1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/TableGen/TGParser.cpp
Simon Pilgrim fdae127fbd TGParser.h - cleanup includes and forward declarations. NFC.
Replace Twine.h/SourceMgr.h includes with forward declarations and include in TGParser.cpp
Remove forward declarations we already have to include in Record.h
2020-04-21 11:32:58 +01:00

3482 lines
104 KiB
C++

//===- TGParser.cpp - Parser for TableGen Files ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implement the Parser for TableGen.
//
//===----------------------------------------------------------------------===//
#include "TGParser.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SourceMgr.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Support Code for the Semantic Actions.
//===----------------------------------------------------------------------===//
namespace llvm {
struct SubClassReference {
SMRange RefRange;
Record *Rec;
SmallVector<Init*, 4> TemplateArgs;
SubClassReference() : Rec(nullptr) {}
bool isInvalid() const { return Rec == nullptr; }
};
struct SubMultiClassReference {
SMRange RefRange;
MultiClass *MC;
SmallVector<Init*, 4> TemplateArgs;
SubMultiClassReference() : MC(nullptr) {}
bool isInvalid() const { return MC == nullptr; }
void dump() const;
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SubMultiClassReference::dump() const {
errs() << "Multiclass:\n";
MC->dump();
errs() << "Template args:\n";
for (Init *TA : TemplateArgs)
TA->dump();
}
#endif
} // end namespace llvm
static bool checkBitsConcrete(Record &R, const RecordVal &RV) {
BitsInit *BV = cast<BitsInit>(RV.getValue());
for (unsigned i = 0, e = BV->getNumBits(); i != e; ++i) {
Init *Bit = BV->getBit(i);
bool IsReference = false;
if (auto VBI = dyn_cast<VarBitInit>(Bit)) {
if (auto VI = dyn_cast<VarInit>(VBI->getBitVar())) {
if (R.getValue(VI->getName()))
IsReference = true;
}
} else if (isa<VarInit>(Bit)) {
IsReference = true;
}
if (!(IsReference || Bit->isConcrete()))
return false;
}
return true;
}
static void checkConcrete(Record &R) {
for (const RecordVal &RV : R.getValues()) {
// HACK: Disable this check for variables declared with 'field'. This is
// done merely because existing targets have legitimate cases of
// non-concrete variables in helper defs. Ideally, we'd introduce a
// 'maybe' or 'optional' modifier instead of this.
if (RV.getPrefix())
continue;
if (Init *V = RV.getValue()) {
bool Ok = isa<BitsInit>(V) ? checkBitsConcrete(R, RV) : V->isConcrete();
if (!Ok) {
PrintError(R.getLoc(),
Twine("Initializer of '") + RV.getNameInitAsString() +
"' in '" + R.getNameInitAsString() +
"' could not be fully resolved: " +
RV.getValue()->getAsString());
}
}
}
}
/// Return an Init with a qualifier prefix referring
/// to CurRec's name.
static Init *QualifyName(Record &CurRec, MultiClass *CurMultiClass,
Init *Name, StringRef Scoper) {
Init *NewName =
BinOpInit::getStrConcat(CurRec.getNameInit(), StringInit::get(Scoper));
NewName = BinOpInit::getStrConcat(NewName, Name);
if (CurMultiClass && Scoper != "::") {
Init *Prefix = BinOpInit::getStrConcat(CurMultiClass->Rec.getNameInit(),
StringInit::get("::"));
NewName = BinOpInit::getStrConcat(Prefix, NewName);
}
if (BinOpInit *BinOp = dyn_cast<BinOpInit>(NewName))
NewName = BinOp->Fold(&CurRec);
return NewName;
}
/// Return the qualified version of the implicit 'NAME' template argument.
static Init *QualifiedNameOfImplicitName(Record &Rec,
MultiClass *MC = nullptr) {
return QualifyName(Rec, MC, StringInit::get("NAME"), MC ? "::" : ":");
}
static Init *QualifiedNameOfImplicitName(MultiClass *MC) {
return QualifiedNameOfImplicitName(MC->Rec, MC);
}
bool TGParser::AddValue(Record *CurRec, SMLoc Loc, const RecordVal &RV) {
if (!CurRec)
CurRec = &CurMultiClass->Rec;
if (RecordVal *ERV = CurRec->getValue(RV.getNameInit())) {
// The value already exists in the class, treat this as a set.
if (ERV->setValue(RV.getValue()))
return Error(Loc, "New definition of '" + RV.getName() + "' of type '" +
RV.getType()->getAsString() + "' is incompatible with " +
"previous definition of type '" +
ERV->getType()->getAsString() + "'");
} else {
CurRec->addValue(RV);
}
return false;
}
/// SetValue -
/// Return true on error, false on success.
bool TGParser::SetValue(Record *CurRec, SMLoc Loc, Init *ValName,
ArrayRef<unsigned> BitList, Init *V,
bool AllowSelfAssignment) {
if (!V) return false;
if (!CurRec) CurRec = &CurMultiClass->Rec;
RecordVal *RV = CurRec->getValue(ValName);
if (!RV)
return Error(Loc, "Value '" + ValName->getAsUnquotedString() +
"' unknown!");
// Do not allow assignments like 'X = X'. This will just cause infinite loops
// in the resolution machinery.
if (BitList.empty())
if (VarInit *VI = dyn_cast<VarInit>(V))
if (VI->getNameInit() == ValName && !AllowSelfAssignment)
return Error(Loc, "Recursion / self-assignment forbidden");
// If we are assigning to a subset of the bits in the value... then we must be
// assigning to a field of BitsRecTy, which must have a BitsInit
// initializer.
//
if (!BitList.empty()) {
BitsInit *CurVal = dyn_cast<BitsInit>(RV->getValue());
if (!CurVal)
return Error(Loc, "Value '" + ValName->getAsUnquotedString() +
"' is not a bits type");
// Convert the incoming value to a bits type of the appropriate size...
Init *BI = V->getCastTo(BitsRecTy::get(BitList.size()));
if (!BI)
return Error(Loc, "Initializer is not compatible with bit range");
SmallVector<Init *, 16> NewBits(CurVal->getNumBits());
// Loop over bits, assigning values as appropriate.
for (unsigned i = 0, e = BitList.size(); i != e; ++i) {
unsigned Bit = BitList[i];
if (NewBits[Bit])
return Error(Loc, "Cannot set bit #" + Twine(Bit) + " of value '" +
ValName->getAsUnquotedString() + "' more than once");
NewBits[Bit] = BI->getBit(i);
}
for (unsigned i = 0, e = CurVal->getNumBits(); i != e; ++i)
if (!NewBits[i])
NewBits[i] = CurVal->getBit(i);
V = BitsInit::get(NewBits);
}
if (RV->setValue(V)) {
std::string InitType;
if (BitsInit *BI = dyn_cast<BitsInit>(V))
InitType = (Twine("' of type bit initializer with length ") +
Twine(BI->getNumBits())).str();
else if (TypedInit *TI = dyn_cast<TypedInit>(V))
InitType = (Twine("' of type '") + TI->getType()->getAsString()).str();
return Error(Loc, "Value '" + ValName->getAsUnquotedString() +
"' of type '" + RV->getType()->getAsString() +
"' is incompatible with initializer '" +
V->getAsString() + InitType + "'");
}
return false;
}
/// AddSubClass - Add SubClass as a subclass to CurRec, resolving its template
/// args as SubClass's template arguments.
bool TGParser::AddSubClass(Record *CurRec, SubClassReference &SubClass) {
Record *SC = SubClass.Rec;
// Add all of the values in the subclass into the current class.
for (const RecordVal &Val : SC->getValues())
if (AddValue(CurRec, SubClass.RefRange.Start, Val))
return true;
ArrayRef<Init *> TArgs = SC->getTemplateArgs();
// Ensure that an appropriate number of template arguments are specified.
if (TArgs.size() < SubClass.TemplateArgs.size())
return Error(SubClass.RefRange.Start,
"More template args specified than expected");
// Loop over all of the template arguments, setting them to the specified
// value or leaving them as the default if necessary.
MapResolver R(CurRec);
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
if (i < SubClass.TemplateArgs.size()) {
// If a value is specified for this template arg, set it now.
if (SetValue(CurRec, SubClass.RefRange.Start, TArgs[i],
None, SubClass.TemplateArgs[i]))
return true;
} else if (!CurRec->getValue(TArgs[i])->getValue()->isComplete()) {
return Error(SubClass.RefRange.Start,
"Value not specified for template argument #" +
Twine(i) + " (" + TArgs[i]->getAsUnquotedString() +
") of subclass '" + SC->getNameInitAsString() + "'!");
}
R.set(TArgs[i], CurRec->getValue(TArgs[i])->getValue());
CurRec->removeValue(TArgs[i]);
}
Init *Name;
if (CurRec->isClass())
Name =
VarInit::get(QualifiedNameOfImplicitName(*CurRec), StringRecTy::get());
else
Name = CurRec->getNameInit();
R.set(QualifiedNameOfImplicitName(*SC), Name);
CurRec->resolveReferences(R);
// Since everything went well, we can now set the "superclass" list for the
// current record.
ArrayRef<std::pair<Record *, SMRange>> SCs = SC->getSuperClasses();
for (const auto &SCPair : SCs) {
if (CurRec->isSubClassOf(SCPair.first))
return Error(SubClass.RefRange.Start,
"Already subclass of '" + SCPair.first->getName() + "'!\n");
CurRec->addSuperClass(SCPair.first, SCPair.second);
}
if (CurRec->isSubClassOf(SC))
return Error(SubClass.RefRange.Start,
"Already subclass of '" + SC->getName() + "'!\n");
CurRec->addSuperClass(SC, SubClass.RefRange);
return false;
}
bool TGParser::AddSubClass(RecordsEntry &Entry, SubClassReference &SubClass) {
if (Entry.Rec)
return AddSubClass(Entry.Rec.get(), SubClass);
for (auto &E : Entry.Loop->Entries) {
if (AddSubClass(E, SubClass))
return true;
}
return false;
}
/// AddSubMultiClass - Add SubMultiClass as a subclass to
/// CurMC, resolving its template args as SubMultiClass's
/// template arguments.
bool TGParser::AddSubMultiClass(MultiClass *CurMC,
SubMultiClassReference &SubMultiClass) {
MultiClass *SMC = SubMultiClass.MC;
ArrayRef<Init *> SMCTArgs = SMC->Rec.getTemplateArgs();
if (SMCTArgs.size() < SubMultiClass.TemplateArgs.size())
return Error(SubMultiClass.RefRange.Start,
"More template args specified than expected");
// Prepare the mapping of template argument name to value, filling in default
// values if necessary.
SubstStack TemplateArgs;
for (unsigned i = 0, e = SMCTArgs.size(); i != e; ++i) {
if (i < SubMultiClass.TemplateArgs.size()) {
TemplateArgs.emplace_back(SMCTArgs[i], SubMultiClass.TemplateArgs[i]);
} else {
Init *Default = SMC->Rec.getValue(SMCTArgs[i])->getValue();
if (!Default->isComplete()) {
return Error(SubMultiClass.RefRange.Start,
"value not specified for template argument #" + Twine(i) +
" (" + SMCTArgs[i]->getAsUnquotedString() +
") of multiclass '" + SMC->Rec.getNameInitAsString() +
"'");
}
TemplateArgs.emplace_back(SMCTArgs[i], Default);
}
}
TemplateArgs.emplace_back(
QualifiedNameOfImplicitName(SMC),
VarInit::get(QualifiedNameOfImplicitName(CurMC), StringRecTy::get()));
// Add all of the defs in the subclass into the current multiclass.
return resolve(SMC->Entries, TemplateArgs, false, &CurMC->Entries);
}
/// Add a record or foreach loop to the current context (global record keeper,
/// current inner-most foreach loop, or multiclass).
bool TGParser::addEntry(RecordsEntry E) {
assert(!E.Rec || !E.Loop);
if (!Loops.empty()) {
Loops.back()->Entries.push_back(std::move(E));
return false;
}
if (E.Loop) {
SubstStack Stack;
return resolve(*E.Loop, Stack, CurMultiClass == nullptr,
CurMultiClass ? &CurMultiClass->Entries : nullptr);
}
if (CurMultiClass) {
CurMultiClass->Entries.push_back(std::move(E));
return false;
}
return addDefOne(std::move(E.Rec));
}
/// Resolve the entries in \p Loop, going over inner loops recursively
/// and making the given subsitutions of (name, value) pairs.
///
/// The resulting records are stored in \p Dest if non-null. Otherwise, they
/// are added to the global record keeper.
bool TGParser::resolve(const ForeachLoop &Loop, SubstStack &Substs,
bool Final, std::vector<RecordsEntry> *Dest,
SMLoc *Loc) {
MapResolver R;
for (const auto &S : Substs)
R.set(S.first, S.second);
Init *List = Loop.ListValue->resolveReferences(R);
auto LI = dyn_cast<ListInit>(List);
if (!LI) {
if (!Final) {
Dest->emplace_back(std::make_unique<ForeachLoop>(Loop.Loc, Loop.IterVar,
List));
return resolve(Loop.Entries, Substs, Final, &Dest->back().Loop->Entries,
Loc);
}
PrintError(Loop.Loc, Twine("attempting to loop over '") +
List->getAsString() + "', expected a list");
return true;
}
bool Error = false;
for (auto Elt : *LI) {
if (Loop.IterVar)
Substs.emplace_back(Loop.IterVar->getNameInit(), Elt);
Error = resolve(Loop.Entries, Substs, Final, Dest);
if (Loop.IterVar)
Substs.pop_back();
if (Error)
break;
}
return Error;
}
/// Resolve the entries in \p Source, going over loops recursively and
/// making the given substitutions of (name, value) pairs.
///
/// The resulting records are stored in \p Dest if non-null. Otherwise, they
/// are added to the global record keeper.
bool TGParser::resolve(const std::vector<RecordsEntry> &Source,
SubstStack &Substs, bool Final,
std::vector<RecordsEntry> *Dest, SMLoc *Loc) {
bool Error = false;
for (auto &E : Source) {
if (E.Loop) {
Error = resolve(*E.Loop, Substs, Final, Dest);
} else {
auto Rec = std::make_unique<Record>(*E.Rec);
if (Loc)
Rec->appendLoc(*Loc);
MapResolver R(Rec.get());
for (const auto &S : Substs)
R.set(S.first, S.second);
Rec->resolveReferences(R);
if (Dest)
Dest->push_back(std::move(Rec));
else
Error = addDefOne(std::move(Rec));
}
if (Error)
break;
}
return Error;
}
/// Resolve the record fully and add it to the record keeper.
bool TGParser::addDefOne(std::unique_ptr<Record> Rec) {
if (Record *Prev = Records.getDef(Rec->getNameInitAsString())) {
if (!Rec->isAnonymous()) {
PrintError(Rec->getLoc(),
"def already exists: " + Rec->getNameInitAsString());
PrintNote(Prev->getLoc(), "location of previous definition");
return true;
}
Rec->setName(Records.getNewAnonymousName());
}
Rec->resolveReferences();
checkConcrete(*Rec);
if (!isa<StringInit>(Rec->getNameInit())) {
PrintError(Rec->getLoc(), Twine("record name '") +
Rec->getNameInit()->getAsString() +
"' could not be fully resolved");
return true;
}
// If ObjectBody has template arguments, it's an error.
assert(Rec->getTemplateArgs().empty() && "How'd this get template args?");
for (DefsetRecord *Defset : Defsets) {
DefInit *I = Rec->getDefInit();
if (!I->getType()->typeIsA(Defset->EltTy)) {
PrintError(Rec->getLoc(), Twine("adding record of incompatible type '") +
I->getType()->getAsString() +
"' to defset");
PrintNote(Defset->Loc, "location of defset declaration");
return true;
}
Defset->Elements.push_back(I);
}
Records.addDef(std::move(Rec));
return false;
}
//===----------------------------------------------------------------------===//
// Parser Code
//===----------------------------------------------------------------------===//
/// isObjectStart - Return true if this is a valid first token for an Object.
static bool isObjectStart(tgtok::TokKind K) {
return K == tgtok::Class || K == tgtok::Def || K == tgtok::Defm ||
K == tgtok::Let || K == tgtok::MultiClass || K == tgtok::Foreach ||
K == tgtok::Defset || K == tgtok::Defvar || K == tgtok::If;
}
/// ParseObjectName - If a valid object name is specified, return it. If no
/// name is specified, return the unset initializer. Return nullptr on parse
/// error.
/// ObjectName ::= Value [ '#' Value ]*
/// ObjectName ::= /*empty*/
///
Init *TGParser::ParseObjectName(MultiClass *CurMultiClass) {
switch (Lex.getCode()) {
case tgtok::colon:
case tgtok::semi:
case tgtok::l_brace:
// These are all of the tokens that can begin an object body.
// Some of these can also begin values but we disallow those cases
// because they are unlikely to be useful.
return UnsetInit::get();
default:
break;
}
Record *CurRec = nullptr;
if (CurMultiClass)
CurRec = &CurMultiClass->Rec;
Init *Name = ParseValue(CurRec, StringRecTy::get(), ParseNameMode);
if (!Name)
return nullptr;
if (CurMultiClass) {
Init *NameStr = QualifiedNameOfImplicitName(CurMultiClass);
HasReferenceResolver R(NameStr);
Name->resolveReferences(R);
if (!R.found())
Name = BinOpInit::getStrConcat(VarInit::get(NameStr, StringRecTy::get()),
Name);
}
return Name;
}
/// ParseClassID - Parse and resolve a reference to a class name. This returns
/// null on error.
///
/// ClassID ::= ID
///
Record *TGParser::ParseClassID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected name for ClassID");
return nullptr;
}
Record *Result = Records.getClass(Lex.getCurStrVal());
if (!Result) {
std::string Msg("Couldn't find class '" + Lex.getCurStrVal() + "'");
if (MultiClasses[Lex.getCurStrVal()].get())
TokError(Msg + ". Use 'defm' if you meant to use multiclass '" +
Lex.getCurStrVal() + "'");
else
TokError(Msg);
}
Lex.Lex();
return Result;
}
/// ParseMultiClassID - Parse and resolve a reference to a multiclass name.
/// This returns null on error.
///
/// MultiClassID ::= ID
///
MultiClass *TGParser::ParseMultiClassID() {
if (Lex.getCode() != tgtok::Id) {
TokError("expected name for MultiClassID");
return nullptr;
}
MultiClass *Result = MultiClasses[Lex.getCurStrVal()].get();
if (!Result)
TokError("Couldn't find multiclass '" + Lex.getCurStrVal() + "'");
Lex.Lex();
return Result;
}
/// ParseSubClassReference - Parse a reference to a subclass or to a templated
/// subclass. This returns a SubClassRefTy with a null Record* on error.
///
/// SubClassRef ::= ClassID
/// SubClassRef ::= ClassID '<' ValueList '>'
///
SubClassReference TGParser::
ParseSubClassReference(Record *CurRec, bool isDefm) {
SubClassReference Result;
Result.RefRange.Start = Lex.getLoc();
if (isDefm) {
if (MultiClass *MC = ParseMultiClassID())
Result.Rec = &MC->Rec;
} else {
Result.Rec = ParseClassID();
}
if (!Result.Rec) return Result;
// If there is no template arg list, we're done.
if (Lex.getCode() != tgtok::less) {
Result.RefRange.End = Lex.getLoc();
return Result;
}
Lex.Lex(); // Eat the '<'
if (Lex.getCode() == tgtok::greater) {
TokError("subclass reference requires a non-empty list of template values");
Result.Rec = nullptr;
return Result;
}
ParseValueList(Result.TemplateArgs, CurRec, Result.Rec);
if (Result.TemplateArgs.empty()) {
Result.Rec = nullptr; // Error parsing value list.
return Result;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' in template value list");
Result.Rec = nullptr;
return Result;
}
Lex.Lex();
Result.RefRange.End = Lex.getLoc();
return Result;
}
/// ParseSubMultiClassReference - Parse a reference to a subclass or to a
/// templated submulticlass. This returns a SubMultiClassRefTy with a null
/// Record* on error.
///
/// SubMultiClassRef ::= MultiClassID
/// SubMultiClassRef ::= MultiClassID '<' ValueList '>'
///
SubMultiClassReference TGParser::
ParseSubMultiClassReference(MultiClass *CurMC) {
SubMultiClassReference Result;
Result.RefRange.Start = Lex.getLoc();
Result.MC = ParseMultiClassID();
if (!Result.MC) return Result;
// If there is no template arg list, we're done.
if (Lex.getCode() != tgtok::less) {
Result.RefRange.End = Lex.getLoc();
return Result;
}
Lex.Lex(); // Eat the '<'
if (Lex.getCode() == tgtok::greater) {
TokError("subclass reference requires a non-empty list of template values");
Result.MC = nullptr;
return Result;
}
ParseValueList(Result.TemplateArgs, &CurMC->Rec, &Result.MC->Rec);
if (Result.TemplateArgs.empty()) {
Result.MC = nullptr; // Error parsing value list.
return Result;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' in template value list");
Result.MC = nullptr;
return Result;
}
Lex.Lex();
Result.RefRange.End = Lex.getLoc();
return Result;
}
/// ParseRangePiece - Parse a bit/value range.
/// RangePiece ::= INTVAL
/// RangePiece ::= INTVAL '-' INTVAL
/// RangePiece ::= INTVAL INTVAL
bool TGParser::ParseRangePiece(SmallVectorImpl<unsigned> &Ranges,
TypedInit *FirstItem) {
Init *CurVal = FirstItem;
if (!CurVal)
CurVal = ParseValue(nullptr);
IntInit *II = dyn_cast_or_null<IntInit>(CurVal);
if (!II)
return TokError("expected integer or bitrange");
int64_t Start = II->getValue();
int64_t End;
if (Start < 0)
return TokError("invalid range, cannot be negative");
switch (Lex.getCode()) {
default:
Ranges.push_back(Start);
return false;
case tgtok::minus: {
Lex.Lex(); // eat
Init *I_End = ParseValue(nullptr);
IntInit *II_End = dyn_cast_or_null<IntInit>(I_End);
if (!II_End) {
TokError("expected integer value as end of range");
return true;
}
End = II_End->getValue();
break;
}
case tgtok::IntVal: {
End = -Lex.getCurIntVal();
Lex.Lex();
break;
}
}
if (End < 0)
return TokError("invalid range, cannot be negative");
// Add to the range.
if (Start < End)
for (; Start <= End; ++Start)
Ranges.push_back(Start);
else
for (; Start >= End; --Start)
Ranges.push_back(Start);
return false;
}
/// ParseRangeList - Parse a list of scalars and ranges into scalar values.
///
/// RangeList ::= RangePiece (',' RangePiece)*
///
void TGParser::ParseRangeList(SmallVectorImpl<unsigned> &Result) {
// Parse the first piece.
if (ParseRangePiece(Result)) {
Result.clear();
return;
}
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // Eat the comma.
// Parse the next range piece.
if (ParseRangePiece(Result)) {
Result.clear();
return;
}
}
}
/// ParseOptionalRangeList - Parse either a range list in <>'s or nothing.
/// OptionalRangeList ::= '<' RangeList '>'
/// OptionalRangeList ::= /*empty*/
bool TGParser::ParseOptionalRangeList(SmallVectorImpl<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::less)
return false;
SMLoc StartLoc = Lex.getLoc();
Lex.Lex(); // eat the '<'
// Parse the range list.
ParseRangeList(Ranges);
if (Ranges.empty()) return true;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of range list");
return Error(StartLoc, "to match this '<'");
}
Lex.Lex(); // eat the '>'.
return false;
}
/// ParseOptionalBitList - Parse either a bit list in {}'s or nothing.
/// OptionalBitList ::= '{' RangeList '}'
/// OptionalBitList ::= /*empty*/
bool TGParser::ParseOptionalBitList(SmallVectorImpl<unsigned> &Ranges) {
if (Lex.getCode() != tgtok::l_brace)
return false;
SMLoc StartLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
// Parse the range list.
ParseRangeList(Ranges);
if (Ranges.empty()) return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit list");
return Error(StartLoc, "to match this '{'");
}
Lex.Lex(); // eat the '}'.
return false;
}
/// ParseType - Parse and return a tblgen type. This returns null on error.
///
/// Type ::= STRING // string type
/// Type ::= CODE // code type
/// Type ::= BIT // bit type
/// Type ::= BITS '<' INTVAL '>' // bits<x> type
/// Type ::= INT // int type
/// Type ::= LIST '<' Type '>' // list<x> type
/// Type ::= DAG // dag type
/// Type ::= ClassID // Record Type
///
RecTy *TGParser::ParseType() {
switch (Lex.getCode()) {
default: TokError("Unknown token when expecting a type"); return nullptr;
case tgtok::String: Lex.Lex(); return StringRecTy::get();
case tgtok::Code: Lex.Lex(); return CodeRecTy::get();
case tgtok::Bit: Lex.Lex(); return BitRecTy::get();
case tgtok::Int: Lex.Lex(); return IntRecTy::get();
case tgtok::Dag: Lex.Lex(); return DagRecTy::get();
case tgtok::Id:
if (Record *R = ParseClassID()) return RecordRecTy::get(R);
TokError("unknown class name");
return nullptr;
case tgtok::Bits: {
if (Lex.Lex() != tgtok::less) { // Eat 'bits'
TokError("expected '<' after bits type");
return nullptr;
}
if (Lex.Lex() != tgtok::IntVal) { // Eat '<'
TokError("expected integer in bits<n> type");
return nullptr;
}
uint64_t Val = Lex.getCurIntVal();
if (Lex.Lex() != tgtok::greater) { // Eat count.
TokError("expected '>' at end of bits<n> type");
return nullptr;
}
Lex.Lex(); // Eat '>'
return BitsRecTy::get(Val);
}
case tgtok::List: {
if (Lex.Lex() != tgtok::less) { // Eat 'bits'
TokError("expected '<' after list type");
return nullptr;
}
Lex.Lex(); // Eat '<'
RecTy *SubType = ParseType();
if (!SubType) return nullptr;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of list<ty> type");
return nullptr;
}
Lex.Lex(); // Eat '>'
return ListRecTy::get(SubType);
}
}
}
/// ParseIDValue - This is just like ParseIDValue above, but it assumes the ID
/// has already been read.
Init *TGParser::ParseIDValue(Record *CurRec, StringInit *Name, SMLoc NameLoc,
IDParseMode Mode) {
if (CurRec) {
if (const RecordVal *RV = CurRec->getValue(Name))
return VarInit::get(Name, RV->getType());
}
if ((CurRec && CurRec->isClass()) || CurMultiClass) {
Init *TemplateArgName;
if (CurMultiClass) {
TemplateArgName =
QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::");
} else
TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name, ":");
Record *TemplateRec = CurMultiClass ? &CurMultiClass->Rec : CurRec;
if (TemplateRec->isTemplateArg(TemplateArgName)) {
const RecordVal *RV = TemplateRec->getValue(TemplateArgName);
assert(RV && "Template arg doesn't exist??");
return VarInit::get(TemplateArgName, RV->getType());
} else if (Name->getValue() == "NAME") {
return VarInit::get(TemplateArgName, StringRecTy::get());
}
}
if (CurLocalScope)
if (Init *I = CurLocalScope->getVar(Name->getValue()))
return I;
// If this is in a foreach loop, make sure it's not a loop iterator
for (const auto &L : Loops) {
if (L->IterVar) {
VarInit *IterVar = dyn_cast<VarInit>(L->IterVar);
if (IterVar && IterVar->getNameInit() == Name)
return IterVar;
}
}
if (Mode == ParseNameMode)
return Name;
if (Init *I = Records.getGlobal(Name->getValue()))
return I;
// Allow self-references of concrete defs, but delay the lookup so that we
// get the correct type.
if (CurRec && !CurRec->isClass() && !CurMultiClass &&
CurRec->getNameInit() == Name)
return UnOpInit::get(UnOpInit::CAST, Name, CurRec->getType());
Error(NameLoc, "Variable not defined: '" + Name->getValue() + "'");
return nullptr;
}
/// ParseOperation - Parse an operator. This returns null on error.
///
/// Operation ::= XOperator ['<' Type '>'] '(' Args ')'
///
Init *TGParser::ParseOperation(Record *CurRec, RecTy *ItemType) {
switch (Lex.getCode()) {
default:
TokError("unknown operation");
return nullptr;
case tgtok::XHead:
case tgtok::XTail:
case tgtok::XSize:
case tgtok::XEmpty:
case tgtok::XCast:
case tgtok::XGetOp: { // Value ::= !unop '(' Value ')'
UnOpInit::UnaryOp Code;
RecTy *Type = nullptr;
switch (Lex.getCode()) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XCast:
Lex.Lex(); // eat the operation
Code = UnOpInit::CAST;
Type = ParseOperatorType();
if (!Type) {
TokError("did not get type for unary operator");
return nullptr;
}
break;
case tgtok::XHead:
Lex.Lex(); // eat the operation
Code = UnOpInit::HEAD;
break;
case tgtok::XTail:
Lex.Lex(); // eat the operation
Code = UnOpInit::TAIL;
break;
case tgtok::XSize:
Lex.Lex();
Code = UnOpInit::SIZE;
Type = IntRecTy::get();
break;
case tgtok::XEmpty:
Lex.Lex(); // eat the operation
Code = UnOpInit::EMPTY;
Type = IntRecTy::get();
break;
case tgtok::XGetOp:
Lex.Lex(); // eat the operation
if (Lex.getCode() == tgtok::less) {
// Parse an optional type suffix, so that you can say
// !getop<BaseClass>(someDag) as a shorthand for
// !cast<BaseClass>(!getop(someDag)).
Type = ParseOperatorType();
if (!Type) {
TokError("did not get type for unary operator");
return nullptr;
}
if (!isa<RecordRecTy>(Type)) {
TokError("type for !getop must be a record type");
// but keep parsing, to consume the operand
}
} else {
Type = RecordRecTy::get({});
}
Code = UnOpInit::GETOP;
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after unary operator");
return nullptr;
}
Lex.Lex(); // eat the '('
Init *LHS = ParseValue(CurRec);
if (!LHS) return nullptr;
if (Code == UnOpInit::HEAD ||
Code == UnOpInit::TAIL ||
Code == UnOpInit::EMPTY) {
ListInit *LHSl = dyn_cast<ListInit>(LHS);
StringInit *LHSs = dyn_cast<StringInit>(LHS);
TypedInit *LHSt = dyn_cast<TypedInit>(LHS);
if (!LHSl && !LHSs && !LHSt) {
TokError("expected list or string type argument in unary operator");
return nullptr;
}
if (LHSt) {
ListRecTy *LType = dyn_cast<ListRecTy>(LHSt->getType());
StringRecTy *SType = dyn_cast<StringRecTy>(LHSt->getType());
if (!LType && !SType) {
TokError("expected list or string type argument in unary operator");
return nullptr;
}
}
if (Code == UnOpInit::HEAD || Code == UnOpInit::TAIL ||
Code == UnOpInit::SIZE) {
if (!LHSl && !LHSt) {
TokError("expected list type argument in unary operator");
return nullptr;
}
}
if (Code == UnOpInit::HEAD || Code == UnOpInit::TAIL) {
if (LHSl && LHSl->empty()) {
TokError("empty list argument in unary operator");
return nullptr;
}
if (LHSl) {
Init *Item = LHSl->getElement(0);
TypedInit *Itemt = dyn_cast<TypedInit>(Item);
if (!Itemt) {
TokError("untyped list element in unary operator");
return nullptr;
}
Type = (Code == UnOpInit::HEAD) ? Itemt->getType()
: ListRecTy::get(Itemt->getType());
} else {
assert(LHSt && "expected list type argument in unary operator");
ListRecTy *LType = dyn_cast<ListRecTy>(LHSt->getType());
if (!LType) {
TokError("expected list type argument in unary operator");
return nullptr;
}
Type = (Code == UnOpInit::HEAD) ? LType->getElementType() : LType;
}
}
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in unary operator");
return nullptr;
}
Lex.Lex(); // eat the ')'
return (UnOpInit::get(Code, LHS, Type))->Fold(CurRec);
}
case tgtok::XIsA: {
// Value ::= !isa '<' Type '>' '(' Value ')'
Lex.Lex(); // eat the operation
RecTy *Type = ParseOperatorType();
if (!Type)
return nullptr;
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after type of !isa");
return nullptr;
}
Lex.Lex(); // eat the '('
Init *LHS = ParseValue(CurRec);
if (!LHS)
return nullptr;
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in !isa");
return nullptr;
}
Lex.Lex(); // eat the ')'
return (IsAOpInit::get(Type, LHS))->Fold();
}
case tgtok::XConcat:
case tgtok::XADD:
case tgtok::XMUL:
case tgtok::XAND:
case tgtok::XOR:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XEq:
case tgtok::XNe:
case tgtok::XLe:
case tgtok::XLt:
case tgtok::XGe:
case tgtok::XGt:
case tgtok::XListConcat:
case tgtok::XListSplat:
case tgtok::XStrConcat:
case tgtok::XSetOp: { // Value ::= !binop '(' Value ',' Value ')'
tgtok::TokKind OpTok = Lex.getCode();
SMLoc OpLoc = Lex.getLoc();
Lex.Lex(); // eat the operation
BinOpInit::BinaryOp Code;
switch (OpTok) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XConcat: Code = BinOpInit::CONCAT; break;
case tgtok::XADD: Code = BinOpInit::ADD; break;
case tgtok::XMUL: Code = BinOpInit::MUL; break;
case tgtok::XAND: Code = BinOpInit::AND; break;
case tgtok::XOR: Code = BinOpInit::OR; break;
case tgtok::XSRA: Code = BinOpInit::SRA; break;
case tgtok::XSRL: Code = BinOpInit::SRL; break;
case tgtok::XSHL: Code = BinOpInit::SHL; break;
case tgtok::XEq: Code = BinOpInit::EQ; break;
case tgtok::XNe: Code = BinOpInit::NE; break;
case tgtok::XLe: Code = BinOpInit::LE; break;
case tgtok::XLt: Code = BinOpInit::LT; break;
case tgtok::XGe: Code = BinOpInit::GE; break;
case tgtok::XGt: Code = BinOpInit::GT; break;
case tgtok::XListConcat: Code = BinOpInit::LISTCONCAT; break;
case tgtok::XListSplat: Code = BinOpInit::LISTSPLAT; break;
case tgtok::XStrConcat: Code = BinOpInit::STRCONCAT; break;
case tgtok::XSetOp: Code = BinOpInit::SETOP; break;
}
RecTy *Type = nullptr;
RecTy *ArgType = nullptr;
switch (OpTok) {
default:
llvm_unreachable("Unhandled code!");
case tgtok::XConcat:
case tgtok::XSetOp:
Type = DagRecTy::get();
ArgType = DagRecTy::get();
break;
case tgtok::XAND:
case tgtok::XOR:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XADD:
case tgtok::XMUL:
Type = IntRecTy::get();
ArgType = IntRecTy::get();
break;
case tgtok::XEq:
case tgtok::XNe:
Type = BitRecTy::get();
// ArgType for Eq / Ne is not known at this point
break;
case tgtok::XLe:
case tgtok::XLt:
case tgtok::XGe:
case tgtok::XGt:
Type = BitRecTy::get();
ArgType = IntRecTy::get();
break;
case tgtok::XListConcat:
// We don't know the list type until we parse the first argument
ArgType = ItemType;
break;
case tgtok::XListSplat:
// Can't do any typechecking until we parse the first argument.
break;
case tgtok::XStrConcat:
Type = StringRecTy::get();
ArgType = StringRecTy::get();
break;
}
if (Type && ItemType && !Type->typeIsConvertibleTo(ItemType)) {
Error(OpLoc, Twine("expected value of type '") +
ItemType->getAsString() + "', got '" +
Type->getAsString() + "'");
return nullptr;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after binary operator");
return nullptr;
}
Lex.Lex(); // eat the '('
SmallVector<Init*, 2> InitList;
for (;;) {
SMLoc InitLoc = Lex.getLoc();
InitList.push_back(ParseValue(CurRec, ArgType));
if (!InitList.back()) return nullptr;
TypedInit *InitListBack = dyn_cast<TypedInit>(InitList.back());
if (!InitListBack) {
Error(OpLoc, Twine("expected value to be a typed value, got '" +
InitList.back()->getAsString() + "'"));
return nullptr;
}
RecTy *ListType = InitListBack->getType();
if (!ArgType) {
ArgType = ListType;
switch (Code) {
case BinOpInit::LISTCONCAT:
if (!isa<ListRecTy>(ArgType)) {
Error(InitLoc, Twine("expected a list, got value of type '") +
ArgType->getAsString() + "'");
return nullptr;
}
break;
case BinOpInit::LISTSPLAT:
if (ItemType && InitList.size() == 1) {
if (!isa<ListRecTy>(ItemType)) {
Error(OpLoc,
Twine("expected output type to be a list, got type '") +
ItemType->getAsString() + "'");
return nullptr;
}
if (!ArgType->getListTy()->typeIsConvertibleTo(ItemType)) {
Error(OpLoc, Twine("expected first arg type to be '") +
ArgType->getAsString() +
"', got value of type '" +
cast<ListRecTy>(ItemType)
->getElementType()
->getAsString() +
"'");
return nullptr;
}
}
if (InitList.size() == 2 && !isa<IntRecTy>(ArgType)) {
Error(InitLoc, Twine("expected second parameter to be an int, got "
"value of type '") +
ArgType->getAsString() + "'");
return nullptr;
}
ArgType = nullptr; // Broken invariant: types not identical.
break;
case BinOpInit::EQ:
case BinOpInit::NE:
if (!ArgType->typeIsConvertibleTo(IntRecTy::get()) &&
!ArgType->typeIsConvertibleTo(StringRecTy::get())) {
Error(InitLoc, Twine("expected int, bits, or string; got value of "
"type '") + ArgType->getAsString() + "'");
return nullptr;
}
break;
default: llvm_unreachable("other ops have fixed argument types");
}
} else {
RecTy *Resolved = resolveTypes(ArgType, ListType);
if (!Resolved) {
Error(InitLoc, Twine("expected value of type '") +
ArgType->getAsString() + "', got '" +
ListType->getAsString() + "'");
return nullptr;
}
if (Code != BinOpInit::ADD && Code != BinOpInit::AND &&
Code != BinOpInit::OR && Code != BinOpInit::SRA &&
Code != BinOpInit::SRL && Code != BinOpInit::SHL &&
Code != BinOpInit::MUL)
ArgType = Resolved;
}
// Deal with BinOps whose arguments have different types, by
// rewriting ArgType in between them.
switch (Code) {
case BinOpInit::SETOP:
// After parsing the first dag argument, switch to expecting
// a record, with no restriction on its superclasses.
ArgType = RecordRecTy::get({});
break;
default:
break;
}
if (Lex.getCode() != tgtok::comma)
break;
Lex.Lex(); // eat the ','
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in operator");
return nullptr;
}
Lex.Lex(); // eat the ')'
// listconcat returns a list with type of the argument.
if (Code == BinOpInit::LISTCONCAT)
Type = ArgType;
// listsplat returns a list of type of the *first* argument.
if (Code == BinOpInit::LISTSPLAT)
Type = cast<TypedInit>(InitList.front())->getType()->getListTy();
// We allow multiple operands to associative operators like !strconcat as
// shorthand for nesting them.
if (Code == BinOpInit::STRCONCAT || Code == BinOpInit::LISTCONCAT ||
Code == BinOpInit::CONCAT || Code == BinOpInit::ADD ||
Code == BinOpInit::AND || Code == BinOpInit::OR ||
Code == BinOpInit::MUL) {
while (InitList.size() > 2) {
Init *RHS = InitList.pop_back_val();
RHS = (BinOpInit::get(Code, InitList.back(), RHS, Type))->Fold(CurRec);
InitList.back() = RHS;
}
}
if (InitList.size() == 2)
return (BinOpInit::get(Code, InitList[0], InitList[1], Type))
->Fold(CurRec);
Error(OpLoc, "expected two operands to operator");
return nullptr;
}
case tgtok::XForEach: { // Value ::= !foreach '(' Id ',' Value ',' Value ')'
SMLoc OpLoc = Lex.getLoc();
Lex.Lex(); // eat the operation
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after !foreach");
return nullptr;
}
if (Lex.Lex() != tgtok::Id) { // eat the '('
TokError("first argument of !foreach must be an identifier");
return nullptr;
}
Init *LHS = StringInit::get(Lex.getCurStrVal());
if (CurRec && CurRec->getValue(LHS)) {
TokError((Twine("iteration variable '") + LHS->getAsString() +
"' already defined")
.str());
return nullptr;
}
if (Lex.Lex() != tgtok::comma) { // eat the id
TokError("expected ',' in ternary operator");
return nullptr;
}
Lex.Lex(); // eat the ','
Init *MHS = ParseValue(CurRec);
if (!MHS)
return nullptr;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return nullptr;
}
Lex.Lex(); // eat the ','
TypedInit *MHSt = dyn_cast<TypedInit>(MHS);
if (!MHSt) {
TokError("could not get type of !foreach input");
return nullptr;
}
RecTy *InEltType = nullptr;
RecTy *OutEltType = nullptr;
bool IsDAG = false;
if (ListRecTy *InListTy = dyn_cast<ListRecTy>(MHSt->getType())) {
InEltType = InListTy->getElementType();
if (ItemType) {
if (ListRecTy *OutListTy = dyn_cast<ListRecTy>(ItemType)) {
OutEltType = OutListTy->getElementType();
} else {
Error(OpLoc,
"expected value of type '" + Twine(ItemType->getAsString()) +
"', but got !foreach of list type");
return nullptr;
}
}
} else if (DagRecTy *InDagTy = dyn_cast<DagRecTy>(MHSt->getType())) {
InEltType = InDagTy;
if (ItemType && !isa<DagRecTy>(ItemType)) {
Error(OpLoc,
"expected value of type '" + Twine(ItemType->getAsString()) +
"', but got !foreach of dag type");
return nullptr;
}
IsDAG = true;
} else {
TokError("!foreach must have list or dag input");
return nullptr;
}
// We need to create a temporary record to provide a scope for the iteration
// variable while parsing top-level foreach's.
std::unique_ptr<Record> ParseRecTmp;
Record *ParseRec = CurRec;
if (!ParseRec) {
ParseRecTmp = std::make_unique<Record>(".parse", ArrayRef<SMLoc>{}, Records);
ParseRec = ParseRecTmp.get();
}
ParseRec->addValue(RecordVal(LHS, InEltType, false));
Init *RHS = ParseValue(ParseRec, OutEltType);
ParseRec->removeValue(LHS);
if (!RHS)
return nullptr;
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in binary operator");
return nullptr;
}
Lex.Lex(); // eat the ')'
RecTy *OutType;
if (IsDAG) {
OutType = InEltType;
} else {
TypedInit *RHSt = dyn_cast<TypedInit>(RHS);
if (!RHSt) {
TokError("could not get type of !foreach result");
return nullptr;
}
OutType = RHSt->getType()->getListTy();
}
return (TernOpInit::get(TernOpInit::FOREACH, LHS, MHS, RHS, OutType))
->Fold(CurRec);
}
case tgtok::XDag:
case tgtok::XIf:
case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')'
TernOpInit::TernaryOp Code;
RecTy *Type = nullptr;
tgtok::TokKind LexCode = Lex.getCode();
Lex.Lex(); // eat the operation
switch (LexCode) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XDag:
Code = TernOpInit::DAG;
Type = DagRecTy::get();
ItemType = nullptr;
break;
case tgtok::XIf:
Code = TernOpInit::IF;
break;
case tgtok::XSubst:
Code = TernOpInit::SUBST;
break;
}
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after ternary operator");
return nullptr;
}
Lex.Lex(); // eat the '('
Init *LHS = ParseValue(CurRec);
if (!LHS) return nullptr;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return nullptr;
}
Lex.Lex(); // eat the ','
SMLoc MHSLoc = Lex.getLoc();
Init *MHS = ParseValue(CurRec, ItemType);
if (!MHS)
return nullptr;
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in ternary operator");
return nullptr;
}
Lex.Lex(); // eat the ','
SMLoc RHSLoc = Lex.getLoc();
Init *RHS = ParseValue(CurRec, ItemType);
if (!RHS)
return nullptr;
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in binary operator");
return nullptr;
}
Lex.Lex(); // eat the ')'
switch (LexCode) {
default: llvm_unreachable("Unhandled code!");
case tgtok::XDag: {
TypedInit *MHSt = dyn_cast<TypedInit>(MHS);
if (!MHSt && !isa<UnsetInit>(MHS)) {
Error(MHSLoc, "could not determine type of the child list in !dag");
return nullptr;
}
if (MHSt && !isa<ListRecTy>(MHSt->getType())) {
Error(MHSLoc, Twine("expected list of children, got type '") +
MHSt->getType()->getAsString() + "'");
return nullptr;
}
TypedInit *RHSt = dyn_cast<TypedInit>(RHS);
if (!RHSt && !isa<UnsetInit>(RHS)) {
Error(RHSLoc, "could not determine type of the name list in !dag");
return nullptr;
}
if (RHSt && StringRecTy::get()->getListTy() != RHSt->getType()) {
Error(RHSLoc, Twine("expected list<string>, got type '") +
RHSt->getType()->getAsString() + "'");
return nullptr;
}
if (!MHSt && !RHSt) {
Error(MHSLoc,
"cannot have both unset children and unset names in !dag");
return nullptr;
}
break;
}
case tgtok::XIf: {
RecTy *MHSTy = nullptr;
RecTy *RHSTy = nullptr;
if (TypedInit *MHSt = dyn_cast<TypedInit>(MHS))
MHSTy = MHSt->getType();
if (BitsInit *MHSbits = dyn_cast<BitsInit>(MHS))
MHSTy = BitsRecTy::get(MHSbits->getNumBits());
if (isa<BitInit>(MHS))
MHSTy = BitRecTy::get();
if (TypedInit *RHSt = dyn_cast<TypedInit>(RHS))
RHSTy = RHSt->getType();
if (BitsInit *RHSbits = dyn_cast<BitsInit>(RHS))
RHSTy = BitsRecTy::get(RHSbits->getNumBits());
if (isa<BitInit>(RHS))
RHSTy = BitRecTy::get();
// For UnsetInit, it's typed from the other hand.
if (isa<UnsetInit>(MHS))
MHSTy = RHSTy;
if (isa<UnsetInit>(RHS))
RHSTy = MHSTy;
if (!MHSTy || !RHSTy) {
TokError("could not get type for !if");
return nullptr;
}
Type = resolveTypes(MHSTy, RHSTy);
if (!Type) {
TokError(Twine("inconsistent types '") + MHSTy->getAsString() +
"' and '" + RHSTy->getAsString() + "' for !if");
return nullptr;
}
break;
}
case tgtok::XSubst: {
TypedInit *RHSt = dyn_cast<TypedInit>(RHS);
if (!RHSt) {
TokError("could not get type for !subst");
return nullptr;
}
Type = RHSt->getType();
break;
}
}
return (TernOpInit::get(Code, LHS, MHS, RHS, Type))->Fold(CurRec);
}
case tgtok::XCond:
return ParseOperationCond(CurRec, ItemType);
case tgtok::XFoldl: {
// Value ::= !foldl '(' Id ',' Id ',' Value ',' Value ',' Value ')'
Lex.Lex(); // eat the operation
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after !foldl");
return nullptr;
}
Lex.Lex(); // eat the '('
Init *StartUntyped = ParseValue(CurRec);
if (!StartUntyped)
return nullptr;
TypedInit *Start = dyn_cast<TypedInit>(StartUntyped);
if (!Start) {
TokError(Twine("could not get type of !foldl start: '") +
StartUntyped->getAsString() + "'");
return nullptr;
}
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in !foldl");
return nullptr;
}
Lex.Lex(); // eat the ','
Init *ListUntyped = ParseValue(CurRec);
if (!ListUntyped)
return nullptr;
TypedInit *List = dyn_cast<TypedInit>(ListUntyped);
if (!List) {
TokError(Twine("could not get type of !foldl list: '") +
ListUntyped->getAsString() + "'");
return nullptr;
}
ListRecTy *ListType = dyn_cast<ListRecTy>(List->getType());
if (!ListType) {
TokError(Twine("!foldl list must be a list, but is of type '") +
List->getType()->getAsString());
return nullptr;
}
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' in !foldl");
return nullptr;
}
if (Lex.Lex() != tgtok::Id) { // eat the ','
TokError("third argument of !foldl must be an identifier");
return nullptr;
}
Init *A = StringInit::get(Lex.getCurStrVal());
if (CurRec && CurRec->getValue(A)) {
TokError((Twine("left !foldl variable '") + A->getAsString() +
"' already defined")
.str());
return nullptr;
}
if (Lex.Lex() != tgtok::comma) { // eat the id
TokError("expected ',' in !foldl");
return nullptr;
}
if (Lex.Lex() != tgtok::Id) { // eat the ','
TokError("fourth argument of !foldl must be an identifier");
return nullptr;
}
Init *B = StringInit::get(Lex.getCurStrVal());
if (CurRec && CurRec->getValue(B)) {
TokError((Twine("right !foldl variable '") + B->getAsString() +
"' already defined")
.str());
return nullptr;
}
if (Lex.Lex() != tgtok::comma) { // eat the id
TokError("expected ',' in !foldl");
return nullptr;
}
Lex.Lex(); // eat the ','
// We need to create a temporary record to provide a scope for the iteration
// variable while parsing top-level foreach's.
std::unique_ptr<Record> ParseRecTmp;
Record *ParseRec = CurRec;
if (!ParseRec) {
ParseRecTmp = std::make_unique<Record>(".parse", ArrayRef<SMLoc>{}, Records);
ParseRec = ParseRecTmp.get();
}
ParseRec->addValue(RecordVal(A, Start->getType(), false));
ParseRec->addValue(RecordVal(B, ListType->getElementType(), false));
Init *ExprUntyped = ParseValue(ParseRec);
ParseRec->removeValue(A);
ParseRec->removeValue(B);
if (!ExprUntyped)
return nullptr;
TypedInit *Expr = dyn_cast<TypedInit>(ExprUntyped);
if (!Expr) {
TokError("could not get type of !foldl expression");
return nullptr;
}
if (Expr->getType() != Start->getType()) {
TokError(Twine("!foldl expression must be of same type as start (") +
Start->getType()->getAsString() + "), but is of type " +
Expr->getType()->getAsString());
return nullptr;
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in fold operator");
return nullptr;
}
Lex.Lex(); // eat the ')'
return FoldOpInit::get(Start, List, A, B, Expr, Start->getType())
->Fold(CurRec);
}
}
}
/// ParseOperatorType - Parse a type for an operator. This returns
/// null on error.
///
/// OperatorType ::= '<' Type '>'
///
RecTy *TGParser::ParseOperatorType() {
RecTy *Type = nullptr;
if (Lex.getCode() != tgtok::less) {
TokError("expected type name for operator");
return nullptr;
}
Lex.Lex(); // eat the <
Type = ParseType();
if (!Type) {
TokError("expected type name for operator");
return nullptr;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected type name for operator");
return nullptr;
}
Lex.Lex(); // eat the >
return Type;
}
Init *TGParser::ParseOperationCond(Record *CurRec, RecTy *ItemType) {
Lex.Lex(); // eat the operation 'cond'
if (Lex.getCode() != tgtok::l_paren) {
TokError("expected '(' after !cond operator");
return nullptr;
}
Lex.Lex(); // eat the '('
// Parse through '[Case: Val,]+'
SmallVector<Init *, 4> Case;
SmallVector<Init *, 4> Val;
while (true) {
if (Lex.getCode() == tgtok::r_paren) {
Lex.Lex(); // eat the ')'
break;
}
Init *V = ParseValue(CurRec);
if (!V)
return nullptr;
Case.push_back(V);
if (Lex.getCode() != tgtok::colon) {
TokError("expected ':' following a condition in !cond operator");
return nullptr;
}
Lex.Lex(); // eat the ':'
V = ParseValue(CurRec, ItemType);
if (!V)
return nullptr;
Val.push_back(V);
if (Lex.getCode() == tgtok::r_paren) {
Lex.Lex(); // eat the ')'
break;
}
if (Lex.getCode() != tgtok::comma) {
TokError("expected ',' or ')' following a value in !cond operator");
return nullptr;
}
Lex.Lex(); // eat the ','
}
if (Case.size() < 1) {
TokError("there should be at least 1 'condition : value' in the !cond operator");
return nullptr;
}
// resolve type
RecTy *Type = nullptr;
for (Init *V : Val) {
RecTy *VTy = nullptr;
if (TypedInit *Vt = dyn_cast<TypedInit>(V))
VTy = Vt->getType();
if (BitsInit *Vbits = dyn_cast<BitsInit>(V))
VTy = BitsRecTy::get(Vbits->getNumBits());
if (isa<BitInit>(V))
VTy = BitRecTy::get();
if (Type == nullptr) {
if (!isa<UnsetInit>(V))
Type = VTy;
} else {
if (!isa<UnsetInit>(V)) {
RecTy *RType = resolveTypes(Type, VTy);
if (!RType) {
TokError(Twine("inconsistent types '") + Type->getAsString() +
"' and '" + VTy->getAsString() + "' for !cond");
return nullptr;
}
Type = RType;
}
}
}
if (!Type) {
TokError("could not determine type for !cond from its arguments");
return nullptr;
}
return CondOpInit::get(Case, Val, Type)->Fold(CurRec);
}
/// ParseSimpleValue - Parse a tblgen value. This returns null on error.
///
/// SimpleValue ::= IDValue
/// SimpleValue ::= INTVAL
/// SimpleValue ::= STRVAL+
/// SimpleValue ::= CODEFRAGMENT
/// SimpleValue ::= '?'
/// SimpleValue ::= '{' ValueList '}'
/// SimpleValue ::= ID '<' ValueListNE '>'
/// SimpleValue ::= '[' ValueList ']'
/// SimpleValue ::= '(' IDValue DagArgList ')'
/// SimpleValue ::= CONCATTOK '(' Value ',' Value ')'
/// SimpleValue ::= ADDTOK '(' Value ',' Value ')'
/// SimpleValue ::= SHLTOK '(' Value ',' Value ')'
/// SimpleValue ::= SRATOK '(' Value ',' Value ')'
/// SimpleValue ::= SRLTOK '(' Value ',' Value ')'
/// SimpleValue ::= LISTCONCATTOK '(' Value ',' Value ')'
/// SimpleValue ::= LISTSPLATTOK '(' Value ',' Value ')'
/// SimpleValue ::= STRCONCATTOK '(' Value ',' Value ')'
/// SimpleValue ::= COND '(' [Value ':' Value,]+ ')'
///
Init *TGParser::ParseSimpleValue(Record *CurRec, RecTy *ItemType,
IDParseMode Mode) {
Init *R = nullptr;
switch (Lex.getCode()) {
default: TokError("Unknown token when parsing a value"); break;
case tgtok::paste:
// This is a leading paste operation. This is deprecated but
// still exists in some .td files. Ignore it.
Lex.Lex(); // Skip '#'.
return ParseSimpleValue(CurRec, ItemType, Mode);
case tgtok::IntVal: R = IntInit::get(Lex.getCurIntVal()); Lex.Lex(); break;
case tgtok::BinaryIntVal: {
auto BinaryVal = Lex.getCurBinaryIntVal();
SmallVector<Init*, 16> Bits(BinaryVal.second);
for (unsigned i = 0, e = BinaryVal.second; i != e; ++i)
Bits[i] = BitInit::get(BinaryVal.first & (1LL << i));
R = BitsInit::get(Bits);
Lex.Lex();
break;
}
case tgtok::StrVal: {
std::string Val = Lex.getCurStrVal();
Lex.Lex();
// Handle multiple consecutive concatenated strings.
while (Lex.getCode() == tgtok::StrVal) {
Val += Lex.getCurStrVal();
Lex.Lex();
}
R = StringInit::get(Val);
break;
}
case tgtok::CodeFragment:
R = CodeInit::get(Lex.getCurStrVal(), Lex.getLoc());
Lex.Lex();
break;
case tgtok::question:
R = UnsetInit::get();
Lex.Lex();
break;
case tgtok::Id: {
SMLoc NameLoc = Lex.getLoc();
StringInit *Name = StringInit::get(Lex.getCurStrVal());
if (Lex.Lex() != tgtok::less) // consume the Id.
return ParseIDValue(CurRec, Name, NameLoc, Mode); // Value ::= IDValue
// Value ::= ID '<' ValueListNE '>'
if (Lex.Lex() == tgtok::greater) {
TokError("expected non-empty value list");
return nullptr;
}
// This is a CLASS<initvalslist> expression. This is supposed to synthesize
// a new anonymous definition, deriving from CLASS<initvalslist> with no
// body.
Record *Class = Records.getClass(Name->getValue());
if (!Class) {
Error(NameLoc, "Expected a class name, got '" + Name->getValue() + "'");
return nullptr;
}
SmallVector<Init *, 8> Args;
ParseValueList(Args, CurRec, Class);
if (Args.empty()) return nullptr;
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of value list");
return nullptr;
}
Lex.Lex(); // eat the '>'
// Typecheck the template arguments list
ArrayRef<Init *> ExpectedArgs = Class->getTemplateArgs();
if (ExpectedArgs.size() < Args.size()) {
Error(NameLoc,
"More template args specified than expected");
return nullptr;
}
for (unsigned i = 0, e = ExpectedArgs.size(); i != e; ++i) {
RecordVal *ExpectedArg = Class->getValue(ExpectedArgs[i]);
if (i < Args.size()) {
if (TypedInit *TI = dyn_cast<TypedInit>(Args[i])) {
RecTy *ExpectedType = ExpectedArg->getType();
if (!TI->getType()->typeIsConvertibleTo(ExpectedType)) {
Error(NameLoc,
"Value specified for template argument #" + Twine(i) + " (" +
ExpectedArg->getNameInitAsString() + ") is of type '" +
TI->getType()->getAsString() + "', expected '" +
ExpectedType->getAsString() + "': " + TI->getAsString());
return nullptr;
}
continue;
}
} else if (ExpectedArg->getValue()->isComplete())
continue;
Error(NameLoc,
"Value not specified for template argument #" + Twine(i) + " (" +
ExpectedArgs[i]->getAsUnquotedString() + ")");
return nullptr;
}
return VarDefInit::get(Class, Args)->Fold();
}
case tgtok::l_brace: { // Value ::= '{' ValueList '}'
SMLoc BraceLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
SmallVector<Init*, 16> Vals;
if (Lex.getCode() != tgtok::r_brace) {
ParseValueList(Vals, CurRec);
if (Vals.empty()) return nullptr;
}
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit list value");
return nullptr;
}
Lex.Lex(); // eat the '}'
SmallVector<Init *, 16> NewBits;
// As we parse { a, b, ... }, 'a' is the highest bit, but we parse it
// first. We'll first read everything in to a vector, then we can reverse
// it to get the bits in the correct order for the BitsInit value.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
// FIXME: The following two loops would not be duplicated
// if the API was a little more orthogonal.
// bits<n> values are allowed to initialize n bits.
if (BitsInit *BI = dyn_cast<BitsInit>(Vals[i])) {
for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i)
NewBits.push_back(BI->getBit((e - i) - 1));
continue;
}
// bits<n> can also come from variable initializers.
if (VarInit *VI = dyn_cast<VarInit>(Vals[i])) {
if (BitsRecTy *BitsRec = dyn_cast<BitsRecTy>(VI->getType())) {
for (unsigned i = 0, e = BitsRec->getNumBits(); i != e; ++i)
NewBits.push_back(VI->getBit((e - i) - 1));
continue;
}
// Fallthrough to try convert this to a bit.
}
// All other values must be convertible to just a single bit.
Init *Bit = Vals[i]->getCastTo(BitRecTy::get());
if (!Bit) {
Error(BraceLoc, "Element #" + Twine(i) + " (" + Vals[i]->getAsString() +
") is not convertable to a bit");
return nullptr;
}
NewBits.push_back(Bit);
}
std::reverse(NewBits.begin(), NewBits.end());
return BitsInit::get(NewBits);
}
case tgtok::l_square: { // Value ::= '[' ValueList ']'
Lex.Lex(); // eat the '['
SmallVector<Init*, 16> Vals;
RecTy *DeducedEltTy = nullptr;
ListRecTy *GivenListTy = nullptr;
if (ItemType) {
ListRecTy *ListType = dyn_cast<ListRecTy>(ItemType);
if (!ListType) {
TokError(Twine("Type mismatch for list, expected list type, got ") +
ItemType->getAsString());
return nullptr;
}
GivenListTy = ListType;
}
if (Lex.getCode() != tgtok::r_square) {
ParseValueList(Vals, CurRec, nullptr,
GivenListTy ? GivenListTy->getElementType() : nullptr);
if (Vals.empty()) return nullptr;
}
if (Lex.getCode() != tgtok::r_square) {
TokError("expected ']' at end of list value");
return nullptr;
}
Lex.Lex(); // eat the ']'
RecTy *GivenEltTy = nullptr;
if (Lex.getCode() == tgtok::less) {
// Optional list element type
Lex.Lex(); // eat the '<'
GivenEltTy = ParseType();
if (!GivenEltTy) {
// Couldn't parse element type
return nullptr;
}
if (Lex.getCode() != tgtok::greater) {
TokError("expected '>' at end of list element type");
return nullptr;
}
Lex.Lex(); // eat the '>'
}
// Check elements
RecTy *EltTy = nullptr;
for (Init *V : Vals) {
TypedInit *TArg = dyn_cast<TypedInit>(V);
if (TArg) {
if (EltTy) {
EltTy = resolveTypes(EltTy, TArg->getType());
if (!EltTy) {
TokError("Incompatible types in list elements");
return nullptr;
}
} else {
EltTy = TArg->getType();
}
}
}
if (GivenEltTy) {
if (EltTy) {
// Verify consistency
if (!EltTy->typeIsConvertibleTo(GivenEltTy)) {
TokError("Incompatible types in list elements");
return nullptr;
}
}
EltTy = GivenEltTy;
}
if (!EltTy) {
if (!ItemType) {
TokError("No type for list");
return nullptr;
}
DeducedEltTy = GivenListTy->getElementType();
} else {
// Make sure the deduced type is compatible with the given type
if (GivenListTy) {
if (!EltTy->typeIsConvertibleTo(GivenListTy->getElementType())) {
TokError(Twine("Element type mismatch for list: element type '") +
EltTy->getAsString() + "' not convertible to '" +
GivenListTy->getElementType()->getAsString());
return nullptr;
}
}
DeducedEltTy = EltTy;
}
return ListInit::get(Vals, DeducedEltTy);
}
case tgtok::l_paren: { // Value ::= '(' IDValue DagArgList ')'
Lex.Lex(); // eat the '('
if (Lex.getCode() != tgtok::Id && Lex.getCode() != tgtok::XCast &&
Lex.getCode() != tgtok::question && Lex.getCode() != tgtok::XGetOp) {
TokError("expected identifier in dag init");
return nullptr;
}
Init *Operator = ParseValue(CurRec);
if (!Operator) return nullptr;
// If the operator name is present, parse it.
StringInit *OperatorName = nullptr;
if (Lex.getCode() == tgtok::colon) {
if (Lex.Lex() != tgtok::VarName) { // eat the ':'
TokError("expected variable name in dag operator");
return nullptr;
}
OperatorName = StringInit::get(Lex.getCurStrVal());
Lex.Lex(); // eat the VarName.
}
SmallVector<std::pair<llvm::Init*, StringInit*>, 8> DagArgs;
if (Lex.getCode() != tgtok::r_paren) {
ParseDagArgList(DagArgs, CurRec);
if (DagArgs.empty()) return nullptr;
}
if (Lex.getCode() != tgtok::r_paren) {
TokError("expected ')' in dag init");
return nullptr;
}
Lex.Lex(); // eat the ')'
return DagInit::get(Operator, OperatorName, DagArgs);
}
case tgtok::XHead:
case tgtok::XTail:
case tgtok::XSize:
case tgtok::XEmpty:
case tgtok::XCast:
case tgtok::XGetOp: // Value ::= !unop '(' Value ')'
case tgtok::XIsA:
case tgtok::XConcat:
case tgtok::XDag:
case tgtok::XADD:
case tgtok::XMUL:
case tgtok::XAND:
case tgtok::XOR:
case tgtok::XSRA:
case tgtok::XSRL:
case tgtok::XSHL:
case tgtok::XEq:
case tgtok::XNe:
case tgtok::XLe:
case tgtok::XLt:
case tgtok::XGe:
case tgtok::XGt:
case tgtok::XListConcat:
case tgtok::XListSplat:
case tgtok::XStrConcat:
case tgtok::XSetOp: // Value ::= !binop '(' Value ',' Value ')'
case tgtok::XIf:
case tgtok::XCond:
case tgtok::XFoldl:
case tgtok::XForEach:
case tgtok::XSubst: { // Value ::= !ternop '(' Value ',' Value ',' Value ')'
return ParseOperation(CurRec, ItemType);
}
}
return R;
}
/// ParseValue - Parse a tblgen value. This returns null on error.
///
/// Value ::= SimpleValue ValueSuffix*
/// ValueSuffix ::= '{' BitList '}'
/// ValueSuffix ::= '[' BitList ']'
/// ValueSuffix ::= '.' ID
///
Init *TGParser::ParseValue(Record *CurRec, RecTy *ItemType, IDParseMode Mode) {
Init *Result = ParseSimpleValue(CurRec, ItemType, Mode);
if (!Result) return nullptr;
// Parse the suffixes now if present.
while (true) {
switch (Lex.getCode()) {
default: return Result;
case tgtok::l_brace: {
if (Mode == ParseNameMode)
// This is the beginning of the object body.
return Result;
SMLoc CurlyLoc = Lex.getLoc();
Lex.Lex(); // eat the '{'
SmallVector<unsigned, 16> Ranges;
ParseRangeList(Ranges);
if (Ranges.empty()) return nullptr;
// Reverse the bitlist.
std::reverse(Ranges.begin(), Ranges.end());
Result = Result->convertInitializerBitRange(Ranges);
if (!Result) {
Error(CurlyLoc, "Invalid bit range for value");
return nullptr;
}
// Eat the '}'.
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit range list");
return nullptr;
}
Lex.Lex();
break;
}
case tgtok::l_square: {
SMLoc SquareLoc = Lex.getLoc();
Lex.Lex(); // eat the '['
SmallVector<unsigned, 16> Ranges;
ParseRangeList(Ranges);
if (Ranges.empty()) return nullptr;
Result = Result->convertInitListSlice(Ranges);
if (!Result) {
Error(SquareLoc, "Invalid range for list slice");
return nullptr;
}
// Eat the ']'.
if (Lex.getCode() != tgtok::r_square) {
TokError("expected ']' at end of list slice");
return nullptr;
}
Lex.Lex();
break;
}
case tgtok::period: {
if (Lex.Lex() != tgtok::Id) { // eat the .
TokError("expected field identifier after '.'");
return nullptr;
}
StringInit *FieldName = StringInit::get(Lex.getCurStrVal());
if (!Result->getFieldType(FieldName)) {
TokError("Cannot access field '" + Lex.getCurStrVal() + "' of value '" +
Result->getAsString() + "'");
return nullptr;
}
Result = FieldInit::get(Result, FieldName)->Fold(CurRec);
Lex.Lex(); // eat field name
break;
}
case tgtok::paste:
SMLoc PasteLoc = Lex.getLoc();
TypedInit *LHS = dyn_cast<TypedInit>(Result);
if (!LHS) {
Error(PasteLoc, "LHS of paste is not typed!");
return nullptr;
}
// Check if it's a 'listA # listB'
if (isa<ListRecTy>(LHS->getType())) {
Lex.Lex(); // Eat the '#'.
switch (Lex.getCode()) {
case tgtok::colon:
case tgtok::semi:
case tgtok::l_brace:
Result = LHS; // trailing paste, ignore.
break;
default:
Init *RHSResult = ParseValue(CurRec, ItemType, ParseNameMode);
Result = BinOpInit::getListConcat(LHS, RHSResult);
}
break;
}
// Create a !strconcat() operation, first casting each operand to
// a string if necessary.
if (LHS->getType() != StringRecTy::get()) {
auto CastLHS = dyn_cast<TypedInit>(
UnOpInit::get(UnOpInit::CAST, LHS, StringRecTy::get())
->Fold(CurRec));
if (!CastLHS) {
Error(PasteLoc,
Twine("can't cast '") + LHS->getAsString() + "' to string");
return nullptr;
}
LHS = CastLHS;
}
TypedInit *RHS = nullptr;
Lex.Lex(); // Eat the '#'.
switch (Lex.getCode()) {
case tgtok::colon:
case tgtok::semi:
case tgtok::l_brace:
// These are all of the tokens that can begin an object body.
// Some of these can also begin values but we disallow those cases
// because they are unlikely to be useful.
// Trailing paste, concat with an empty string.
RHS = StringInit::get("");
break;
default:
Init *RHSResult = ParseValue(CurRec, nullptr, ParseNameMode);
RHS = dyn_cast<TypedInit>(RHSResult);
if (!RHS) {
Error(PasteLoc, "RHS of paste is not typed!");
return nullptr;
}
if (RHS->getType() != StringRecTy::get()) {
auto CastRHS = dyn_cast<TypedInit>(
UnOpInit::get(UnOpInit::CAST, RHS, StringRecTy::get())
->Fold(CurRec));
if (!CastRHS) {
Error(PasteLoc,
Twine("can't cast '") + RHS->getAsString() + "' to string");
return nullptr;
}
RHS = CastRHS;
}
break;
}
Result = BinOpInit::getStrConcat(LHS, RHS);
break;
}
}
}
/// ParseDagArgList - Parse the argument list for a dag literal expression.
///
/// DagArg ::= Value (':' VARNAME)?
/// DagArg ::= VARNAME
/// DagArgList ::= DagArg
/// DagArgList ::= DagArgList ',' DagArg
void TGParser::ParseDagArgList(
SmallVectorImpl<std::pair<llvm::Init*, StringInit*>> &Result,
Record *CurRec) {
while (true) {
// DagArg ::= VARNAME
if (Lex.getCode() == tgtok::VarName) {
// A missing value is treated like '?'.
StringInit *VarName = StringInit::get(Lex.getCurStrVal());
Result.emplace_back(UnsetInit::get(), VarName);
Lex.Lex();
} else {
// DagArg ::= Value (':' VARNAME)?
Init *Val = ParseValue(CurRec);
if (!Val) {
Result.clear();
return;
}
// If the variable name is present, add it.
StringInit *VarName = nullptr;
if (Lex.getCode() == tgtok::colon) {
if (Lex.Lex() != tgtok::VarName) { // eat the ':'
TokError("expected variable name in dag literal");
Result.clear();
return;
}
VarName = StringInit::get(Lex.getCurStrVal());
Lex.Lex(); // eat the VarName.
}
Result.push_back(std::make_pair(Val, VarName));
}
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat the ','
}
}
/// ParseValueList - Parse a comma separated list of values, returning them as a
/// vector. Note that this always expects to be able to parse at least one
/// value. It returns an empty list if this is not possible.
///
/// ValueList ::= Value (',' Value)
///
void TGParser::ParseValueList(SmallVectorImpl<Init*> &Result, Record *CurRec,
Record *ArgsRec, RecTy *EltTy) {
RecTy *ItemType = EltTy;
unsigned int ArgN = 0;
if (ArgsRec && !EltTy) {
ArrayRef<Init *> TArgs = ArgsRec->getTemplateArgs();
if (TArgs.empty()) {
TokError("template argument provided to non-template class");
Result.clear();
return;
}
const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]);
if (!RV) {
errs() << "Cannot find template arg " << ArgN << " (" << TArgs[ArgN]
<< ")\n";
}
assert(RV && "Template argument record not found??");
ItemType = RV->getType();
++ArgN;
}
Result.push_back(ParseValue(CurRec, ItemType));
if (!Result.back()) {
Result.clear();
return;
}
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // Eat the comma
// ignore trailing comma for lists
if (Lex.getCode() == tgtok::r_square)
return;
if (ArgsRec && !EltTy) {
ArrayRef<Init *> TArgs = ArgsRec->getTemplateArgs();
if (ArgN >= TArgs.size()) {
TokError("too many template arguments");
Result.clear();
return;
}
const RecordVal *RV = ArgsRec->getValue(TArgs[ArgN]);
assert(RV && "Template argument record not found??");
ItemType = RV->getType();
++ArgN;
}
Result.push_back(ParseValue(CurRec, ItemType));
if (!Result.back()) {
Result.clear();
return;
}
}
}
/// ParseDeclaration - Read a declaration, returning the name of field ID, or an
/// empty string on error. This can happen in a number of different context's,
/// including within a def or in the template args for a def (which which case
/// CurRec will be non-null) and within the template args for a multiclass (in
/// which case CurRec will be null, but CurMultiClass will be set). This can
/// also happen within a def that is within a multiclass, which will set both
/// CurRec and CurMultiClass.
///
/// Declaration ::= FIELD? Type ID ('=' Value)?
///
Init *TGParser::ParseDeclaration(Record *CurRec,
bool ParsingTemplateArgs) {
// Read the field prefix if present.
bool HasField = Lex.getCode() == tgtok::Field;
if (HasField) Lex.Lex();
RecTy *Type = ParseType();
if (!Type) return nullptr;
if (Lex.getCode() != tgtok::Id) {
TokError("Expected identifier in declaration");
return nullptr;
}
std::string Str = Lex.getCurStrVal();
if (Str == "NAME") {
TokError("'" + Str + "' is a reserved variable name");
return nullptr;
}
SMLoc IdLoc = Lex.getLoc();
Init *DeclName = StringInit::get(Str);
Lex.Lex();
if (ParsingTemplateArgs) {
if (CurRec)
DeclName = QualifyName(*CurRec, CurMultiClass, DeclName, ":");
else
assert(CurMultiClass);
if (CurMultiClass)
DeclName = QualifyName(CurMultiClass->Rec, CurMultiClass, DeclName,
"::");
}
// Add the value.
if (AddValue(CurRec, IdLoc, RecordVal(DeclName, Type, HasField)))
return nullptr;
// If a value is present, parse it.
if (Lex.getCode() == tgtok::equal) {
Lex.Lex();
SMLoc ValLoc = Lex.getLoc();
Init *Val = ParseValue(CurRec, Type);
if (!Val ||
SetValue(CurRec, ValLoc, DeclName, None, Val))
// Return the name, even if an error is thrown. This is so that we can
// continue to make some progress, even without the value having been
// initialized.
return DeclName;
}
return DeclName;
}
/// ParseForeachDeclaration - Read a foreach declaration, returning
/// the name of the declared object or a NULL Init on error. Return
/// the name of the parsed initializer list through ForeachListName.
///
/// ForeachDeclaration ::= ID '=' '{' RangeList '}'
/// ForeachDeclaration ::= ID '=' RangePiece
/// ForeachDeclaration ::= ID '=' Value
///
VarInit *TGParser::ParseForeachDeclaration(Init *&ForeachListValue) {
if (Lex.getCode() != tgtok::Id) {
TokError("Expected identifier in foreach declaration");
return nullptr;
}
Init *DeclName = StringInit::get(Lex.getCurStrVal());
Lex.Lex();
// If a value is present, parse it.
if (Lex.getCode() != tgtok::equal) {
TokError("Expected '=' in foreach declaration");
return nullptr;
}
Lex.Lex(); // Eat the '='
RecTy *IterType = nullptr;
SmallVector<unsigned, 16> Ranges;
switch (Lex.getCode()) {
case tgtok::l_brace: { // '{' RangeList '}'
Lex.Lex(); // eat the '{'
ParseRangeList(Ranges);
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of bit range list");
return nullptr;
}
Lex.Lex();
break;
}
default: {
SMLoc ValueLoc = Lex.getLoc();
Init *I = ParseValue(nullptr);
if (!I)
return nullptr;
TypedInit *TI = dyn_cast<TypedInit>(I);
if (TI && isa<ListRecTy>(TI->getType())) {
ForeachListValue = I;
IterType = cast<ListRecTy>(TI->getType())->getElementType();
break;
}
if (TI) {
if (ParseRangePiece(Ranges, TI))
return nullptr;
break;
}
std::string Type;
if (TI)
Type = (Twine("' of type '") + TI->getType()->getAsString()).str();
Error(ValueLoc, "expected a list, got '" + I->getAsString() + Type + "'");
if (CurMultiClass) {
PrintNote({}, "references to multiclass template arguments cannot be "
"resolved at this time");
}
return nullptr;
}
}
if (!Ranges.empty()) {
assert(!IterType && "Type already initialized?");
IterType = IntRecTy::get();
std::vector<Init*> Values;
for (unsigned R : Ranges)
Values.push_back(IntInit::get(R));
ForeachListValue = ListInit::get(Values, IterType);
}
if (!IterType)
return nullptr;
return VarInit::get(DeclName, IterType);
}
/// ParseTemplateArgList - Read a template argument list, which is a non-empty
/// sequence of template-declarations in <>'s. If CurRec is non-null, these are
/// template args for a def, which may or may not be in a multiclass. If null,
/// these are the template args for a multiclass.
///
/// TemplateArgList ::= '<' Declaration (',' Declaration)* '>'
///
bool TGParser::ParseTemplateArgList(Record *CurRec) {
assert(Lex.getCode() == tgtok::less && "Not a template arg list!");
Lex.Lex(); // eat the '<'
Record *TheRecToAddTo = CurRec ? CurRec : &CurMultiClass->Rec;
// Read the first declaration.
Init *TemplArg = ParseDeclaration(CurRec, true/*templateargs*/);
if (!TemplArg)
return true;
TheRecToAddTo->addTemplateArg(TemplArg);
while (Lex.getCode() == tgtok::comma) {
Lex.Lex(); // eat the ','
// Read the following declarations.
SMLoc Loc = Lex.getLoc();
TemplArg = ParseDeclaration(CurRec, true/*templateargs*/);
if (!TemplArg)
return true;
if (TheRecToAddTo->isTemplateArg(TemplArg))
return Error(Loc, "template argument with the same name has already been "
"defined");
TheRecToAddTo->addTemplateArg(TemplArg);
}
if (Lex.getCode() != tgtok::greater)
return TokError("expected '>' at end of template argument list");
Lex.Lex(); // eat the '>'.
return false;
}
/// ParseBodyItem - Parse a single item at within the body of a def or class.
///
/// BodyItem ::= Declaration ';'
/// BodyItem ::= LET ID OptionalBitList '=' Value ';'
/// BodyItem ::= Defvar
bool TGParser::ParseBodyItem(Record *CurRec) {
if (Lex.getCode() == tgtok::Defvar)
return ParseDefvar();
if (Lex.getCode() != tgtok::Let) {
if (!ParseDeclaration(CurRec, false))
return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' after declaration");
Lex.Lex();
return false;
}
// LET ID OptionalRangeList '=' Value ';'
if (Lex.Lex() != tgtok::Id)
return TokError("expected field identifier after let");
SMLoc IdLoc = Lex.getLoc();
StringInit *FieldName = StringInit::get(Lex.getCurStrVal());
Lex.Lex(); // eat the field name.
SmallVector<unsigned, 16> BitList;
if (ParseOptionalBitList(BitList))
return true;
std::reverse(BitList.begin(), BitList.end());
if (Lex.getCode() != tgtok::equal)
return TokError("expected '=' in let expression");
Lex.Lex(); // eat the '='.
RecordVal *Field = CurRec->getValue(FieldName);
if (!Field)
return TokError("Value '" + FieldName->getValue() + "' unknown!");
RecTy *Type = Field->getType();
if (!BitList.empty() && isa<BitsRecTy>(Type)) {
// When assigning to a subset of a 'bits' object, expect the RHS to have
// the type of that subset instead of the type of the whole object.
Type = BitsRecTy::get(BitList.size());
}
Init *Val = ParseValue(CurRec, Type);
if (!Val) return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' after let expression");
Lex.Lex();
return SetValue(CurRec, IdLoc, FieldName, BitList, Val);
}
/// ParseBody - Read the body of a class or def. Return true on error, false on
/// success.
///
/// Body ::= ';'
/// Body ::= '{' BodyList '}'
/// BodyList BodyItem*
///
bool TGParser::ParseBody(Record *CurRec) {
// If this is a null definition, just eat the semi and return.
if (Lex.getCode() == tgtok::semi) {
Lex.Lex();
return false;
}
if (Lex.getCode() != tgtok::l_brace)
return TokError("Expected ';' or '{' to start body");
// Eat the '{'.
Lex.Lex();
// An object body introduces a new scope for local variables.
TGLocalVarScope *BodyScope = PushLocalScope();
while (Lex.getCode() != tgtok::r_brace)
if (ParseBodyItem(CurRec))
return true;
PopLocalScope(BodyScope);
// Eat the '}'.
Lex.Lex();
return false;
}
/// Apply the current let bindings to \a CurRec.
/// \returns true on error, false otherwise.
bool TGParser::ApplyLetStack(Record *CurRec) {
for (SmallVectorImpl<LetRecord> &LetInfo : LetStack)
for (LetRecord &LR : LetInfo)
if (SetValue(CurRec, LR.Loc, LR.Name, LR.Bits, LR.Value))
return true;
return false;
}
bool TGParser::ApplyLetStack(RecordsEntry &Entry) {
if (Entry.Rec)
return ApplyLetStack(Entry.Rec.get());
for (auto &E : Entry.Loop->Entries) {
if (ApplyLetStack(E))
return true;
}
return false;
}
/// ParseObjectBody - Parse the body of a def or class. This consists of an
/// optional ClassList followed by a Body. CurRec is the current def or class
/// that is being parsed.
///
/// ObjectBody ::= BaseClassList Body
/// BaseClassList ::= /*empty*/
/// BaseClassList ::= ':' BaseClassListNE
/// BaseClassListNE ::= SubClassRef (',' SubClassRef)*
///
bool TGParser::ParseObjectBody(Record *CurRec) {
// If there is a baseclass list, read it.
if (Lex.getCode() == tgtok::colon) {
Lex.Lex();
// Read all of the subclasses.
SubClassReference SubClass = ParseSubClassReference(CurRec, false);
while (true) {
// Check for error.
if (!SubClass.Rec) return true;
// Add it.
if (AddSubClass(CurRec, SubClass))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubClass = ParseSubClassReference(CurRec, false);
}
}
if (ApplyLetStack(CurRec))
return true;
return ParseBody(CurRec);
}
/// ParseDef - Parse and return a top level or multiclass def, return the record
/// corresponding to it. This returns null on error.
///
/// DefInst ::= DEF ObjectName ObjectBody
///
bool TGParser::ParseDef(MultiClass *CurMultiClass) {
SMLoc DefLoc = Lex.getLoc();
assert(Lex.getCode() == tgtok::Def && "Unknown tok");
Lex.Lex(); // Eat the 'def' token.
// Parse ObjectName and make a record for it.
std::unique_ptr<Record> CurRec;
Init *Name = ParseObjectName(CurMultiClass);
if (!Name)
return true;
if (isa<UnsetInit>(Name))
CurRec = std::make_unique<Record>(Records.getNewAnonymousName(), DefLoc, Records,
/*Anonymous=*/true);
else
CurRec = std::make_unique<Record>(Name, DefLoc, Records);
if (ParseObjectBody(CurRec.get()))
return true;
return addEntry(std::move(CurRec));
}
/// ParseDefset - Parse a defset statement.
///
/// Defset ::= DEFSET Type Id '=' '{' ObjectList '}'
///
bool TGParser::ParseDefset() {
assert(Lex.getCode() == tgtok::Defset);
Lex.Lex(); // Eat the 'defset' token
DefsetRecord Defset;
Defset.Loc = Lex.getLoc();
RecTy *Type = ParseType();
if (!Type)
return true;
if (!isa<ListRecTy>(Type))
return Error(Defset.Loc, "expected list type");
Defset.EltTy = cast<ListRecTy>(Type)->getElementType();
if (Lex.getCode() != tgtok::Id)
return TokError("expected identifier");
StringInit *DeclName = StringInit::get(Lex.getCurStrVal());
if (Records.getGlobal(DeclName->getValue()))
return TokError("def or global variable of this name already exists");
if (Lex.Lex() != tgtok::equal) // Eat the identifier
return TokError("expected '='");
if (Lex.Lex() != tgtok::l_brace) // Eat the '='
return TokError("expected '{'");
SMLoc BraceLoc = Lex.getLoc();
Lex.Lex(); // Eat the '{'
Defsets.push_back(&Defset);
bool Err = ParseObjectList(nullptr);
Defsets.pop_back();
if (Err)
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of defset");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex(); // Eat the '}'
Records.addExtraGlobal(DeclName->getValue(),
ListInit::get(Defset.Elements, Defset.EltTy));
return false;
}
/// ParseDefvar - Parse a defvar statement.
///
/// Defvar ::= DEFVAR Id '=' Value ';'
///
bool TGParser::ParseDefvar() {
assert(Lex.getCode() == tgtok::Defvar);
Lex.Lex(); // Eat the 'defvar' token
if (Lex.getCode() != tgtok::Id)
return TokError("expected identifier");
StringInit *DeclName = StringInit::get(Lex.getCurStrVal());
if (CurLocalScope) {
if (CurLocalScope->varAlreadyDefined(DeclName->getValue()))
return TokError("local variable of this name already exists");
} else {
if (Records.getGlobal(DeclName->getValue()))
return TokError("def or global variable of this name already exists");
}
if (Lex.Lex() != tgtok::equal) // Eat the identifier
return TokError("expected '='");
Lex.Lex(); // Eat the '='
Init *Value = ParseValue(nullptr);
if (!Value)
return true;
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';'");
Lex.Lex(); // Eat the ';'
if (CurLocalScope)
CurLocalScope->addVar(DeclName->getValue(), Value);
else
Records.addExtraGlobal(DeclName->getValue(), Value);
return false;
}
/// ParseForeach - Parse a for statement. Return the record corresponding
/// to it. This returns true on error.
///
/// Foreach ::= FOREACH Declaration IN '{ ObjectList '}'
/// Foreach ::= FOREACH Declaration IN Object
///
bool TGParser::ParseForeach(MultiClass *CurMultiClass) {
SMLoc Loc = Lex.getLoc();
assert(Lex.getCode() == tgtok::Foreach && "Unknown tok");
Lex.Lex(); // Eat the 'for' token.
// Make a temporary object to record items associated with the for
// loop.
Init *ListValue = nullptr;
VarInit *IterName = ParseForeachDeclaration(ListValue);
if (!IterName)
return TokError("expected declaration in for");
if (Lex.getCode() != tgtok::In)
return TokError("Unknown tok");
Lex.Lex(); // Eat the in
// Create a loop object and remember it.
Loops.push_back(std::make_unique<ForeachLoop>(Loc, IterName, ListValue));
// A foreach loop introduces a new scope for local variables.
TGLocalVarScope *ForeachScope = PushLocalScope();
if (Lex.getCode() != tgtok::l_brace) {
// FOREACH Declaration IN Object
if (ParseObject(CurMultiClass))
return true;
} else {
SMLoc BraceLoc = Lex.getLoc();
// Otherwise, this is a group foreach.
Lex.Lex(); // eat the '{'.
// Parse the object list.
if (ParseObjectList(CurMultiClass))
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of foreach command");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex(); // Eat the }
}
PopLocalScope(ForeachScope);
// Resolve the loop or store it for later resolution.
std::unique_ptr<ForeachLoop> Loop = std::move(Loops.back());
Loops.pop_back();
return addEntry(std::move(Loop));
}
/// ParseIf - Parse an if statement.
///
/// If ::= IF Value THEN IfBody
/// If ::= IF Value THEN IfBody ELSE IfBody
///
bool TGParser::ParseIf(MultiClass *CurMultiClass) {
SMLoc Loc = Lex.getLoc();
assert(Lex.getCode() == tgtok::If && "Unknown tok");
Lex.Lex(); // Eat the 'if' token.
// Make a temporary object to record items associated with the for
// loop.
Init *Condition = ParseValue(nullptr);
if (!Condition)
return true;
if (Lex.getCode() != tgtok::Then)
return TokError("Unknown tok");
Lex.Lex(); // Eat the 'then'
// We have to be able to save if statements to execute later, and they have
// to live on the same stack as foreach loops. The simplest implementation
// technique is to convert each 'then' or 'else' clause *into* a foreach
// loop, over a list of length 0 or 1 depending on the condition, and with no
// iteration variable being assigned.
ListInit *EmptyList = ListInit::get({}, BitRecTy::get());
ListInit *SingletonList = ListInit::get({BitInit::get(1)}, BitRecTy::get());
RecTy *BitListTy = ListRecTy::get(BitRecTy::get());
// The foreach containing the then-clause selects SingletonList if
// the condition is true.
Init *ThenClauseList =
TernOpInit::get(TernOpInit::IF, Condition, SingletonList, EmptyList,
BitListTy)
->Fold(nullptr);
Loops.push_back(std::make_unique<ForeachLoop>(Loc, nullptr, ThenClauseList));
if (ParseIfBody(CurMultiClass, "then"))
return true;
std::unique_ptr<ForeachLoop> Loop = std::move(Loops.back());
Loops.pop_back();
if (addEntry(std::move(Loop)))
return true;
// Now look for an optional else clause. The if-else syntax has the usual
// dangling-else ambiguity, and by greedily matching an else here if we can,
// we implement the usual resolution of pairing with the innermost unmatched
// if.
if (Lex.getCode() == tgtok::ElseKW) {
Lex.Lex(); // Eat the 'else'
// The foreach containing the else-clause uses the same pair of lists as
// above, but this time, selects SingletonList if the condition is *false*.
Init *ElseClauseList =
TernOpInit::get(TernOpInit::IF, Condition, EmptyList, SingletonList,
BitListTy)
->Fold(nullptr);
Loops.push_back(
std::make_unique<ForeachLoop>(Loc, nullptr, ElseClauseList));
if (ParseIfBody(CurMultiClass, "else"))
return true;
Loop = std::move(Loops.back());
Loops.pop_back();
if (addEntry(std::move(Loop)))
return true;
}
return false;
}
/// ParseIfBody - Parse the then-clause or else-clause of an if statement.
///
/// IfBody ::= Object
/// IfBody ::= '{' ObjectList '}'
///
bool TGParser::ParseIfBody(MultiClass *CurMultiClass, StringRef Kind) {
TGLocalVarScope *BodyScope = PushLocalScope();
if (Lex.getCode() != tgtok::l_brace) {
// A single object.
if (ParseObject(CurMultiClass))
return true;
} else {
SMLoc BraceLoc = Lex.getLoc();
// A braced block.
Lex.Lex(); // eat the '{'.
// Parse the object list.
if (ParseObjectList(CurMultiClass))
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of '" + Kind + "' clause");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex(); // Eat the }
}
PopLocalScope(BodyScope);
return false;
}
/// ParseClass - Parse a tblgen class definition.
///
/// ClassInst ::= CLASS ID TemplateArgList? ObjectBody
///
bool TGParser::ParseClass() {
assert(Lex.getCode() == tgtok::Class && "Unexpected token!");
Lex.Lex();
if (Lex.getCode() != tgtok::Id)
return TokError("expected class name after 'class' keyword");
Record *CurRec = Records.getClass(Lex.getCurStrVal());
if (CurRec) {
// If the body was previously defined, this is an error.
if (!CurRec->getValues().empty() ||
!CurRec->getSuperClasses().empty() ||
!CurRec->getTemplateArgs().empty())
return TokError("Class '" + CurRec->getNameInitAsString() +
"' already defined");
} else {
// If this is the first reference to this class, create and add it.
auto NewRec =
std::make_unique<Record>(Lex.getCurStrVal(), Lex.getLoc(), Records,
/*Class=*/true);
CurRec = NewRec.get();
Records.addClass(std::move(NewRec));
}
Lex.Lex(); // eat the name.
// If there are template args, parse them.
if (Lex.getCode() == tgtok::less)
if (ParseTemplateArgList(CurRec))
return true;
return ParseObjectBody(CurRec);
}
/// ParseLetList - Parse a non-empty list of assignment expressions into a list
/// of LetRecords.
///
/// LetList ::= LetItem (',' LetItem)*
/// LetItem ::= ID OptionalRangeList '=' Value
///
void TGParser::ParseLetList(SmallVectorImpl<LetRecord> &Result) {
while (true) {
if (Lex.getCode() != tgtok::Id) {
TokError("expected identifier in let definition");
Result.clear();
return;
}
StringInit *Name = StringInit::get(Lex.getCurStrVal());
SMLoc NameLoc = Lex.getLoc();
Lex.Lex(); // Eat the identifier.
// Check for an optional RangeList.
SmallVector<unsigned, 16> Bits;
if (ParseOptionalRangeList(Bits)) {
Result.clear();
return;
}
std::reverse(Bits.begin(), Bits.end());
if (Lex.getCode() != tgtok::equal) {
TokError("expected '=' in let expression");
Result.clear();
return;
}
Lex.Lex(); // eat the '='.
Init *Val = ParseValue(nullptr);
if (!Val) {
Result.clear();
return;
}
// Now that we have everything, add the record.
Result.emplace_back(Name, Bits, Val, NameLoc);
if (Lex.getCode() != tgtok::comma)
return;
Lex.Lex(); // eat the comma.
}
}
/// ParseTopLevelLet - Parse a 'let' at top level. This can be a couple of
/// different related productions. This works inside multiclasses too.
///
/// Object ::= LET LetList IN '{' ObjectList '}'
/// Object ::= LET LetList IN Object
///
bool TGParser::ParseTopLevelLet(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Let && "Unexpected token");
Lex.Lex();
// Add this entry to the let stack.
SmallVector<LetRecord, 8> LetInfo;
ParseLetList(LetInfo);
if (LetInfo.empty()) return true;
LetStack.push_back(std::move(LetInfo));
if (Lex.getCode() != tgtok::In)
return TokError("expected 'in' at end of top-level 'let'");
Lex.Lex();
TGLocalVarScope *LetScope = PushLocalScope();
// If this is a scalar let, just handle it now
if (Lex.getCode() != tgtok::l_brace) {
// LET LetList IN Object
if (ParseObject(CurMultiClass))
return true;
} else { // Object ::= LETCommand '{' ObjectList '}'
SMLoc BraceLoc = Lex.getLoc();
// Otherwise, this is a group let.
Lex.Lex(); // eat the '{'.
// Parse the object list.
if (ParseObjectList(CurMultiClass))
return true;
if (Lex.getCode() != tgtok::r_brace) {
TokError("expected '}' at end of top level let command");
return Error(BraceLoc, "to match this '{'");
}
Lex.Lex();
}
PopLocalScope(LetScope);
// Outside this let scope, this let block is not active.
LetStack.pop_back();
return false;
}
/// ParseMultiClass - Parse a multiclass definition.
///
/// MultiClassInst ::= MULTICLASS ID TemplateArgList?
/// ':' BaseMultiClassList '{' MultiClassObject+ '}'
/// MultiClassObject ::= DefInst
/// MultiClassObject ::= MultiClassInst
/// MultiClassObject ::= DefMInst
/// MultiClassObject ::= LETCommand '{' ObjectList '}'
/// MultiClassObject ::= LETCommand Object
///
bool TGParser::ParseMultiClass() {
assert(Lex.getCode() == tgtok::MultiClass && "Unexpected token");
Lex.Lex(); // Eat the multiclass token.
if (Lex.getCode() != tgtok::Id)
return TokError("expected identifier after multiclass for name");
std::string Name = Lex.getCurStrVal();
auto Result =
MultiClasses.insert(std::make_pair(Name,
std::make_unique<MultiClass>(Name, Lex.getLoc(),Records)));
if (!Result.second)
return TokError("multiclass '" + Name + "' already defined");
CurMultiClass = Result.first->second.get();
Lex.Lex(); // Eat the identifier.
// If there are template args, parse them.
if (Lex.getCode() == tgtok::less)
if (ParseTemplateArgList(nullptr))
return true;
bool inherits = false;
// If there are submulticlasses, parse them.
if (Lex.getCode() == tgtok::colon) {
inherits = true;
Lex.Lex();
// Read all of the submulticlasses.
SubMultiClassReference SubMultiClass =
ParseSubMultiClassReference(CurMultiClass);
while (true) {
// Check for error.
if (!SubMultiClass.MC) return true;
// Add it.
if (AddSubMultiClass(CurMultiClass, SubMultiClass))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubMultiClass = ParseSubMultiClassReference(CurMultiClass);
}
}
if (Lex.getCode() != tgtok::l_brace) {
if (!inherits)
return TokError("expected '{' in multiclass definition");
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' in multiclass definition");
Lex.Lex(); // eat the ';'.
} else {
if (Lex.Lex() == tgtok::r_brace) // eat the '{'.
return TokError("multiclass must contain at least one def");
// A multiclass body introduces a new scope for local variables.
TGLocalVarScope *MulticlassScope = PushLocalScope();
while (Lex.getCode() != tgtok::r_brace) {
switch (Lex.getCode()) {
default:
return TokError("expected 'let', 'def', 'defm', 'defvar', 'foreach' "
"or 'if' in multiclass body");
case tgtok::Let:
case tgtok::Def:
case tgtok::Defm:
case tgtok::Defvar:
case tgtok::Foreach:
case tgtok::If:
if (ParseObject(CurMultiClass))
return true;
break;
}
}
Lex.Lex(); // eat the '}'.
PopLocalScope(MulticlassScope);
}
CurMultiClass = nullptr;
return false;
}
/// ParseDefm - Parse the instantiation of a multiclass.
///
/// DefMInst ::= DEFM ID ':' DefmSubClassRef ';'
///
bool TGParser::ParseDefm(MultiClass *CurMultiClass) {
assert(Lex.getCode() == tgtok::Defm && "Unexpected token!");
Lex.Lex(); // eat the defm
Init *DefmName = ParseObjectName(CurMultiClass);
if (!DefmName)
return true;
if (isa<UnsetInit>(DefmName)) {
DefmName = Records.getNewAnonymousName();
if (CurMultiClass)
DefmName = BinOpInit::getStrConcat(
VarInit::get(QualifiedNameOfImplicitName(CurMultiClass),
StringRecTy::get()),
DefmName);
}
if (Lex.getCode() != tgtok::colon)
return TokError("expected ':' after defm identifier");
// Keep track of the new generated record definitions.
std::vector<RecordsEntry> NewEntries;
// This record also inherits from a regular class (non-multiclass)?
bool InheritFromClass = false;
// eat the colon.
Lex.Lex();
SMLoc SubClassLoc = Lex.getLoc();
SubClassReference Ref = ParseSubClassReference(nullptr, true);
while (true) {
if (!Ref.Rec) return true;
// To instantiate a multiclass, we need to first get the multiclass, then
// instantiate each def contained in the multiclass with the SubClassRef
// template parameters.
MultiClass *MC = MultiClasses[std::string(Ref.Rec->getName())].get();
assert(MC && "Didn't lookup multiclass correctly?");
ArrayRef<Init*> TemplateVals = Ref.TemplateArgs;
// Verify that the correct number of template arguments were specified.
ArrayRef<Init *> TArgs = MC->Rec.getTemplateArgs();
if (TArgs.size() < TemplateVals.size())
return Error(SubClassLoc,
"more template args specified than multiclass expects");
SubstStack Substs;
for (unsigned i = 0, e = TArgs.size(); i != e; ++i) {
if (i < TemplateVals.size()) {
Substs.emplace_back(TArgs[i], TemplateVals[i]);
} else {
Init *Default = MC->Rec.getValue(TArgs[i])->getValue();
if (!Default->isComplete()) {
return Error(SubClassLoc,
"value not specified for template argument #" +
Twine(i) + " (" + TArgs[i]->getAsUnquotedString() +
") of multiclass '" + MC->Rec.getNameInitAsString() +
"'");
}
Substs.emplace_back(TArgs[i], Default);
}
}
Substs.emplace_back(QualifiedNameOfImplicitName(MC), DefmName);
if (resolve(MC->Entries, Substs, CurMultiClass == nullptr, &NewEntries,
&SubClassLoc))
return true;
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
if (Lex.getCode() != tgtok::Id)
return TokError("expected identifier");
SubClassLoc = Lex.getLoc();
// A defm can inherit from regular classes (non-multiclass) as
// long as they come in the end of the inheritance list.
InheritFromClass = (Records.getClass(Lex.getCurStrVal()) != nullptr);
if (InheritFromClass)
break;
Ref = ParseSubClassReference(nullptr, true);
}
if (InheritFromClass) {
// Process all the classes to inherit as if they were part of a
// regular 'def' and inherit all record values.
SubClassReference SubClass = ParseSubClassReference(nullptr, false);
while (true) {
// Check for error.
if (!SubClass.Rec) return true;
// Get the expanded definition prototypes and teach them about
// the record values the current class to inherit has
for (auto &E : NewEntries) {
// Add it.
if (AddSubClass(E, SubClass))
return true;
}
if (Lex.getCode() != tgtok::comma) break;
Lex.Lex(); // eat ','.
SubClass = ParseSubClassReference(nullptr, false);
}
}
for (auto &E : NewEntries) {
if (ApplyLetStack(E))
return true;
addEntry(std::move(E));
}
if (Lex.getCode() != tgtok::semi)
return TokError("expected ';' at end of defm");
Lex.Lex();
return false;
}
/// ParseObject
/// Object ::= ClassInst
/// Object ::= DefInst
/// Object ::= MultiClassInst
/// Object ::= DefMInst
/// Object ::= LETCommand '{' ObjectList '}'
/// Object ::= LETCommand Object
/// Object ::= Defset
/// Object ::= Defvar
bool TGParser::ParseObject(MultiClass *MC) {
switch (Lex.getCode()) {
default:
return TokError("Expected class, def, defm, defset, multiclass, let, "
"foreach or if");
case tgtok::Let: return ParseTopLevelLet(MC);
case tgtok::Def: return ParseDef(MC);
case tgtok::Foreach: return ParseForeach(MC);
case tgtok::If: return ParseIf(MC);
case tgtok::Defm: return ParseDefm(MC);
case tgtok::Defset:
if (MC)
return TokError("defset is not allowed inside multiclass");
return ParseDefset();
case tgtok::Defvar:
return ParseDefvar();
case tgtok::Class:
if (MC)
return TokError("class is not allowed inside multiclass");
if (!Loops.empty())
return TokError("class is not allowed inside foreach loop");
return ParseClass();
case tgtok::MultiClass:
if (!Loops.empty())
return TokError("multiclass is not allowed inside foreach loop");
return ParseMultiClass();
}
}
/// ParseObjectList
/// ObjectList :== Object*
bool TGParser::ParseObjectList(MultiClass *MC) {
while (isObjectStart(Lex.getCode())) {
if (ParseObject(MC))
return true;
}
return false;
}
bool TGParser::ParseFile() {
Lex.Lex(); // Prime the lexer.
if (ParseObjectList()) return true;
// If we have unread input at the end of the file, report it.
if (Lex.getCode() == tgtok::Eof)
return false;
return TokError("Unexpected input at top level");
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RecordsEntry::dump() const {
if (Loop)
Loop->dump();
if (Rec)
Rec->dump();
}
LLVM_DUMP_METHOD void ForeachLoop::dump() const {
errs() << "foreach " << IterVar->getAsString() << " = "
<< ListValue->getAsString() << " in {\n";
for (const auto &E : Entries)
E.dump();
errs() << "}\n";
}
LLVM_DUMP_METHOD void MultiClass::dump() const {
errs() << "Record:\n";
Rec.dump();
errs() << "Defs:\n";
for (const auto &E : Entries)
E.dump();
}
#endif