOut;
break;
case Instruction::InsertElement:
case Instruction::ShuffleVector:
if (OperandNo == 0 || OperandNo == 1)
AB = AOut;
break;
}
}
bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
DB.emplace(F, AC, DT);
return false;
}
void DemandedBitsWrapperPass::releaseMemory() {
DB.reset();
}
void DemandedBits::performAnalysis() {
if (Analyzed)
// Analysis already completed for this function.
return;
Analyzed = true;
Visited.clear();
AliveBits.clear();
DeadUses.clear();
SmallSetVector<Instruction*, 16> Worklist;
// Collect the set of "root" instructions that are known live.
for (Instruction &I : instructions(F)) {
if (!isAlwaysLive(&I))
continue;
LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
// For integer-valued instructions, set up an initial empty set of alive
// bits and add the instruction to the work list. For other instructions
// add their operands to the work list (for integer values operands, mark
// all bits as live).
Type *T = I.getType();
if (T->isIntOrIntVectorTy()) {
if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
Worklist.insert(&I);
continue;
}
// Non-integer-typed instructions...
for (Use &OI : I.operands()) {
if (Instruction *J = dyn_cast<Instruction>(OI)) {
Type *T = J->getType();
if (T->isIntOrIntVectorTy())
AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits());
else
Visited.insert(J);
Worklist.insert(J);
}
}
// To save memory, we don't add I to the Visited set here. Instead, we
// check isAlwaysLive on every instruction when searching for dead
// instructions later (we need to check isAlwaysLive for the
// integer-typed instructions anyway).
}
// Propagate liveness backwards to operands.
while (!Worklist.empty()) {
Instruction *UserI = Worklist.pop_back_val();
LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
APInt AOut;
bool InputIsKnownDead = false;
if (UserI->getType()->isIntOrIntVectorTy()) {
AOut = AliveBits[UserI];
LLVM_DEBUG(dbgs() << " Alive Out: 0x"
<< Twine::utohexstr(AOut.getLimitedValue()));
// If all bits of the output are dead, then all bits of the input
// are also dead.
InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
}
LLVM_DEBUG(dbgs() << "\n");
KnownBits Known, Known2;
bool KnownBitsComputed = false;
// Compute the set of alive bits for each operand. These are anded into the
// existing set, if any, and if that changes the set of alive bits, the
// operand is added to the work-list.
for (Use &OI : UserI->operands()) {
// We also want to detect dead uses of arguments, but will only store
// demanded bits for instructions.
Instruction *I = dyn_cast<Instruction>(OI);
if (!I && !isa<Argument>(OI))
continue;
Type *T = OI->getType();
if (T->isIntOrIntVectorTy()) {
unsigned BitWidth = T->getScalarSizeInBits();
APInt AB = APInt::getAllOnesValue(BitWidth);
if (InputIsKnownDead) {
AB = APInt(BitWidth, 0);
} else {
// Bits of each operand that are used to compute alive bits of the
// output are alive, all others are dead.
determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
Known, Known2, KnownBitsComputed);
// Keep track of uses which have no demanded bits.
if (AB.isNullValue())
DeadUses.insert(&OI);
else
DeadUses.erase(&OI);
}
if (I) {
// If we've added to the set of alive bits (or the operand has not
// been previously visited), then re-queue the operand to be visited
// again.
auto Res = AliveBits.try_emplace(I);
if (Res.second || (AB |= Res.first->second) != Res.first->second) {
Res.first->second = std::move(AB);
Worklist.insert(I);
}
}
} else if (I && Visited.insert(I).second) {
Worklist.insert(I);
}
}
}
}
APInt DemandedBits::getDemandedBits(Instruction *I) {
performAnalysis();
auto Found = AliveBits.find(I);
if (Found != AliveBits.end())
return Found->second;
const DataLayout &DL = I->getModule()->getDataLayout();
return APInt::getAllOnesValue(
DL.getTypeSizeInBits(I->getType()->getScalarType()));
}
bool DemandedBits::isInstructionDead(Instruction *I) {
performAnalysis();
return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
!isAlwaysLive(I);
}
bool DemandedBits::isUseDead(Use *U) {
// We only track integer uses, everything else is assumed live.
if (!(*U)->getType()->isIntOrIntVectorTy())
return false;
// Uses by always-live instructions are never dead.
Instruction *UserI = cast<Instruction>(U->getUser());
if (isAlwaysLive(UserI))
return false;
performAnalysis();
if (DeadUses.count(U))
return true;
// If no output bits are demanded, no input bits are demanded and the use
// is dead. These uses might not be explicitly present in the DeadUses map.
if (UserI->getType()->isIntOrIntVectorTy()) {
auto Found = AliveBits.find(UserI);
if (Found != AliveBits.end() && Found->second.isNullValue())
return true;
}
return false;
}
void DemandedBits::print(raw_ostream &OS) {
performAnalysis();
for (auto &KV : AliveBits) {
OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
<< " for " << *KV.first << '\n';
}
}
static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo,
const APInt &AOut,
const KnownBits &LHS,
const KnownBits &RHS,
bool CarryZero, bool CarryOne) {
assert(!(CarryZero && CarryOne) &&
"Carry can't be zero and one at the same time");
// The following check should be done by the caller, as it also indicates
// that LHS and RHS don't need to be computed.
//
// if (AOut.isMask())
// return AOut;
// Boundary bits' carry out is unaffected by their carry in.
APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One);
// First, the alive carry bits are determined from the alive output bits:
// Let demand ripple to the right but only up to any set bit in Bound.
// AOut = -1----
// Bound = ----1-
// ACarry&~AOut = --111-
APInt RBound = Bound.reverseBits();
APInt RAOut = AOut.reverseBits();
APInt RProp = RAOut + (RAOut | ~RBound);
APInt RACarry = RProp ^ ~RBound;
APInt ACarry = RACarry.reverseBits();
// Then, the alive input bits are determined from the alive carry bits:
APInt NeededToMaintainCarryZero;
APInt NeededToMaintainCarryOne;
if (OperandNo == 0) {
NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero;
NeededToMaintainCarryOne = LHS.One | ~RHS.One;
} else {
NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero;
NeededToMaintainCarryOne = RHS.One | ~LHS.One;
}
// As in computeForAddCarry
APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero;
APInt PossibleSumOne = LHS.One + RHS.One + CarryOne;
// The below is simplified from
//
// APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
// APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
// APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne);
//
// APInt NeededToMaintainCarry =
// (CarryKnownZero & NeededToMaintainCarryZero) |
// (CarryKnownOne & NeededToMaintainCarryOne) |
// CarryUnknown;
APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) &
(PossibleSumOne | NeededToMaintainCarryOne);
APInt AB = AOut | (ACarry & NeededToMaintainCarry);
return AB;
}
APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo,
const APInt &AOut,
const KnownBits &LHS,
const KnownBits &RHS) {
return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, true,
false);
}
APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo,
const APInt &AOut,
const KnownBits &LHS,
const KnownBits &RHS) {
KnownBits NRHS;
NRHS.Zero = RHS.One;
NRHS.One = RHS.Zero;
return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, NRHS, false,
true);
}
FunctionPass *llvm::createDemandedBitsWrapperPass() {
return new DemandedBitsWrapperPass();
}
AnalysisKey DemandedBitsAnalysis::Key;
DemandedBits DemandedBitsAnalysis::run(Function &F,
FunctionAnalysisManager &AM) {
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
return DemandedBits(F, AC, DT);
}
PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
AM.getResult<DemandedBitsAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}