mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-26 04:32:44 +01:00
ccceacf068
In an upcoming AMDGPU patch, the scalar cases will be legal and vector ops should be scalarized, rather than producing a long sequence of vector ops which will also need to be scalarized. Use a lazy heuristic that seems to work and improves the thumb2 MVE test.
7898 lines
308 KiB
C++
7898 lines
308 KiB
C++
//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the TargetLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <cctype>
|
|
using namespace llvm;
|
|
|
|
/// NOTE: The TargetMachine owns TLOF.
|
|
TargetLowering::TargetLowering(const TargetMachine &tm)
|
|
: TargetLoweringBase(tm) {}
|
|
|
|
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
return nullptr;
|
|
}
|
|
|
|
bool TargetLowering::isPositionIndependent() const {
|
|
return getTargetMachine().isPositionIndependent();
|
|
}
|
|
|
|
/// Check whether a given call node is in tail position within its function. If
|
|
/// so, it sets Chain to the input chain of the tail call.
|
|
bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
|
|
SDValue &Chain) const {
|
|
const Function &F = DAG.getMachineFunction().getFunction();
|
|
|
|
// First, check if tail calls have been disabled in this function.
|
|
if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
|
|
return false;
|
|
|
|
// Conservatively require the attributes of the call to match those of
|
|
// the return. Ignore NoAlias and NonNull because they don't affect the
|
|
// call sequence.
|
|
AttributeList CallerAttrs = F.getAttributes();
|
|
if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
|
|
.removeAttribute(Attribute::NoAlias)
|
|
.removeAttribute(Attribute::NonNull)
|
|
.hasAttributes())
|
|
return false;
|
|
|
|
// It's not safe to eliminate the sign / zero extension of the return value.
|
|
if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
|
|
CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
|
|
return false;
|
|
|
|
// Check if the only use is a function return node.
|
|
return isUsedByReturnOnly(Node, Chain);
|
|
}
|
|
|
|
bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
|
|
const uint32_t *CallerPreservedMask,
|
|
const SmallVectorImpl<CCValAssign> &ArgLocs,
|
|
const SmallVectorImpl<SDValue> &OutVals) const {
|
|
for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
|
|
const CCValAssign &ArgLoc = ArgLocs[I];
|
|
if (!ArgLoc.isRegLoc())
|
|
continue;
|
|
MCRegister Reg = ArgLoc.getLocReg();
|
|
// Only look at callee saved registers.
|
|
if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
|
|
continue;
|
|
// Check that we pass the value used for the caller.
|
|
// (We look for a CopyFromReg reading a virtual register that is used
|
|
// for the function live-in value of register Reg)
|
|
SDValue Value = OutVals[I];
|
|
if (Value->getOpcode() != ISD::CopyFromReg)
|
|
return false;
|
|
MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
|
|
if (MRI.getLiveInPhysReg(ArgReg) != Reg)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Set CallLoweringInfo attribute flags based on a call instruction
|
|
/// and called function attributes.
|
|
void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
|
|
unsigned ArgIdx) {
|
|
IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
|
|
IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
|
|
IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
|
|
IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
|
|
IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
|
|
IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
|
|
IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
|
|
IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
|
|
IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
|
|
IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
|
|
IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
|
|
Alignment = Call->getParamAlign(ArgIdx);
|
|
ByValType = nullptr;
|
|
if (IsByVal)
|
|
ByValType = Call->getParamByValType(ArgIdx);
|
|
PreallocatedType = nullptr;
|
|
if (IsPreallocated)
|
|
PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
|
|
}
|
|
|
|
/// Generate a libcall taking the given operands as arguments and returning a
|
|
/// result of type RetVT.
|
|
std::pair<SDValue, SDValue>
|
|
TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
|
|
ArrayRef<SDValue> Ops,
|
|
MakeLibCallOptions CallOptions,
|
|
const SDLoc &dl,
|
|
SDValue InChain) const {
|
|
if (!InChain)
|
|
InChain = DAG.getEntryNode();
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
Args.reserve(Ops.size());
|
|
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (unsigned i = 0; i < Ops.size(); ++i) {
|
|
SDValue NewOp = Ops[i];
|
|
Entry.Node = NewOp;
|
|
Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
|
|
Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
|
|
CallOptions.IsSExt);
|
|
Entry.IsZExt = !Entry.IsSExt;
|
|
|
|
if (CallOptions.IsSoften &&
|
|
!shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
|
|
Entry.IsSExt = Entry.IsZExt = false;
|
|
}
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
if (LC == RTLIB::UNKNOWN_LIBCALL)
|
|
report_fatal_error("Unsupported library call operation!");
|
|
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
|
|
getPointerTy(DAG.getDataLayout()));
|
|
|
|
Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
|
|
bool zeroExtend = !signExtend;
|
|
|
|
if (CallOptions.IsSoften &&
|
|
!shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
|
|
signExtend = zeroExtend = false;
|
|
}
|
|
|
|
CLI.setDebugLoc(dl)
|
|
.setChain(InChain)
|
|
.setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
|
|
.setNoReturn(CallOptions.DoesNotReturn)
|
|
.setDiscardResult(!CallOptions.IsReturnValueUsed)
|
|
.setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
|
|
.setSExtResult(signExtend)
|
|
.setZExtResult(zeroExtend);
|
|
return LowerCallTo(CLI);
|
|
}
|
|
|
|
bool TargetLowering::findOptimalMemOpLowering(
|
|
std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
|
|
unsigned SrcAS, const AttributeList &FuncAttributes) const {
|
|
if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
|
|
return false;
|
|
|
|
EVT VT = getOptimalMemOpType(Op, FuncAttributes);
|
|
|
|
if (VT == MVT::Other) {
|
|
// Use the largest integer type whose alignment constraints are satisfied.
|
|
// We only need to check DstAlign here as SrcAlign is always greater or
|
|
// equal to DstAlign (or zero).
|
|
VT = MVT::i64;
|
|
if (Op.isFixedDstAlign())
|
|
while (
|
|
Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
|
|
!allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
|
|
VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
|
|
assert(VT.isInteger());
|
|
|
|
// Find the largest legal integer type.
|
|
MVT LVT = MVT::i64;
|
|
while (!isTypeLegal(LVT))
|
|
LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
|
|
assert(LVT.isInteger());
|
|
|
|
// If the type we've chosen is larger than the largest legal integer type
|
|
// then use that instead.
|
|
if (VT.bitsGT(LVT))
|
|
VT = LVT;
|
|
}
|
|
|
|
unsigned NumMemOps = 0;
|
|
uint64_t Size = Op.size();
|
|
while (Size) {
|
|
unsigned VTSize = VT.getSizeInBits() / 8;
|
|
while (VTSize > Size) {
|
|
// For now, only use non-vector load / store's for the left-over pieces.
|
|
EVT NewVT = VT;
|
|
unsigned NewVTSize;
|
|
|
|
bool Found = false;
|
|
if (VT.isVector() || VT.isFloatingPoint()) {
|
|
NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
|
|
if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
|
|
isSafeMemOpType(NewVT.getSimpleVT()))
|
|
Found = true;
|
|
else if (NewVT == MVT::i64 &&
|
|
isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
|
|
isSafeMemOpType(MVT::f64)) {
|
|
// i64 is usually not legal on 32-bit targets, but f64 may be.
|
|
NewVT = MVT::f64;
|
|
Found = true;
|
|
}
|
|
}
|
|
|
|
if (!Found) {
|
|
do {
|
|
NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
|
|
if (NewVT == MVT::i8)
|
|
break;
|
|
} while (!isSafeMemOpType(NewVT.getSimpleVT()));
|
|
}
|
|
NewVTSize = NewVT.getSizeInBits() / 8;
|
|
|
|
// If the new VT cannot cover all of the remaining bits, then consider
|
|
// issuing a (or a pair of) unaligned and overlapping load / store.
|
|
bool Fast;
|
|
if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
|
|
allowsMisalignedMemoryAccesses(
|
|
VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
|
|
MachineMemOperand::MONone, &Fast) &&
|
|
Fast)
|
|
VTSize = Size;
|
|
else {
|
|
VT = NewVT;
|
|
VTSize = NewVTSize;
|
|
}
|
|
}
|
|
|
|
if (++NumMemOps > Limit)
|
|
return false;
|
|
|
|
MemOps.push_back(VT);
|
|
Size -= VTSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Soften the operands of a comparison. This code is shared among BR_CC,
|
|
/// SELECT_CC, and SETCC handlers.
|
|
void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
|
|
SDValue &NewLHS, SDValue &NewRHS,
|
|
ISD::CondCode &CCCode,
|
|
const SDLoc &dl, const SDValue OldLHS,
|
|
const SDValue OldRHS) const {
|
|
SDValue Chain;
|
|
return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
|
|
OldRHS, Chain);
|
|
}
|
|
|
|
void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
|
|
SDValue &NewLHS, SDValue &NewRHS,
|
|
ISD::CondCode &CCCode,
|
|
const SDLoc &dl, const SDValue OldLHS,
|
|
const SDValue OldRHS,
|
|
SDValue &Chain,
|
|
bool IsSignaling) const {
|
|
// FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
|
|
// not supporting it. We can update this code when libgcc provides such
|
|
// functions.
|
|
|
|
assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
|
|
&& "Unsupported setcc type!");
|
|
|
|
// Expand into one or more soft-fp libcall(s).
|
|
RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
|
|
bool ShouldInvertCC = false;
|
|
switch (CCCode) {
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OEQ_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
|
|
break;
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
|
|
(VT == MVT::f64) ? RTLIB::UNE_F64 :
|
|
(VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
|
|
break;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OGE_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
|
|
break;
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OLT_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OLE_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
|
|
break;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OGT_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
|
|
break;
|
|
case ISD::SETO:
|
|
ShouldInvertCC = true;
|
|
LLVM_FALLTHROUGH;
|
|
case ISD::SETUO:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
|
|
(VT == MVT::f64) ? RTLIB::UO_F64 :
|
|
(VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
|
|
break;
|
|
case ISD::SETONE:
|
|
// SETONE = O && UNE
|
|
ShouldInvertCC = true;
|
|
LLVM_FALLTHROUGH;
|
|
case ISD::SETUEQ:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
|
|
(VT == MVT::f64) ? RTLIB::UO_F64 :
|
|
(VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
|
|
LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OEQ_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
|
|
break;
|
|
default:
|
|
// Invert CC for unordered comparisons
|
|
ShouldInvertCC = true;
|
|
switch (CCCode) {
|
|
case ISD::SETULT:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OGE_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
|
|
break;
|
|
case ISD::SETULE:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OGT_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
|
|
break;
|
|
case ISD::SETUGT:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OLE_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
|
|
break;
|
|
case ISD::SETUGE:
|
|
LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
|
|
(VT == MVT::f64) ? RTLIB::OLT_F64 :
|
|
(VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
|
|
break;
|
|
default: llvm_unreachable("Do not know how to soften this setcc!");
|
|
}
|
|
}
|
|
|
|
// Use the target specific return value for comparions lib calls.
|
|
EVT RetVT = getCmpLibcallReturnType();
|
|
SDValue Ops[2] = {NewLHS, NewRHS};
|
|
TargetLowering::MakeLibCallOptions CallOptions;
|
|
EVT OpsVT[2] = { OldLHS.getValueType(),
|
|
OldRHS.getValueType() };
|
|
CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
|
|
auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
|
|
NewLHS = Call.first;
|
|
NewRHS = DAG.getConstant(0, dl, RetVT);
|
|
|
|
CCCode = getCmpLibcallCC(LC1);
|
|
if (ShouldInvertCC) {
|
|
assert(RetVT.isInteger());
|
|
CCCode = getSetCCInverse(CCCode, RetVT);
|
|
}
|
|
|
|
if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
|
|
// Update Chain.
|
|
Chain = Call.second;
|
|
} else {
|
|
EVT SetCCVT =
|
|
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
|
|
SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
|
|
auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
|
|
CCCode = getCmpLibcallCC(LC2);
|
|
if (ShouldInvertCC)
|
|
CCCode = getSetCCInverse(CCCode, RetVT);
|
|
NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
|
|
if (Chain)
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
|
|
Call2.second);
|
|
NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
|
|
Tmp.getValueType(), Tmp, NewLHS);
|
|
NewRHS = SDValue();
|
|
}
|
|
}
|
|
|
|
/// Return the entry encoding for a jump table in the current function. The
|
|
/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
|
|
unsigned TargetLowering::getJumpTableEncoding() const {
|
|
// In non-pic modes, just use the address of a block.
|
|
if (!isPositionIndependent())
|
|
return MachineJumpTableInfo::EK_BlockAddress;
|
|
|
|
// In PIC mode, if the target supports a GPRel32 directive, use it.
|
|
if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
|
|
return MachineJumpTableInfo::EK_GPRel32BlockAddress;
|
|
|
|
// Otherwise, use a label difference.
|
|
return MachineJumpTableInfo::EK_LabelDifference32;
|
|
}
|
|
|
|
SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
|
|
SelectionDAG &DAG) const {
|
|
// If our PIC model is GP relative, use the global offset table as the base.
|
|
unsigned JTEncoding = getJumpTableEncoding();
|
|
|
|
if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
|
|
(JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
|
|
return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
|
|
|
|
return Table;
|
|
}
|
|
|
|
/// This returns the relocation base for the given PIC jumptable, the same as
|
|
/// getPICJumpTableRelocBase, but as an MCExpr.
|
|
const MCExpr *
|
|
TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
|
|
unsigned JTI,MCContext &Ctx) const{
|
|
// The normal PIC reloc base is the label at the start of the jump table.
|
|
return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
|
|
}
|
|
|
|
bool
|
|
TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
const TargetMachine &TM = getTargetMachine();
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
|
|
// If the address is not even local to this DSO we will have to load it from
|
|
// a got and then add the offset.
|
|
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
|
|
return false;
|
|
|
|
// If the code is position independent we will have to add a base register.
|
|
if (isPositionIndependent())
|
|
return false;
|
|
|
|
// Otherwise we can do it.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Optimization Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// If the specified instruction has a constant integer operand and there are
|
|
/// bits set in that constant that are not demanded, then clear those bits and
|
|
/// return true.
|
|
bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
|
|
const APInt &DemandedBits,
|
|
const APInt &DemandedElts,
|
|
TargetLoweringOpt &TLO) const {
|
|
SDLoc DL(Op);
|
|
unsigned Opcode = Op.getOpcode();
|
|
|
|
// Do target-specific constant optimization.
|
|
if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
|
|
return TLO.New.getNode();
|
|
|
|
// FIXME: ISD::SELECT, ISD::SELECT_CC
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case ISD::XOR:
|
|
case ISD::AND:
|
|
case ISD::OR: {
|
|
auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!Op1C)
|
|
return false;
|
|
|
|
// If this is a 'not' op, don't touch it because that's a canonical form.
|
|
const APInt &C = Op1C->getAPIntValue();
|
|
if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
|
|
return false;
|
|
|
|
if (!C.isSubsetOf(DemandedBits)) {
|
|
EVT VT = Op.getValueType();
|
|
SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
|
|
SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
|
|
const APInt &DemandedBits,
|
|
TargetLoweringOpt &TLO) const {
|
|
EVT VT = Op.getValueType();
|
|
APInt DemandedElts = VT.isVector()
|
|
? APInt::getAllOnesValue(VT.getVectorNumElements())
|
|
: APInt(1, 1);
|
|
return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
|
|
}
|
|
|
|
/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
|
|
/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
|
|
/// generalized for targets with other types of implicit widening casts.
|
|
bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
|
|
const APInt &Demanded,
|
|
TargetLoweringOpt &TLO) const {
|
|
assert(Op.getNumOperands() == 2 &&
|
|
"ShrinkDemandedOp only supports binary operators!");
|
|
assert(Op.getNode()->getNumValues() == 1 &&
|
|
"ShrinkDemandedOp only supports nodes with one result!");
|
|
|
|
SelectionDAG &DAG = TLO.DAG;
|
|
SDLoc dl(Op);
|
|
|
|
// Early return, as this function cannot handle vector types.
|
|
if (Op.getValueType().isVector())
|
|
return false;
|
|
|
|
// Don't do this if the node has another user, which may require the
|
|
// full value.
|
|
if (!Op.getNode()->hasOneUse())
|
|
return false;
|
|
|
|
// Search for the smallest integer type with free casts to and from
|
|
// Op's type. For expedience, just check power-of-2 integer types.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
unsigned DemandedSize = Demanded.getActiveBits();
|
|
unsigned SmallVTBits = DemandedSize;
|
|
if (!isPowerOf2_32(SmallVTBits))
|
|
SmallVTBits = NextPowerOf2(SmallVTBits);
|
|
for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
|
|
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
|
|
if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
|
|
TLI.isZExtFree(SmallVT, Op.getValueType())) {
|
|
// We found a type with free casts.
|
|
SDValue X = DAG.getNode(
|
|
Op.getOpcode(), dl, SmallVT,
|
|
DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
|
|
DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
|
|
assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
|
|
SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
|
|
return TLO.CombineTo(Op, Z);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
|
|
!DCI.isBeforeLegalizeOps());
|
|
KnownBits Known;
|
|
|
|
bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
|
|
if (Simplified) {
|
|
DCI.AddToWorklist(Op.getNode());
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
}
|
|
return Simplified;
|
|
}
|
|
|
|
bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
|
|
KnownBits &Known,
|
|
TargetLoweringOpt &TLO,
|
|
unsigned Depth,
|
|
bool AssumeSingleUse) const {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// TODO: We can probably do more work on calculating the known bits and
|
|
// simplifying the operations for scalable vectors, but for now we just
|
|
// bail out.
|
|
if (VT.isScalableVector()) {
|
|
// Pretend we don't know anything for now.
|
|
Known = KnownBits(DemandedBits.getBitWidth());
|
|
return false;
|
|
}
|
|
|
|
APInt DemandedElts = VT.isVector()
|
|
? APInt::getAllOnesValue(VT.getVectorNumElements())
|
|
: APInt(1, 1);
|
|
return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
|
|
AssumeSingleUse);
|
|
}
|
|
|
|
// TODO: Can we merge SelectionDAG::GetDemandedBits into this?
|
|
// TODO: Under what circumstances can we create nodes? Constant folding?
|
|
SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
|
|
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
|
|
SelectionDAG &DAG, unsigned Depth) const {
|
|
// Limit search depth.
|
|
if (Depth >= SelectionDAG::MaxRecursionDepth)
|
|
return SDValue();
|
|
|
|
// Ignore UNDEFs.
|
|
if (Op.isUndef())
|
|
return SDValue();
|
|
|
|
// Not demanding any bits/elts from Op.
|
|
if (DemandedBits == 0 || DemandedElts == 0)
|
|
return DAG.getUNDEF(Op.getValueType());
|
|
|
|
unsigned NumElts = DemandedElts.getBitWidth();
|
|
unsigned BitWidth = DemandedBits.getBitWidth();
|
|
KnownBits LHSKnown, RHSKnown;
|
|
switch (Op.getOpcode()) {
|
|
case ISD::BITCAST: {
|
|
SDValue Src = peekThroughBitcasts(Op.getOperand(0));
|
|
EVT SrcVT = Src.getValueType();
|
|
EVT DstVT = Op.getValueType();
|
|
if (SrcVT == DstVT)
|
|
return Src;
|
|
|
|
unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
|
|
unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
|
|
if (NumSrcEltBits == NumDstEltBits)
|
|
if (SDValue V = SimplifyMultipleUseDemandedBits(
|
|
Src, DemandedBits, DemandedElts, DAG, Depth + 1))
|
|
return DAG.getBitcast(DstVT, V);
|
|
|
|
// TODO - bigendian once we have test coverage.
|
|
if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
|
|
DAG.getDataLayout().isLittleEndian()) {
|
|
unsigned Scale = NumDstEltBits / NumSrcEltBits;
|
|
unsigned NumSrcElts = SrcVT.getVectorNumElements();
|
|
APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
|
|
APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
|
|
for (unsigned i = 0; i != Scale; ++i) {
|
|
unsigned Offset = i * NumSrcEltBits;
|
|
APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
|
|
if (!Sub.isNullValue()) {
|
|
DemandedSrcBits |= Sub;
|
|
for (unsigned j = 0; j != NumElts; ++j)
|
|
if (DemandedElts[j])
|
|
DemandedSrcElts.setBit((j * Scale) + i);
|
|
}
|
|
}
|
|
|
|
if (SDValue V = SimplifyMultipleUseDemandedBits(
|
|
Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
|
|
return DAG.getBitcast(DstVT, V);
|
|
}
|
|
|
|
// TODO - bigendian once we have test coverage.
|
|
if ((NumSrcEltBits % NumDstEltBits) == 0 &&
|
|
DAG.getDataLayout().isLittleEndian()) {
|
|
unsigned Scale = NumSrcEltBits / NumDstEltBits;
|
|
unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
|
|
APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
|
|
APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
if (DemandedElts[i]) {
|
|
unsigned Offset = (i % Scale) * NumDstEltBits;
|
|
DemandedSrcBits.insertBits(DemandedBits, Offset);
|
|
DemandedSrcElts.setBit(i / Scale);
|
|
}
|
|
|
|
if (SDValue V = SimplifyMultipleUseDemandedBits(
|
|
Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
|
|
return DAG.getBitcast(DstVT, V);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case ISD::AND: {
|
|
LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
|
|
|
|
// If all of the demanded bits are known 1 on one side, return the other.
|
|
// These bits cannot contribute to the result of the 'and' in this
|
|
// context.
|
|
if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
|
|
return Op.getOperand(0);
|
|
if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
|
|
return Op.getOperand(1);
|
|
break;
|
|
}
|
|
case ISD::OR: {
|
|
LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
|
|
|
|
// If all of the demanded bits are known zero on one side, return the
|
|
// other. These bits cannot contribute to the result of the 'or' in this
|
|
// context.
|
|
if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
|
|
return Op.getOperand(0);
|
|
if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
|
|
return Op.getOperand(1);
|
|
break;
|
|
}
|
|
case ISD::XOR: {
|
|
LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
|
|
RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
|
|
|
|
// If all of the demanded bits are known zero on one side, return the
|
|
// other.
|
|
if (DemandedBits.isSubsetOf(RHSKnown.Zero))
|
|
return Op.getOperand(0);
|
|
if (DemandedBits.isSubsetOf(LHSKnown.Zero))
|
|
return Op.getOperand(1);
|
|
break;
|
|
}
|
|
case ISD::SHL: {
|
|
// If we are only demanding sign bits then we can use the shift source
|
|
// directly.
|
|
if (const APInt *MaxSA =
|
|
DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
unsigned ShAmt = MaxSA->getZExtValue();
|
|
unsigned NumSignBits =
|
|
DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
|
|
unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
|
|
if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
|
|
return Op0;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SETCC: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
// If (1) we only need the sign-bit, (2) the setcc operands are the same
|
|
// width as the setcc result, and (3) the result of a setcc conforms to 0 or
|
|
// -1, we may be able to bypass the setcc.
|
|
if (DemandedBits.isSignMask() &&
|
|
Op0.getScalarValueSizeInBits() == BitWidth &&
|
|
getBooleanContents(Op0.getValueType()) ==
|
|
BooleanContent::ZeroOrNegativeOneBooleanContent) {
|
|
// If we're testing X < 0, then this compare isn't needed - just use X!
|
|
// FIXME: We're limiting to integer types here, but this should also work
|
|
// if we don't care about FP signed-zero. The use of SETLT with FP means
|
|
// that we don't care about NaNs.
|
|
if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
|
|
(isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
|
|
return Op0;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
// If none of the extended bits are demanded, eliminate the sextinreg.
|
|
SDValue Op0 = Op.getOperand(0);
|
|
EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
unsigned ExBits = ExVT.getScalarSizeInBits();
|
|
if (DemandedBits.getActiveBits() <= ExBits)
|
|
return Op0;
|
|
// If the input is already sign extended, just drop the extension.
|
|
unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
|
|
if (NumSignBits >= (BitWidth - ExBits + 1))
|
|
return Op0;
|
|
break;
|
|
}
|
|
case ISD::ANY_EXTEND_VECTOR_INREG:
|
|
case ISD::SIGN_EXTEND_VECTOR_INREG:
|
|
case ISD::ZERO_EXTEND_VECTOR_INREG: {
|
|
// If we only want the lowest element and none of extended bits, then we can
|
|
// return the bitcasted source vector.
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
EVT DstVT = Op.getValueType();
|
|
if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
|
|
DAG.getDataLayout().isLittleEndian() &&
|
|
DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
|
|
return DAG.getBitcast(DstVT, Src);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::INSERT_VECTOR_ELT: {
|
|
// If we don't demand the inserted element, return the base vector.
|
|
SDValue Vec = Op.getOperand(0);
|
|
auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
EVT VecVT = Vec.getValueType();
|
|
if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
|
|
!DemandedElts[CIdx->getZExtValue()])
|
|
return Vec;
|
|
break;
|
|
}
|
|
case ISD::INSERT_SUBVECTOR: {
|
|
// If we don't demand the inserted subvector, return the base vector.
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Sub = Op.getOperand(1);
|
|
uint64_t Idx = Op.getConstantOperandVal(2);
|
|
unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
|
|
if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
|
|
return Vec;
|
|
break;
|
|
}
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
|
|
|
|
// If all the demanded elts are from one operand and are inline,
|
|
// then we can use the operand directly.
|
|
bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int M = ShuffleMask[i];
|
|
if (M < 0 || !DemandedElts[i])
|
|
continue;
|
|
AllUndef = false;
|
|
IdentityLHS &= (M == (int)i);
|
|
IdentityRHS &= ((M - NumElts) == i);
|
|
}
|
|
|
|
if (AllUndef)
|
|
return DAG.getUNDEF(Op.getValueType());
|
|
if (IdentityLHS)
|
|
return Op.getOperand(0);
|
|
if (IdentityRHS)
|
|
return Op.getOperand(1);
|
|
break;
|
|
}
|
|
default:
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
|
|
if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
|
|
Op, DemandedBits, DemandedElts, DAG, Depth))
|
|
return V;
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
|
|
SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
EVT VT = Op.getValueType();
|
|
APInt DemandedElts = VT.isVector()
|
|
? APInt::getAllOnesValue(VT.getVectorNumElements())
|
|
: APInt(1, 1);
|
|
return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
|
|
Depth);
|
|
}
|
|
|
|
SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
|
|
SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
|
|
return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
|
|
Depth);
|
|
}
|
|
|
|
/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
|
|
/// result of Op are ever used downstream. If we can use this information to
|
|
/// simplify Op, create a new simplified DAG node and return true, returning the
|
|
/// original and new nodes in Old and New. Otherwise, analyze the expression and
|
|
/// return a mask of Known bits for the expression (used to simplify the
|
|
/// caller). The Known bits may only be accurate for those bits in the
|
|
/// OriginalDemandedBits and OriginalDemandedElts.
|
|
bool TargetLowering::SimplifyDemandedBits(
|
|
SDValue Op, const APInt &OriginalDemandedBits,
|
|
const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
|
|
unsigned Depth, bool AssumeSingleUse) const {
|
|
unsigned BitWidth = OriginalDemandedBits.getBitWidth();
|
|
assert(Op.getScalarValueSizeInBits() == BitWidth &&
|
|
"Mask size mismatches value type size!");
|
|
|
|
// Don't know anything.
|
|
Known = KnownBits(BitWidth);
|
|
|
|
// TODO: We can probably do more work on calculating the known bits and
|
|
// simplifying the operations for scalable vectors, but for now we just
|
|
// bail out.
|
|
if (Op.getValueType().isScalableVector())
|
|
return false;
|
|
|
|
unsigned NumElts = OriginalDemandedElts.getBitWidth();
|
|
assert((!Op.getValueType().isVector() ||
|
|
NumElts == Op.getValueType().getVectorNumElements()) &&
|
|
"Unexpected vector size");
|
|
|
|
APInt DemandedBits = OriginalDemandedBits;
|
|
APInt DemandedElts = OriginalDemandedElts;
|
|
SDLoc dl(Op);
|
|
auto &DL = TLO.DAG.getDataLayout();
|
|
|
|
// Undef operand.
|
|
if (Op.isUndef())
|
|
return false;
|
|
|
|
if (Op.getOpcode() == ISD::Constant) {
|
|
// We know all of the bits for a constant!
|
|
Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
|
|
Known.Zero = ~Known.One;
|
|
return false;
|
|
}
|
|
|
|
// Other users may use these bits.
|
|
EVT VT = Op.getValueType();
|
|
if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
|
|
if (Depth != 0) {
|
|
// If not at the root, Just compute the Known bits to
|
|
// simplify things downstream.
|
|
Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
|
|
return false;
|
|
}
|
|
// If this is the root being simplified, allow it to have multiple uses,
|
|
// just set the DemandedBits/Elts to all bits.
|
|
DemandedBits = APInt::getAllOnesValue(BitWidth);
|
|
DemandedElts = APInt::getAllOnesValue(NumElts);
|
|
} else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
|
|
// Not demanding any bits/elts from Op.
|
|
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
|
|
} else if (Depth >= SelectionDAG::MaxRecursionDepth) {
|
|
// Limit search depth.
|
|
return false;
|
|
}
|
|
|
|
KnownBits Known2;
|
|
switch (Op.getOpcode()) {
|
|
case ISD::TargetConstant:
|
|
llvm_unreachable("Can't simplify this node");
|
|
case ISD::SCALAR_TO_VECTOR: {
|
|
if (!DemandedElts[0])
|
|
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
|
|
|
|
KnownBits SrcKnown;
|
|
SDValue Src = Op.getOperand(0);
|
|
unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
|
|
APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
|
|
if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
|
|
return true;
|
|
|
|
// Upper elements are undef, so only get the knownbits if we just demand
|
|
// the bottom element.
|
|
if (DemandedElts == 1)
|
|
Known = SrcKnown.anyextOrTrunc(BitWidth);
|
|
break;
|
|
}
|
|
case ISD::BUILD_VECTOR:
|
|
// Collect the known bits that are shared by every demanded element.
|
|
// TODO: Call SimplifyDemandedBits for non-constant demanded elements.
|
|
Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
|
|
return false; // Don't fall through, will infinitely loop.
|
|
case ISD::LOAD: {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
if (getTargetConstantFromLoad(LD)) {
|
|
Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
|
|
return false; // Don't fall through, will infinitely loop.
|
|
} else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
|
|
// If this is a ZEXTLoad and we are looking at the loaded value.
|
|
EVT MemVT = LD->getMemoryVT();
|
|
unsigned MemBits = MemVT.getScalarSizeInBits();
|
|
Known.Zero.setBitsFrom(MemBits);
|
|
return false; // Don't fall through, will infinitely loop.
|
|
}
|
|
break;
|
|
}
|
|
case ISD::INSERT_VECTOR_ELT: {
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Scl = Op.getOperand(1);
|
|
auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
EVT VecVT = Vec.getValueType();
|
|
|
|
// If index isn't constant, assume we need all vector elements AND the
|
|
// inserted element.
|
|
APInt DemandedVecElts(DemandedElts);
|
|
if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
|
|
unsigned Idx = CIdx->getZExtValue();
|
|
DemandedVecElts.clearBit(Idx);
|
|
|
|
// Inserted element is not required.
|
|
if (!DemandedElts[Idx])
|
|
return TLO.CombineTo(Op, Vec);
|
|
}
|
|
|
|
KnownBits KnownScl;
|
|
unsigned NumSclBits = Scl.getScalarValueSizeInBits();
|
|
APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
|
|
if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
|
|
return true;
|
|
|
|
Known = KnownScl.anyextOrTrunc(BitWidth);
|
|
|
|
KnownBits KnownVec;
|
|
if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
|
|
if (!!DemandedVecElts) {
|
|
Known.One &= KnownVec.One;
|
|
Known.Zero &= KnownVec.Zero;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
case ISD::INSERT_SUBVECTOR: {
|
|
// Demand any elements from the subvector and the remainder from the src its
|
|
// inserted into.
|
|
SDValue Src = Op.getOperand(0);
|
|
SDValue Sub = Op.getOperand(1);
|
|
uint64_t Idx = Op.getConstantOperandVal(2);
|
|
unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
|
|
APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
|
|
APInt DemandedSrcElts = DemandedElts;
|
|
DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
|
|
|
|
KnownBits KnownSub, KnownSrc;
|
|
if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
|
|
Known.Zero.setAllBits();
|
|
Known.One.setAllBits();
|
|
if (!!DemandedSubElts) {
|
|
Known.One &= KnownSub.One;
|
|
Known.Zero &= KnownSub.Zero;
|
|
}
|
|
if (!!DemandedSrcElts) {
|
|
Known.One &= KnownSrc.One;
|
|
Known.Zero &= KnownSrc.Zero;
|
|
}
|
|
|
|
// Attempt to avoid multi-use src if we don't need anything from it.
|
|
if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
|
|
!DemandedSrcElts.isAllOnesValue()) {
|
|
SDValue NewSub = SimplifyMultipleUseDemandedBits(
|
|
Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
|
|
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
|
|
Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
|
|
if (NewSub || NewSrc) {
|
|
NewSub = NewSub ? NewSub : Sub;
|
|
NewSrc = NewSrc ? NewSrc : Src;
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
|
|
Op.getOperand(2));
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_SUBVECTOR: {
|
|
// Offset the demanded elts by the subvector index.
|
|
SDValue Src = Op.getOperand(0);
|
|
if (Src.getValueType().isScalableVector())
|
|
break;
|
|
uint64_t Idx = Op.getConstantOperandVal(1);
|
|
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
|
|
APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
|
|
|
|
if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
|
|
// Attempt to avoid multi-use src if we don't need anything from it.
|
|
if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
|
|
SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
|
|
Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
|
|
if (DemandedSrc) {
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
|
|
Op.getOperand(1));
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::CONCAT_VECTORS: {
|
|
Known.Zero.setAllBits();
|
|
Known.One.setAllBits();
|
|
EVT SubVT = Op.getOperand(0).getValueType();
|
|
unsigned NumSubVecs = Op.getNumOperands();
|
|
unsigned NumSubElts = SubVT.getVectorNumElements();
|
|
for (unsigned i = 0; i != NumSubVecs; ++i) {
|
|
APInt DemandedSubElts =
|
|
DemandedElts.extractBits(NumSubElts, i * NumSubElts);
|
|
if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
|
|
Known2, TLO, Depth + 1))
|
|
return true;
|
|
// Known bits are shared by every demanded subvector element.
|
|
if (!!DemandedSubElts) {
|
|
Known.One &= Known2.One;
|
|
Known.Zero &= Known2.Zero;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
|
|
|
|
// Collect demanded elements from shuffle operands..
|
|
APInt DemandedLHS(NumElts, 0);
|
|
APInt DemandedRHS(NumElts, 0);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (!DemandedElts[i])
|
|
continue;
|
|
int M = ShuffleMask[i];
|
|
if (M < 0) {
|
|
// For UNDEF elements, we don't know anything about the common state of
|
|
// the shuffle result.
|
|
DemandedLHS.clearAllBits();
|
|
DemandedRHS.clearAllBits();
|
|
break;
|
|
}
|
|
assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
|
|
if (M < (int)NumElts)
|
|
DemandedLHS.setBit(M);
|
|
else
|
|
DemandedRHS.setBit(M - NumElts);
|
|
}
|
|
|
|
if (!!DemandedLHS || !!DemandedRHS) {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
Known.Zero.setAllBits();
|
|
Known.One.setAllBits();
|
|
if (!!DemandedLHS) {
|
|
if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
Known.One &= Known2.One;
|
|
Known.Zero &= Known2.Zero;
|
|
}
|
|
if (!!DemandedRHS) {
|
|
if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
Known.One &= Known2.One;
|
|
Known.Zero &= Known2.Zero;
|
|
}
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
|
|
Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
|
|
SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
|
|
Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
|
|
if (DemandedOp0 || DemandedOp1) {
|
|
Op0 = DemandedOp0 ? DemandedOp0 : Op0;
|
|
Op1 = DemandedOp1 ? DemandedOp1 : Op1;
|
|
SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::AND: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
// If the RHS is a constant, check to see if the LHS would be zero without
|
|
// using the bits from the RHS. Below, we use knowledge about the RHS to
|
|
// simplify the LHS, here we're using information from the LHS to simplify
|
|
// the RHS.
|
|
if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
|
|
// Do not increment Depth here; that can cause an infinite loop.
|
|
KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
|
|
// If the LHS already has zeros where RHSC does, this 'and' is dead.
|
|
if ((LHSKnown.Zero & DemandedBits) ==
|
|
(~RHSC->getAPIntValue() & DemandedBits))
|
|
return TLO.CombineTo(Op, Op0);
|
|
|
|
// If any of the set bits in the RHS are known zero on the LHS, shrink
|
|
// the constant.
|
|
if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
|
|
DemandedElts, TLO))
|
|
return true;
|
|
|
|
// Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
|
|
// constant, but if this 'and' is only clearing bits that were just set by
|
|
// the xor, then this 'and' can be eliminated by shrinking the mask of
|
|
// the xor. For example, for a 32-bit X:
|
|
// and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
|
|
if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
|
|
LHSKnown.One == ~RHSC->getAPIntValue()) {
|
|
SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
|
|
return TLO.CombineTo(Op, Xor);
|
|
}
|
|
}
|
|
|
|
if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
|
|
Known2, TLO, Depth + 1))
|
|
return true;
|
|
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
|
|
SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
|
|
Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
|
|
SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
|
|
Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
|
|
if (DemandedOp0 || DemandedOp1) {
|
|
Op0 = DemandedOp0 ? DemandedOp0 : Op0;
|
|
Op1 = DemandedOp1 ? DemandedOp1 : Op1;
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
|
|
// If all of the demanded bits are known one on one side, return the other.
|
|
// These bits cannot contribute to the result of the 'and'.
|
|
if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
|
|
return TLO.CombineTo(Op, Op0);
|
|
if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
|
|
return TLO.CombineTo(Op, Op1);
|
|
// If all of the demanded bits in the inputs are known zeros, return zero.
|
|
if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
|
|
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
|
|
// If the RHS is a constant, see if we can simplify it.
|
|
if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
|
|
TLO))
|
|
return true;
|
|
// If the operation can be done in a smaller type, do so.
|
|
if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
|
|
return true;
|
|
|
|
Known &= Known2;
|
|
break;
|
|
}
|
|
case ISD::OR: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
|
|
Known2, TLO, Depth + 1))
|
|
return true;
|
|
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
|
|
SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
|
|
Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
|
|
SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
|
|
Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
|
|
if (DemandedOp0 || DemandedOp1) {
|
|
Op0 = DemandedOp0 ? DemandedOp0 : Op0;
|
|
Op1 = DemandedOp1 ? DemandedOp1 : Op1;
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
|
|
// If all of the demanded bits are known zero on one side, return the other.
|
|
// These bits cannot contribute to the result of the 'or'.
|
|
if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
|
|
return TLO.CombineTo(Op, Op0);
|
|
if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
|
|
return TLO.CombineTo(Op, Op1);
|
|
// If the RHS is a constant, see if we can simplify it.
|
|
if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
|
|
return true;
|
|
// If the operation can be done in a smaller type, do so.
|
|
if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
|
|
return true;
|
|
|
|
Known |= Known2;
|
|
break;
|
|
}
|
|
case ISD::XOR: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
|
|
SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
|
|
Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
|
|
SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
|
|
Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
|
|
if (DemandedOp0 || DemandedOp1) {
|
|
Op0 = DemandedOp0 ? DemandedOp0 : Op0;
|
|
Op1 = DemandedOp1 ? DemandedOp1 : Op1;
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
|
|
// If all of the demanded bits are known zero on one side, return the other.
|
|
// These bits cannot contribute to the result of the 'xor'.
|
|
if (DemandedBits.isSubsetOf(Known.Zero))
|
|
return TLO.CombineTo(Op, Op0);
|
|
if (DemandedBits.isSubsetOf(Known2.Zero))
|
|
return TLO.CombineTo(Op, Op1);
|
|
// If the operation can be done in a smaller type, do so.
|
|
if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
|
|
return true;
|
|
|
|
// If all of the unknown bits are known to be zero on one side or the other
|
|
// (but not both) turn this into an *inclusive* or.
|
|
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
|
|
if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
|
|
|
|
ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
|
|
if (C) {
|
|
// If one side is a constant, and all of the known set bits on the other
|
|
// side are also set in the constant, turn this into an AND, as we know
|
|
// the bits will be cleared.
|
|
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
|
|
// NB: it is okay if more bits are known than are requested
|
|
if (C->getAPIntValue() == Known2.One) {
|
|
SDValue ANDC =
|
|
TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
|
|
}
|
|
|
|
// If the RHS is a constant, see if we can change it. Don't alter a -1
|
|
// constant because that's a 'not' op, and that is better for combining
|
|
// and codegen.
|
|
if (!C->isAllOnesValue() &&
|
|
DemandedBits.isSubsetOf(C->getAPIntValue())) {
|
|
// We're flipping all demanded bits. Flip the undemanded bits too.
|
|
SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
|
|
return TLO.CombineTo(Op, New);
|
|
}
|
|
}
|
|
|
|
// If we can't turn this into a 'not', try to shrink the constant.
|
|
if (!C || !C->isAllOnesValue())
|
|
if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
|
|
return true;
|
|
|
|
Known ^= Known2;
|
|
break;
|
|
}
|
|
case ISD::SELECT:
|
|
if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
|
|
|
|
// If the operands are constants, see if we can simplify them.
|
|
if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
|
|
return true;
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
Known.One &= Known2.One;
|
|
Known.Zero &= Known2.Zero;
|
|
break;
|
|
case ISD::SELECT_CC:
|
|
if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
|
|
|
|
// If the operands are constants, see if we can simplify them.
|
|
if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
|
|
return true;
|
|
|
|
// Only known if known in both the LHS and RHS.
|
|
Known.One &= Known2.One;
|
|
Known.Zero &= Known2.Zero;
|
|
break;
|
|
case ISD::SETCC: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
// If (1) we only need the sign-bit, (2) the setcc operands are the same
|
|
// width as the setcc result, and (3) the result of a setcc conforms to 0 or
|
|
// -1, we may be able to bypass the setcc.
|
|
if (DemandedBits.isSignMask() &&
|
|
Op0.getScalarValueSizeInBits() == BitWidth &&
|
|
getBooleanContents(Op0.getValueType()) ==
|
|
BooleanContent::ZeroOrNegativeOneBooleanContent) {
|
|
// If we're testing X < 0, then this compare isn't needed - just use X!
|
|
// FIXME: We're limiting to integer types here, but this should also work
|
|
// if we don't care about FP signed-zero. The use of SETLT with FP means
|
|
// that we don't care about NaNs.
|
|
if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
|
|
(isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
|
|
return TLO.CombineTo(Op, Op0);
|
|
|
|
// TODO: Should we check for other forms of sign-bit comparisons?
|
|
// Examples: X <= -1, X >= 0
|
|
}
|
|
if (getBooleanContents(Op0.getValueType()) ==
|
|
TargetLowering::ZeroOrOneBooleanContent &&
|
|
BitWidth > 1)
|
|
Known.Zero.setBitsFrom(1);
|
|
break;
|
|
}
|
|
case ISD::SHL: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
EVT ShiftVT = Op1.getValueType();
|
|
|
|
if (const APInt *SA =
|
|
TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
|
|
unsigned ShAmt = SA->getZExtValue();
|
|
if (ShAmt == 0)
|
|
return TLO.CombineTo(Op, Op0);
|
|
|
|
// If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
|
|
// single shift. We can do this if the bottom bits (which are shifted
|
|
// out) are never demanded.
|
|
// TODO - support non-uniform vector amounts.
|
|
if (Op0.getOpcode() == ISD::SRL) {
|
|
if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
|
|
if (const APInt *SA2 =
|
|
TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
|
|
unsigned C1 = SA2->getZExtValue();
|
|
unsigned Opc = ISD::SHL;
|
|
int Diff = ShAmt - C1;
|
|
if (Diff < 0) {
|
|
Diff = -Diff;
|
|
Opc = ISD::SRL;
|
|
}
|
|
SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
|
|
return TLO.CombineTo(
|
|
Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
|
|
// are not demanded. This will likely allow the anyext to be folded away.
|
|
// TODO - support non-uniform vector amounts.
|
|
if (Op0.getOpcode() == ISD::ANY_EXTEND) {
|
|
SDValue InnerOp = Op0.getOperand(0);
|
|
EVT InnerVT = InnerOp.getValueType();
|
|
unsigned InnerBits = InnerVT.getScalarSizeInBits();
|
|
if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
|
|
isTypeDesirableForOp(ISD::SHL, InnerVT)) {
|
|
EVT ShTy = getShiftAmountTy(InnerVT, DL);
|
|
if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
|
|
ShTy = InnerVT;
|
|
SDValue NarrowShl =
|
|
TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
|
|
TLO.DAG.getConstant(ShAmt, dl, ShTy));
|
|
return TLO.CombineTo(
|
|
Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
|
|
}
|
|
|
|
// Repeat the SHL optimization above in cases where an extension
|
|
// intervenes: (shl (anyext (shr x, c1)), c2) to
|
|
// (shl (anyext x), c2-c1). This requires that the bottom c1 bits
|
|
// aren't demanded (as above) and that the shifted upper c1 bits of
|
|
// x aren't demanded.
|
|
// TODO - support non-uniform vector amounts.
|
|
if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
|
|
InnerOp.hasOneUse()) {
|
|
if (const APInt *SA2 =
|
|
TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
|
|
unsigned InnerShAmt = SA2->getZExtValue();
|
|
if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
|
|
DemandedBits.getActiveBits() <=
|
|
(InnerBits - InnerShAmt + ShAmt) &&
|
|
DemandedBits.countTrailingZeros() >= ShAmt) {
|
|
SDValue NewSA =
|
|
TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
|
|
SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
|
|
InnerOp.getOperand(0));
|
|
return TLO.CombineTo(
|
|
Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
APInt InDemandedMask = DemandedBits.lshr(ShAmt);
|
|
if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
Known.Zero <<= ShAmt;
|
|
Known.One <<= ShAmt;
|
|
// low bits known zero.
|
|
Known.Zero.setLowBits(ShAmt);
|
|
|
|
// Try shrinking the operation as long as the shift amount will still be
|
|
// in range.
|
|
if ((ShAmt < DemandedBits.getActiveBits()) &&
|
|
ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
|
|
return true;
|
|
}
|
|
|
|
// If we are only demanding sign bits then we can use the shift source
|
|
// directly.
|
|
if (const APInt *MaxSA =
|
|
TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
|
|
unsigned ShAmt = MaxSA->getZExtValue();
|
|
unsigned NumSignBits =
|
|
TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
|
|
unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
|
|
if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
|
|
return TLO.CombineTo(Op, Op0);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SRL: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
EVT ShiftVT = Op1.getValueType();
|
|
|
|
if (const APInt *SA =
|
|
TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
|
|
unsigned ShAmt = SA->getZExtValue();
|
|
if (ShAmt == 0)
|
|
return TLO.CombineTo(Op, Op0);
|
|
|
|
// If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
|
|
// single shift. We can do this if the top bits (which are shifted out)
|
|
// are never demanded.
|
|
// TODO - support non-uniform vector amounts.
|
|
if (Op0.getOpcode() == ISD::SHL) {
|
|
if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
|
|
if (const APInt *SA2 =
|
|
TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
|
|
unsigned C1 = SA2->getZExtValue();
|
|
unsigned Opc = ISD::SRL;
|
|
int Diff = ShAmt - C1;
|
|
if (Diff < 0) {
|
|
Diff = -Diff;
|
|
Opc = ISD::SHL;
|
|
}
|
|
SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
|
|
return TLO.CombineTo(
|
|
Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
|
|
}
|
|
}
|
|
}
|
|
|
|
APInt InDemandedMask = (DemandedBits << ShAmt);
|
|
|
|
// If the shift is exact, then it does demand the low bits (and knows that
|
|
// they are zero).
|
|
if (Op->getFlags().hasExact())
|
|
InDemandedMask.setLowBits(ShAmt);
|
|
|
|
// Compute the new bits that are at the top now.
|
|
if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
Known.Zero.lshrInPlace(ShAmt);
|
|
Known.One.lshrInPlace(ShAmt);
|
|
// High bits known zero.
|
|
Known.Zero.setHighBits(ShAmt);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::SRA: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
EVT ShiftVT = Op1.getValueType();
|
|
|
|
// If we only want bits that already match the signbit then we don't need
|
|
// to shift.
|
|
unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
|
|
if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
|
|
NumHiDemandedBits)
|
|
return TLO.CombineTo(Op, Op0);
|
|
|
|
// If this is an arithmetic shift right and only the low-bit is set, we can
|
|
// always convert this into a logical shr, even if the shift amount is
|
|
// variable. The low bit of the shift cannot be an input sign bit unless
|
|
// the shift amount is >= the size of the datatype, which is undefined.
|
|
if (DemandedBits.isOneValue())
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
|
|
|
|
if (const APInt *SA =
|
|
TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
|
|
unsigned ShAmt = SA->getZExtValue();
|
|
if (ShAmt == 0)
|
|
return TLO.CombineTo(Op, Op0);
|
|
|
|
APInt InDemandedMask = (DemandedBits << ShAmt);
|
|
|
|
// If the shift is exact, then it does demand the low bits (and knows that
|
|
// they are zero).
|
|
if (Op->getFlags().hasExact())
|
|
InDemandedMask.setLowBits(ShAmt);
|
|
|
|
// If any of the demanded bits are produced by the sign extension, we also
|
|
// demand the input sign bit.
|
|
if (DemandedBits.countLeadingZeros() < ShAmt)
|
|
InDemandedMask.setSignBit();
|
|
|
|
if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
Known.Zero.lshrInPlace(ShAmt);
|
|
Known.One.lshrInPlace(ShAmt);
|
|
|
|
// If the input sign bit is known to be zero, or if none of the top bits
|
|
// are demanded, turn this into an unsigned shift right.
|
|
if (Known.Zero[BitWidth - ShAmt - 1] ||
|
|
DemandedBits.countLeadingZeros() >= ShAmt) {
|
|
SDNodeFlags Flags;
|
|
Flags.setExact(Op->getFlags().hasExact());
|
|
return TLO.CombineTo(
|
|
Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
|
|
}
|
|
|
|
int Log2 = DemandedBits.exactLogBase2();
|
|
if (Log2 >= 0) {
|
|
// The bit must come from the sign.
|
|
SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
|
|
}
|
|
|
|
if (Known.One[BitWidth - ShAmt - 1])
|
|
// New bits are known one.
|
|
Known.One.setHighBits(ShAmt);
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
|
|
SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
|
|
Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
|
|
if (DemandedOp0) {
|
|
SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::FSHL:
|
|
case ISD::FSHR: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue Op2 = Op.getOperand(2);
|
|
bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
|
|
|
|
if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
|
|
unsigned Amt = SA->getAPIntValue().urem(BitWidth);
|
|
|
|
// For fshl, 0-shift returns the 1st arg.
|
|
// For fshr, 0-shift returns the 2nd arg.
|
|
if (Amt == 0) {
|
|
if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
|
|
Known, TLO, Depth + 1))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
// fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
|
|
// fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
|
|
APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
|
|
APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
|
|
if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
|
|
Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
|
|
Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
|
|
Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
|
|
Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
|
|
Known.One |= Known2.One;
|
|
Known.Zero |= Known2.Zero;
|
|
}
|
|
|
|
// For pow-2 bitwidths we only demand the bottom modulo amt bits.
|
|
if (isPowerOf2_32(BitWidth)) {
|
|
APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
|
|
if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
|
|
Known2, TLO, Depth + 1))
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::ROTL:
|
|
case ISD::ROTR: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
// If we're rotating an 0/-1 value, then it stays an 0/-1 value.
|
|
if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
|
|
return TLO.CombineTo(Op, Op0);
|
|
|
|
// For pow-2 bitwidths we only demand the bottom modulo amt bits.
|
|
if (isPowerOf2_32(BitWidth)) {
|
|
APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
|
|
if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BITREVERSE: {
|
|
SDValue Src = Op.getOperand(0);
|
|
APInt DemandedSrcBits = DemandedBits.reverseBits();
|
|
if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
Known.One = Known2.One.reverseBits();
|
|
Known.Zero = Known2.Zero.reverseBits();
|
|
break;
|
|
}
|
|
case ISD::BSWAP: {
|
|
SDValue Src = Op.getOperand(0);
|
|
APInt DemandedSrcBits = DemandedBits.byteSwap();
|
|
if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
Known.One = Known2.One.byteSwap();
|
|
Known.Zero = Known2.Zero.byteSwap();
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
unsigned ExVTBits = ExVT.getScalarSizeInBits();
|
|
|
|
// If we only care about the highest bit, don't bother shifting right.
|
|
if (DemandedBits.isSignMask()) {
|
|
unsigned NumSignBits =
|
|
TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
|
|
bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
|
|
// However if the input is already sign extended we expect the sign
|
|
// extension to be dropped altogether later and do not simplify.
|
|
if (!AlreadySignExtended) {
|
|
// Compute the correct shift amount type, which must be getShiftAmountTy
|
|
// for scalar types after legalization.
|
|
EVT ShiftAmtTy = VT;
|
|
if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
|
|
ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
|
|
|
|
SDValue ShiftAmt =
|
|
TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
|
|
return TLO.CombineTo(Op,
|
|
TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
|
|
}
|
|
}
|
|
|
|
// If none of the extended bits are demanded, eliminate the sextinreg.
|
|
if (DemandedBits.getActiveBits() <= ExVTBits)
|
|
return TLO.CombineTo(Op, Op0);
|
|
|
|
APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
|
|
|
|
// Since the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
InputDemandedBits.setBit(ExVTBits - 1);
|
|
|
|
if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
|
|
// If the sign bit of the input is known set or clear, then we know the
|
|
// top bits of the result.
|
|
|
|
// If the input sign bit is known zero, convert this into a zero extension.
|
|
if (Known.Zero[ExVTBits - 1])
|
|
return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
|
|
|
|
APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
|
|
if (Known.One[ExVTBits - 1]) { // Input sign bit known set
|
|
Known.One.setBitsFrom(ExVTBits);
|
|
Known.Zero &= Mask;
|
|
} else { // Input sign bit unknown
|
|
Known.Zero &= Mask;
|
|
Known.One &= Mask;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BUILD_PAIR: {
|
|
EVT HalfVT = Op.getOperand(0).getValueType();
|
|
unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
|
|
|
|
APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
|
|
APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
|
|
|
|
KnownBits KnownLo, KnownHi;
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
|
|
return true;
|
|
|
|
if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
|
|
return true;
|
|
|
|
Known.Zero = KnownLo.Zero.zext(BitWidth) |
|
|
KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
|
|
|
|
Known.One = KnownLo.One.zext(BitWidth) |
|
|
KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
|
|
break;
|
|
}
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ZERO_EXTEND_VECTOR_INREG: {
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
unsigned InBits = SrcVT.getScalarSizeInBits();
|
|
unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
|
|
bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
|
|
|
|
// If none of the top bits are demanded, convert this into an any_extend.
|
|
if (DemandedBits.getActiveBits() <= InBits) {
|
|
// If we only need the non-extended bits of the bottom element
|
|
// then we can just bitcast to the result.
|
|
if (IsVecInReg && DemandedElts == 1 &&
|
|
VT.getSizeInBits() == SrcVT.getSizeInBits() &&
|
|
TLO.DAG.getDataLayout().isLittleEndian())
|
|
return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
|
|
|
|
unsigned Opc =
|
|
IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
|
|
if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
|
|
}
|
|
|
|
APInt InDemandedBits = DemandedBits.trunc(InBits);
|
|
APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
|
|
if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
assert(Known.getBitWidth() == InBits && "Src width has changed?");
|
|
Known = Known.zext(BitWidth);
|
|
break;
|
|
}
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::SIGN_EXTEND_VECTOR_INREG: {
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
unsigned InBits = SrcVT.getScalarSizeInBits();
|
|
unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
|
|
bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
|
|
|
|
// If none of the top bits are demanded, convert this into an any_extend.
|
|
if (DemandedBits.getActiveBits() <= InBits) {
|
|
// If we only need the non-extended bits of the bottom element
|
|
// then we can just bitcast to the result.
|
|
if (IsVecInReg && DemandedElts == 1 &&
|
|
VT.getSizeInBits() == SrcVT.getSizeInBits() &&
|
|
TLO.DAG.getDataLayout().isLittleEndian())
|
|
return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
|
|
|
|
unsigned Opc =
|
|
IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
|
|
if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
|
|
}
|
|
|
|
APInt InDemandedBits = DemandedBits.trunc(InBits);
|
|
APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
|
|
|
|
// Since some of the sign extended bits are demanded, we know that the sign
|
|
// bit is demanded.
|
|
InDemandedBits.setBit(InBits - 1);
|
|
|
|
if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
assert(Known.getBitWidth() == InBits && "Src width has changed?");
|
|
|
|
// If the sign bit is known one, the top bits match.
|
|
Known = Known.sext(BitWidth);
|
|
|
|
// If the sign bit is known zero, convert this to a zero extend.
|
|
if (Known.isNonNegative()) {
|
|
unsigned Opc =
|
|
IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
|
|
if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
|
|
}
|
|
break;
|
|
}
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ANY_EXTEND_VECTOR_INREG: {
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
unsigned InBits = SrcVT.getScalarSizeInBits();
|
|
unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
|
|
bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
|
|
|
|
// If we only need the bottom element then we can just bitcast.
|
|
// TODO: Handle ANY_EXTEND?
|
|
if (IsVecInReg && DemandedElts == 1 &&
|
|
VT.getSizeInBits() == SrcVT.getSizeInBits() &&
|
|
TLO.DAG.getDataLayout().isLittleEndian())
|
|
return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
|
|
|
|
APInt InDemandedBits = DemandedBits.trunc(InBits);
|
|
APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
|
|
if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
assert(Known.getBitWidth() == InBits && "Src width has changed?");
|
|
Known = Known.anyext(BitWidth);
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
|
|
Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
|
|
break;
|
|
}
|
|
case ISD::TRUNCATE: {
|
|
SDValue Src = Op.getOperand(0);
|
|
|
|
// Simplify the input, using demanded bit information, and compute the known
|
|
// zero/one bits live out.
|
|
unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
|
|
APInt TruncMask = DemandedBits.zext(OperandBitWidth);
|
|
if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
|
|
return true;
|
|
Known = Known.trunc(BitWidth);
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
|
|
Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
|
|
|
|
// If the input is only used by this truncate, see if we can shrink it based
|
|
// on the known demanded bits.
|
|
if (Src.getNode()->hasOneUse()) {
|
|
switch (Src.getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::SRL:
|
|
// Shrink SRL by a constant if none of the high bits shifted in are
|
|
// demanded.
|
|
if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
|
|
// Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
|
|
// undesirable.
|
|
break;
|
|
|
|
SDValue ShAmt = Src.getOperand(1);
|
|
auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
|
|
if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
|
|
break;
|
|
uint64_t ShVal = ShAmtC->getZExtValue();
|
|
|
|
APInt HighBits =
|
|
APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
|
|
HighBits.lshrInPlace(ShVal);
|
|
HighBits = HighBits.trunc(BitWidth);
|
|
|
|
if (!(HighBits & DemandedBits)) {
|
|
// None of the shifted in bits are needed. Add a truncate of the
|
|
// shift input, then shift it.
|
|
if (TLO.LegalTypes())
|
|
ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
|
|
SDValue NewTrunc =
|
|
TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
|
|
return TLO.CombineTo(
|
|
Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
break;
|
|
}
|
|
case ISD::AssertZext: {
|
|
// AssertZext demands all of the high bits, plus any of the low bits
|
|
// demanded by its users.
|
|
EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
|
APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
|
|
if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
|
|
TLO, Depth + 1))
|
|
return true;
|
|
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
|
|
|
|
Known.Zero |= ~InMask;
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_VECTOR_ELT: {
|
|
SDValue Src = Op.getOperand(0);
|
|
SDValue Idx = Op.getOperand(1);
|
|
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
|
|
unsigned EltBitWidth = Src.getScalarValueSizeInBits();
|
|
|
|
// Demand the bits from every vector element without a constant index.
|
|
APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
|
|
if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
|
|
if (CIdx->getAPIntValue().ult(NumSrcElts))
|
|
DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
|
|
|
|
// If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
|
|
// anything about the extended bits.
|
|
APInt DemandedSrcBits = DemandedBits;
|
|
if (BitWidth > EltBitWidth)
|
|
DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
|
|
|
|
if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (!DemandedSrcBits.isAllOnesValue() ||
|
|
!DemandedSrcElts.isAllOnesValue()) {
|
|
if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
|
|
Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
|
|
SDValue NewOp =
|
|
TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
|
|
Known = Known2;
|
|
if (BitWidth > EltBitWidth)
|
|
Known = Known.anyext(BitWidth);
|
|
break;
|
|
}
|
|
case ISD::BITCAST: {
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
|
|
|
|
// If this is an FP->Int bitcast and if the sign bit is the only
|
|
// thing demanded, turn this into a FGETSIGN.
|
|
if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
|
|
DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
|
|
SrcVT.isFloatingPoint()) {
|
|
bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
|
|
bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
|
|
if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
|
|
SrcVT != MVT::f128) {
|
|
// Cannot eliminate/lower SHL for f128 yet.
|
|
EVT Ty = OpVTLegal ? VT : MVT::i32;
|
|
// Make a FGETSIGN + SHL to move the sign bit into the appropriate
|
|
// place. We expect the SHL to be eliminated by other optimizations.
|
|
SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
|
|
unsigned OpVTSizeInBits = Op.getValueSizeInBits();
|
|
if (!OpVTLegal && OpVTSizeInBits > 32)
|
|
Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
|
|
unsigned ShVal = Op.getValueSizeInBits() - 1;
|
|
SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
|
|
return TLO.CombineTo(Op,
|
|
TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
|
|
}
|
|
}
|
|
|
|
// Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
|
|
// Demand the elt/bit if any of the original elts/bits are demanded.
|
|
// TODO - bigendian once we have test coverage.
|
|
if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
|
|
TLO.DAG.getDataLayout().isLittleEndian()) {
|
|
unsigned Scale = BitWidth / NumSrcEltBits;
|
|
unsigned NumSrcElts = SrcVT.getVectorNumElements();
|
|
APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
|
|
APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
|
|
for (unsigned i = 0; i != Scale; ++i) {
|
|
unsigned Offset = i * NumSrcEltBits;
|
|
APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
|
|
if (!Sub.isNullValue()) {
|
|
DemandedSrcBits |= Sub;
|
|
for (unsigned j = 0; j != NumElts; ++j)
|
|
if (DemandedElts[j])
|
|
DemandedSrcElts.setBit((j * Scale) + i);
|
|
}
|
|
}
|
|
|
|
APInt KnownSrcUndef, KnownSrcZero;
|
|
if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
|
|
KnownSrcZero, TLO, Depth + 1))
|
|
return true;
|
|
|
|
KnownBits KnownSrcBits;
|
|
if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
|
|
KnownSrcBits, TLO, Depth + 1))
|
|
return true;
|
|
} else if ((NumSrcEltBits % BitWidth) == 0 &&
|
|
TLO.DAG.getDataLayout().isLittleEndian()) {
|
|
unsigned Scale = NumSrcEltBits / BitWidth;
|
|
unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
|
|
APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
|
|
APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
if (DemandedElts[i]) {
|
|
unsigned Offset = (i % Scale) * BitWidth;
|
|
DemandedSrcBits.insertBits(DemandedBits, Offset);
|
|
DemandedSrcElts.setBit(i / Scale);
|
|
}
|
|
|
|
if (SrcVT.isVector()) {
|
|
APInt KnownSrcUndef, KnownSrcZero;
|
|
if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
|
|
KnownSrcZero, TLO, Depth + 1))
|
|
return true;
|
|
}
|
|
|
|
KnownBits KnownSrcBits;
|
|
if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
|
|
KnownSrcBits, TLO, Depth + 1))
|
|
return true;
|
|
}
|
|
|
|
// If this is a bitcast, let computeKnownBits handle it. Only do this on a
|
|
// recursive call where Known may be useful to the caller.
|
|
if (Depth > 0) {
|
|
Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
case ISD::ADD:
|
|
case ISD::MUL:
|
|
case ISD::SUB: {
|
|
// Add, Sub, and Mul don't demand any bits in positions beyond that
|
|
// of the highest bit demanded of them.
|
|
SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
|
|
SDNodeFlags Flags = Op.getNode()->getFlags();
|
|
unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
|
|
APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
|
|
if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
|
|
Depth + 1) ||
|
|
SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
|
|
Depth + 1) ||
|
|
// See if the operation should be performed at a smaller bit width.
|
|
ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
|
|
if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
|
|
// Disable the nsw and nuw flags. We can no longer guarantee that we
|
|
// won't wrap after simplification.
|
|
Flags.setNoSignedWrap(false);
|
|
Flags.setNoUnsignedWrap(false);
|
|
SDValue NewOp =
|
|
TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
|
|
SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
|
|
Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
|
|
SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
|
|
Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
|
|
if (DemandedOp0 || DemandedOp1) {
|
|
Flags.setNoSignedWrap(false);
|
|
Flags.setNoUnsignedWrap(false);
|
|
Op0 = DemandedOp0 ? DemandedOp0 : Op0;
|
|
Op1 = DemandedOp1 ? DemandedOp1 : Op1;
|
|
SDValue NewOp =
|
|
TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
|
|
// If we have a constant operand, we may be able to turn it into -1 if we
|
|
// do not demand the high bits. This can make the constant smaller to
|
|
// encode, allow more general folding, or match specialized instruction
|
|
// patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
|
|
// is probably not useful (and could be detrimental).
|
|
ConstantSDNode *C = isConstOrConstSplat(Op1);
|
|
APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
|
|
if (C && !C->isAllOnesValue() && !C->isOne() &&
|
|
(C->getAPIntValue() | HighMask).isAllOnesValue()) {
|
|
SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
|
|
// Disable the nsw and nuw flags. We can no longer guarantee that we
|
|
// won't wrap after simplification.
|
|
Flags.setNoSignedWrap(false);
|
|
Flags.setNoUnsignedWrap(false);
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
default:
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
|
|
if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
|
|
Known, TLO, Depth))
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
// Just use computeKnownBits to compute output bits.
|
|
Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
|
|
break;
|
|
}
|
|
|
|
// If we know the value of all of the demanded bits, return this as a
|
|
// constant.
|
|
if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
|
|
// Avoid folding to a constant if any OpaqueConstant is involved.
|
|
const SDNode *N = Op.getNode();
|
|
for (SDNodeIterator I = SDNodeIterator::begin(N),
|
|
E = SDNodeIterator::end(N);
|
|
I != E; ++I) {
|
|
SDNode *Op = *I;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
|
|
if (C->isOpaque())
|
|
return false;
|
|
}
|
|
// TODO: Handle float bits as well.
|
|
if (VT.isInteger())
|
|
return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
|
|
const APInt &DemandedElts,
|
|
APInt &KnownUndef,
|
|
APInt &KnownZero,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
|
|
!DCI.isBeforeLegalizeOps());
|
|
|
|
bool Simplified =
|
|
SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
|
|
if (Simplified) {
|
|
DCI.AddToWorklist(Op.getNode());
|
|
DCI.CommitTargetLoweringOpt(TLO);
|
|
}
|
|
|
|
return Simplified;
|
|
}
|
|
|
|
/// Given a vector binary operation and known undefined elements for each input
|
|
/// operand, compute whether each element of the output is undefined.
|
|
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
|
|
const APInt &UndefOp0,
|
|
const APInt &UndefOp1) {
|
|
EVT VT = BO.getValueType();
|
|
assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
|
|
"Vector binop only");
|
|
|
|
EVT EltVT = VT.getVectorElementType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
assert(UndefOp0.getBitWidth() == NumElts &&
|
|
UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
|
|
|
|
auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
|
|
const APInt &UndefVals) {
|
|
if (UndefVals[Index])
|
|
return DAG.getUNDEF(EltVT);
|
|
|
|
if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
|
|
// Try hard to make sure that the getNode() call is not creating temporary
|
|
// nodes. Ignore opaque integers because they do not constant fold.
|
|
SDValue Elt = BV->getOperand(Index);
|
|
auto *C = dyn_cast<ConstantSDNode>(Elt);
|
|
if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
|
|
return Elt;
|
|
}
|
|
|
|
return SDValue();
|
|
};
|
|
|
|
APInt KnownUndef = APInt::getNullValue(NumElts);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
// If both inputs for this element are either constant or undef and match
|
|
// the element type, compute the constant/undef result for this element of
|
|
// the vector.
|
|
// TODO: Ideally we would use FoldConstantArithmetic() here, but that does
|
|
// not handle FP constants. The code within getNode() should be refactored
|
|
// to avoid the danger of creating a bogus temporary node here.
|
|
SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
|
|
SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
|
|
if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
|
|
if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
|
|
KnownUndef.setBit(i);
|
|
}
|
|
return KnownUndef;
|
|
}
|
|
|
|
bool TargetLowering::SimplifyDemandedVectorElts(
|
|
SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
|
|
APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
|
|
bool AssumeSingleUse) const {
|
|
EVT VT = Op.getValueType();
|
|
unsigned Opcode = Op.getOpcode();
|
|
APInt DemandedElts = OriginalDemandedElts;
|
|
unsigned NumElts = DemandedElts.getBitWidth();
|
|
assert(VT.isVector() && "Expected vector op");
|
|
|
|
KnownUndef = KnownZero = APInt::getNullValue(NumElts);
|
|
|
|
// TODO: For now we assume we know nothing about scalable vectors.
|
|
if (VT.isScalableVector())
|
|
return false;
|
|
|
|
assert(VT.getVectorNumElements() == NumElts &&
|
|
"Mask size mismatches value type element count!");
|
|
|
|
// Undef operand.
|
|
if (Op.isUndef()) {
|
|
KnownUndef.setAllBits();
|
|
return false;
|
|
}
|
|
|
|
// If Op has other users, assume that all elements are needed.
|
|
if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
|
|
DemandedElts.setAllBits();
|
|
|
|
// Not demanding any elements from Op.
|
|
if (DemandedElts == 0) {
|
|
KnownUndef.setAllBits();
|
|
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
|
|
}
|
|
|
|
// Limit search depth.
|
|
if (Depth >= SelectionDAG::MaxRecursionDepth)
|
|
return false;
|
|
|
|
SDLoc DL(Op);
|
|
unsigned EltSizeInBits = VT.getScalarSizeInBits();
|
|
|
|
// Helper for demanding the specified elements and all the bits of both binary
|
|
// operands.
|
|
auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
|
|
SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
|
|
TLO.DAG, Depth + 1);
|
|
SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
|
|
TLO.DAG, Depth + 1);
|
|
if (NewOp0 || NewOp1) {
|
|
SDValue NewOp = TLO.DAG.getNode(
|
|
Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
return false;
|
|
};
|
|
|
|
switch (Opcode) {
|
|
case ISD::SCALAR_TO_VECTOR: {
|
|
if (!DemandedElts[0]) {
|
|
KnownUndef.setAllBits();
|
|
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
|
|
}
|
|
KnownUndef.setHighBits(NumElts - 1);
|
|
break;
|
|
}
|
|
case ISD::BITCAST: {
|
|
SDValue Src = Op.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
|
|
// We only handle vectors here.
|
|
// TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
|
|
if (!SrcVT.isVector())
|
|
break;
|
|
|
|
// Fast handling of 'identity' bitcasts.
|
|
unsigned NumSrcElts = SrcVT.getVectorNumElements();
|
|
if (NumSrcElts == NumElts)
|
|
return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
|
|
KnownZero, TLO, Depth + 1);
|
|
|
|
APInt SrcZero, SrcUndef;
|
|
APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
|
|
|
|
// Bitcast from 'large element' src vector to 'small element' vector, we
|
|
// must demand a source element if any DemandedElt maps to it.
|
|
if ((NumElts % NumSrcElts) == 0) {
|
|
unsigned Scale = NumElts / NumSrcElts;
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
if (DemandedElts[i])
|
|
SrcDemandedElts.setBit(i / Scale);
|
|
|
|
if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
|
|
TLO, Depth + 1))
|
|
return true;
|
|
|
|
// Try calling SimplifyDemandedBits, converting demanded elts to the bits
|
|
// of the large element.
|
|
// TODO - bigendian once we have test coverage.
|
|
if (TLO.DAG.getDataLayout().isLittleEndian()) {
|
|
unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
|
|
APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
if (DemandedElts[i]) {
|
|
unsigned Ofs = (i % Scale) * EltSizeInBits;
|
|
SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
|
|
}
|
|
|
|
KnownBits Known;
|
|
if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
|
|
TLO, Depth + 1))
|
|
return true;
|
|
}
|
|
|
|
// If the src element is zero/undef then all the output elements will be -
|
|
// only demanded elements are guaranteed to be correct.
|
|
for (unsigned i = 0; i != NumSrcElts; ++i) {
|
|
if (SrcDemandedElts[i]) {
|
|
if (SrcZero[i])
|
|
KnownZero.setBits(i * Scale, (i + 1) * Scale);
|
|
if (SrcUndef[i])
|
|
KnownUndef.setBits(i * Scale, (i + 1) * Scale);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bitcast from 'small element' src vector to 'large element' vector, we
|
|
// demand all smaller source elements covered by the larger demanded element
|
|
// of this vector.
|
|
if ((NumSrcElts % NumElts) == 0) {
|
|
unsigned Scale = NumSrcElts / NumElts;
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
if (DemandedElts[i])
|
|
SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
|
|
|
|
if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
|
|
TLO, Depth + 1))
|
|
return true;
|
|
|
|
// If all the src elements covering an output element are zero/undef, then
|
|
// the output element will be as well, assuming it was demanded.
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (DemandedElts[i]) {
|
|
if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
|
|
KnownZero.setBit(i);
|
|
if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
|
|
KnownUndef.setBit(i);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::BUILD_VECTOR: {
|
|
// Check all elements and simplify any unused elements with UNDEF.
|
|
if (!DemandedElts.isAllOnesValue()) {
|
|
// Don't simplify BROADCASTS.
|
|
if (llvm::any_of(Op->op_values(),
|
|
[&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
|
|
SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
|
|
bool Updated = false;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (!DemandedElts[i] && !Ops[i].isUndef()) {
|
|
Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
|
|
KnownUndef.setBit(i);
|
|
Updated = true;
|
|
}
|
|
}
|
|
if (Updated)
|
|
return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
|
|
}
|
|
}
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
SDValue SrcOp = Op.getOperand(i);
|
|
if (SrcOp.isUndef()) {
|
|
KnownUndef.setBit(i);
|
|
} else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
|
|
(isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
|
|
KnownZero.setBit(i);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::CONCAT_VECTORS: {
|
|
EVT SubVT = Op.getOperand(0).getValueType();
|
|
unsigned NumSubVecs = Op.getNumOperands();
|
|
unsigned NumSubElts = SubVT.getVectorNumElements();
|
|
for (unsigned i = 0; i != NumSubVecs; ++i) {
|
|
SDValue SubOp = Op.getOperand(i);
|
|
APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
|
|
APInt SubUndef, SubZero;
|
|
if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
KnownUndef.insertBits(SubUndef, i * NumSubElts);
|
|
KnownZero.insertBits(SubZero, i * NumSubElts);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::INSERT_SUBVECTOR: {
|
|
// Demand any elements from the subvector and the remainder from the src its
|
|
// inserted into.
|
|
SDValue Src = Op.getOperand(0);
|
|
SDValue Sub = Op.getOperand(1);
|
|
uint64_t Idx = Op.getConstantOperandVal(2);
|
|
unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
|
|
APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
|
|
APInt DemandedSrcElts = DemandedElts;
|
|
DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
|
|
|
|
APInt SubUndef, SubZero;
|
|
if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
|
|
// If none of the src operand elements are demanded, replace it with undef.
|
|
if (!DemandedSrcElts && !Src.isUndef())
|
|
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
|
|
TLO.DAG.getUNDEF(VT), Sub,
|
|
Op.getOperand(2)));
|
|
|
|
if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
|
|
TLO, Depth + 1))
|
|
return true;
|
|
KnownUndef.insertBits(SubUndef, Idx);
|
|
KnownZero.insertBits(SubZero, Idx);
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (!DemandedSrcElts.isAllOnesValue() ||
|
|
!DemandedSubElts.isAllOnesValue()) {
|
|
SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
|
|
Src, DemandedSrcElts, TLO.DAG, Depth + 1);
|
|
SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
|
|
Sub, DemandedSubElts, TLO.DAG, Depth + 1);
|
|
if (NewSrc || NewSub) {
|
|
NewSrc = NewSrc ? NewSrc : Src;
|
|
NewSub = NewSub ? NewSub : Sub;
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
|
|
NewSub, Op.getOperand(2));
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::EXTRACT_SUBVECTOR: {
|
|
// Offset the demanded elts by the subvector index.
|
|
SDValue Src = Op.getOperand(0);
|
|
if (Src.getValueType().isScalableVector())
|
|
break;
|
|
uint64_t Idx = Op.getConstantOperandVal(1);
|
|
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
|
|
APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
|
|
|
|
APInt SrcUndef, SrcZero;
|
|
if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
KnownUndef = SrcUndef.extractBits(NumElts, Idx);
|
|
KnownZero = SrcZero.extractBits(NumElts, Idx);
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
if (!DemandedElts.isAllOnesValue()) {
|
|
SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
|
|
Src, DemandedSrcElts, TLO.DAG, Depth + 1);
|
|
if (NewSrc) {
|
|
SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
|
|
Op.getOperand(1));
|
|
return TLO.CombineTo(Op, NewOp);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::INSERT_VECTOR_ELT: {
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Scl = Op.getOperand(1);
|
|
auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
|
|
// For a legal, constant insertion index, if we don't need this insertion
|
|
// then strip it, else remove it from the demanded elts.
|
|
if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
|
|
unsigned Idx = CIdx->getZExtValue();
|
|
if (!DemandedElts[Idx])
|
|
return TLO.CombineTo(Op, Vec);
|
|
|
|
APInt DemandedVecElts(DemandedElts);
|
|
DemandedVecElts.clearBit(Idx);
|
|
if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
|
|
KnownZero, TLO, Depth + 1))
|
|
return true;
|
|
|
|
KnownUndef.clearBit(Idx);
|
|
if (Scl.isUndef())
|
|
KnownUndef.setBit(Idx);
|
|
|
|
KnownZero.clearBit(Idx);
|
|
if (isNullConstant(Scl) || isNullFPConstant(Scl))
|
|
KnownZero.setBit(Idx);
|
|
break;
|
|
}
|
|
|
|
APInt VecUndef, VecZero;
|
|
if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
// Without knowing the insertion index we can't set KnownUndef/KnownZero.
|
|
break;
|
|
}
|
|
case ISD::VSELECT: {
|
|
// Try to transform the select condition based on the current demanded
|
|
// elements.
|
|
// TODO: If a condition element is undef, we can choose from one arm of the
|
|
// select (and if one arm is undef, then we can propagate that to the
|
|
// result).
|
|
// TODO - add support for constant vselect masks (see IR version of this).
|
|
APInt UnusedUndef, UnusedZero;
|
|
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
|
|
UnusedZero, TLO, Depth + 1))
|
|
return true;
|
|
|
|
// See if we can simplify either vselect operand.
|
|
APInt DemandedLHS(DemandedElts);
|
|
APInt DemandedRHS(DemandedElts);
|
|
APInt UndefLHS, ZeroLHS;
|
|
APInt UndefRHS, ZeroRHS;
|
|
if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
|
|
ZeroLHS, TLO, Depth + 1))
|
|
return true;
|
|
if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
|
|
ZeroRHS, TLO, Depth + 1))
|
|
return true;
|
|
|
|
KnownUndef = UndefLHS & UndefRHS;
|
|
KnownZero = ZeroLHS & ZeroRHS;
|
|
break;
|
|
}
|
|
case ISD::VECTOR_SHUFFLE: {
|
|
ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
|
|
|
|
// Collect demanded elements from shuffle operands..
|
|
APInt DemandedLHS(NumElts, 0);
|
|
APInt DemandedRHS(NumElts, 0);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int M = ShuffleMask[i];
|
|
if (M < 0 || !DemandedElts[i])
|
|
continue;
|
|
assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
|
|
if (M < (int)NumElts)
|
|
DemandedLHS.setBit(M);
|
|
else
|
|
DemandedRHS.setBit(M - NumElts);
|
|
}
|
|
|
|
// See if we can simplify either shuffle operand.
|
|
APInt UndefLHS, ZeroLHS;
|
|
APInt UndefRHS, ZeroRHS;
|
|
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
|
|
ZeroLHS, TLO, Depth + 1))
|
|
return true;
|
|
if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
|
|
ZeroRHS, TLO, Depth + 1))
|
|
return true;
|
|
|
|
// Simplify mask using undef elements from LHS/RHS.
|
|
bool Updated = false;
|
|
bool IdentityLHS = true, IdentityRHS = true;
|
|
SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int &M = NewMask[i];
|
|
if (M < 0)
|
|
continue;
|
|
if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
|
|
(M >= (int)NumElts && UndefRHS[M - NumElts])) {
|
|
Updated = true;
|
|
M = -1;
|
|
}
|
|
IdentityLHS &= (M < 0) || (M == (int)i);
|
|
IdentityRHS &= (M < 0) || ((M - NumElts) == i);
|
|
}
|
|
|
|
// Update legal shuffle masks based on demanded elements if it won't reduce
|
|
// to Identity which can cause premature removal of the shuffle mask.
|
|
if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
|
|
SDValue LegalShuffle =
|
|
buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
|
|
NewMask, TLO.DAG);
|
|
if (LegalShuffle)
|
|
return TLO.CombineTo(Op, LegalShuffle);
|
|
}
|
|
|
|
// Propagate undef/zero elements from LHS/RHS.
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int M = ShuffleMask[i];
|
|
if (M < 0) {
|
|
KnownUndef.setBit(i);
|
|
} else if (M < (int)NumElts) {
|
|
if (UndefLHS[M])
|
|
KnownUndef.setBit(i);
|
|
if (ZeroLHS[M])
|
|
KnownZero.setBit(i);
|
|
} else {
|
|
if (UndefRHS[M - NumElts])
|
|
KnownUndef.setBit(i);
|
|
if (ZeroRHS[M - NumElts])
|
|
KnownZero.setBit(i);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::ANY_EXTEND_VECTOR_INREG:
|
|
case ISD::SIGN_EXTEND_VECTOR_INREG:
|
|
case ISD::ZERO_EXTEND_VECTOR_INREG: {
|
|
APInt SrcUndef, SrcZero;
|
|
SDValue Src = Op.getOperand(0);
|
|
unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
|
|
APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
|
|
if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
KnownZero = SrcZero.zextOrTrunc(NumElts);
|
|
KnownUndef = SrcUndef.zextOrTrunc(NumElts);
|
|
|
|
if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
|
|
Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
|
|
DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
|
|
// aext - if we just need the bottom element then we can bitcast.
|
|
return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
|
|
}
|
|
|
|
if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
|
|
// zext(undef) upper bits are guaranteed to be zero.
|
|
if (DemandedElts.isSubsetOf(KnownUndef))
|
|
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
|
|
KnownUndef.clearAllBits();
|
|
}
|
|
break;
|
|
}
|
|
|
|
// TODO: There are more binop opcodes that could be handled here - MIN,
|
|
// MAX, saturated math, etc.
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FREM: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
APInt UndefRHS, ZeroRHS;
|
|
if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
APInt UndefLHS, ZeroLHS;
|
|
if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
|
|
KnownZero = ZeroLHS & ZeroRHS;
|
|
KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
// TODO - use KnownUndef to relax the demandedelts?
|
|
if (!DemandedElts.isAllOnesValue())
|
|
if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
|
|
return true;
|
|
break;
|
|
}
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
case ISD::ROTL:
|
|
case ISD::ROTR: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
APInt UndefRHS, ZeroRHS;
|
|
if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
APInt UndefLHS, ZeroLHS;
|
|
if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
|
|
KnownZero = ZeroLHS;
|
|
KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
// TODO - use KnownUndef to relax the demandedelts?
|
|
if (!DemandedElts.isAllOnesValue())
|
|
if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
|
|
return true;
|
|
break;
|
|
}
|
|
case ISD::MUL:
|
|
case ISD::AND: {
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
|
|
APInt SrcUndef, SrcZero;
|
|
if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
|
|
Depth + 1))
|
|
return true;
|
|
if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
|
|
TLO, Depth + 1))
|
|
return true;
|
|
|
|
// If either side has a zero element, then the result element is zero, even
|
|
// if the other is an UNDEF.
|
|
// TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
|
|
// and then handle 'and' nodes with the rest of the binop opcodes.
|
|
KnownZero |= SrcZero;
|
|
KnownUndef &= SrcUndef;
|
|
KnownUndef &= ~KnownZero;
|
|
|
|
// Attempt to avoid multi-use ops if we don't need anything from them.
|
|
// TODO - use KnownUndef to relax the demandedelts?
|
|
if (!DemandedElts.isAllOnesValue())
|
|
if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
|
|
return true;
|
|
break;
|
|
}
|
|
case ISD::TRUNCATE:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
|
|
KnownZero, TLO, Depth + 1))
|
|
return true;
|
|
|
|
if (Op.getOpcode() == ISD::ZERO_EXTEND) {
|
|
// zext(undef) upper bits are guaranteed to be zero.
|
|
if (DemandedElts.isSubsetOf(KnownUndef))
|
|
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
|
|
KnownUndef.clearAllBits();
|
|
}
|
|
break;
|
|
default: {
|
|
if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
|
|
if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
|
|
KnownZero, TLO, Depth))
|
|
return true;
|
|
} else {
|
|
KnownBits Known;
|
|
APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
|
|
if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
|
|
TLO, Depth, AssumeSingleUse))
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
|
|
|
|
// Constant fold all undef cases.
|
|
// TODO: Handle zero cases as well.
|
|
if (DemandedElts.isSubsetOf(KnownUndef))
|
|
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine which of the bits specified in Mask are known to be either zero or
|
|
/// one and return them in the Known.
|
|
void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
|
|
KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
|
|
"Should use MaskedValueIsZero if you don't know whether Op"
|
|
" is a target node!");
|
|
Known.resetAll();
|
|
}
|
|
|
|
void TargetLowering::computeKnownBitsForTargetInstr(
|
|
GISelKnownBits &Analysis, Register R, KnownBits &Known,
|
|
const APInt &DemandedElts, const MachineRegisterInfo &MRI,
|
|
unsigned Depth) const {
|
|
Known.resetAll();
|
|
}
|
|
|
|
void TargetLowering::computeKnownBitsForFrameIndex(
|
|
const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
|
|
// The low bits are known zero if the pointer is aligned.
|
|
Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
|
|
}
|
|
|
|
Align TargetLowering::computeKnownAlignForTargetInstr(
|
|
GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
|
|
unsigned Depth) const {
|
|
return Align(1);
|
|
}
|
|
|
|
/// This method can be implemented by targets that want to expose additional
|
|
/// information about sign bits to the DAG Combiner.
|
|
unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
|
|
const APInt &,
|
|
const SelectionDAG &,
|
|
unsigned Depth) const {
|
|
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
|
|
"Should use ComputeNumSignBits if you don't know whether Op"
|
|
" is a target node!");
|
|
return 1;
|
|
}
|
|
|
|
unsigned TargetLowering::computeNumSignBitsForTargetInstr(
|
|
GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
|
|
const MachineRegisterInfo &MRI, unsigned Depth) const {
|
|
return 1;
|
|
}
|
|
|
|
bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
|
|
SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
|
|
TargetLoweringOpt &TLO, unsigned Depth) const {
|
|
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
|
|
"Should use SimplifyDemandedVectorElts if you don't know whether Op"
|
|
" is a target node!");
|
|
return false;
|
|
}
|
|
|
|
bool TargetLowering::SimplifyDemandedBitsForTargetNode(
|
|
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
|
|
KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
|
|
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
|
|
"Should use SimplifyDemandedBits if you don't know whether Op"
|
|
" is a target node!");
|
|
computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
|
|
return false;
|
|
}
|
|
|
|
SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
|
|
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
|
|
SelectionDAG &DAG, unsigned Depth) const {
|
|
assert(
|
|
(Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
|
|
"Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
|
|
" is a target node!");
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
|
|
SDValue N1, MutableArrayRef<int> Mask,
|
|
SelectionDAG &DAG) const {
|
|
bool LegalMask = isShuffleMaskLegal(Mask, VT);
|
|
if (!LegalMask) {
|
|
std::swap(N0, N1);
|
|
ShuffleVectorSDNode::commuteMask(Mask);
|
|
LegalMask = isShuffleMaskLegal(Mask, VT);
|
|
}
|
|
|
|
if (!LegalMask)
|
|
return SDValue();
|
|
|
|
return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
|
|
}
|
|
|
|
const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
|
|
return nullptr;
|
|
}
|
|
|
|
bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
|
|
const SelectionDAG &DAG,
|
|
bool SNaN,
|
|
unsigned Depth) const {
|
|
assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
|
|
Op.getOpcode() == ISD::INTRINSIC_VOID) &&
|
|
"Should use isKnownNeverNaN if you don't know whether Op"
|
|
" is a target node!");
|
|
return false;
|
|
}
|
|
|
|
// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
|
|
// work with truncating build vectors and vectors with elements of less than
|
|
// 8 bits.
|
|
bool TargetLowering::isConstTrueVal(const SDNode *N) const {
|
|
if (!N)
|
|
return false;
|
|
|
|
APInt CVal;
|
|
if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
|
|
CVal = CN->getAPIntValue();
|
|
} else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
|
|
auto *CN = BV->getConstantSplatNode();
|
|
if (!CN)
|
|
return false;
|
|
|
|
// If this is a truncating build vector, truncate the splat value.
|
|
// Otherwise, we may fail to match the expected values below.
|
|
unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
|
|
CVal = CN->getAPIntValue();
|
|
if (BVEltWidth < CVal.getBitWidth())
|
|
CVal = CVal.trunc(BVEltWidth);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
switch (getBooleanContents(N->getValueType(0))) {
|
|
case UndefinedBooleanContent:
|
|
return CVal[0];
|
|
case ZeroOrOneBooleanContent:
|
|
return CVal.isOneValue();
|
|
case ZeroOrNegativeOneBooleanContent:
|
|
return CVal.isAllOnesValue();
|
|
}
|
|
|
|
llvm_unreachable("Invalid boolean contents");
|
|
}
|
|
|
|
bool TargetLowering::isConstFalseVal(const SDNode *N) const {
|
|
if (!N)
|
|
return false;
|
|
|
|
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
|
|
if (!CN) {
|
|
const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
|
|
if (!BV)
|
|
return false;
|
|
|
|
// Only interested in constant splats, we don't care about undef
|
|
// elements in identifying boolean constants and getConstantSplatNode
|
|
// returns NULL if all ops are undef;
|
|
CN = BV->getConstantSplatNode();
|
|
if (!CN)
|
|
return false;
|
|
}
|
|
|
|
if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
|
|
return !CN->getAPIntValue()[0];
|
|
|
|
return CN->isNullValue();
|
|
}
|
|
|
|
bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
|
|
bool SExt) const {
|
|
if (VT == MVT::i1)
|
|
return N->isOne();
|
|
|
|
TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
|
|
switch (Cnt) {
|
|
case TargetLowering::ZeroOrOneBooleanContent:
|
|
// An extended value of 1 is always true, unless its original type is i1,
|
|
// in which case it will be sign extended to -1.
|
|
return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
|
|
case TargetLowering::UndefinedBooleanContent:
|
|
case TargetLowering::ZeroOrNegativeOneBooleanContent:
|
|
return N->isAllOnesValue() && SExt;
|
|
}
|
|
llvm_unreachable("Unexpected enumeration.");
|
|
}
|
|
|
|
/// This helper function of SimplifySetCC tries to optimize the comparison when
|
|
/// either operand of the SetCC node is a bitwise-and instruction.
|
|
SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
|
|
ISD::CondCode Cond, const SDLoc &DL,
|
|
DAGCombinerInfo &DCI) const {
|
|
// Match these patterns in any of their permutations:
|
|
// (X & Y) == Y
|
|
// (X & Y) != Y
|
|
if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
|
|
std::swap(N0, N1);
|
|
|
|
EVT OpVT = N0.getValueType();
|
|
if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
|
|
(Cond != ISD::SETEQ && Cond != ISD::SETNE))
|
|
return SDValue();
|
|
|
|
SDValue X, Y;
|
|
if (N0.getOperand(0) == N1) {
|
|
X = N0.getOperand(1);
|
|
Y = N0.getOperand(0);
|
|
} else if (N0.getOperand(1) == N1) {
|
|
X = N0.getOperand(0);
|
|
Y = N0.getOperand(1);
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Zero = DAG.getConstant(0, DL, OpVT);
|
|
if (DAG.isKnownToBeAPowerOfTwo(Y)) {
|
|
// Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
|
|
// Note that where Y is variable and is known to have at most one bit set
|
|
// (for example, if it is Z & 1) we cannot do this; the expressions are not
|
|
// equivalent when Y == 0.
|
|
assert(OpVT.isInteger());
|
|
Cond = ISD::getSetCCInverse(Cond, OpVT);
|
|
if (DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(Cond, N0.getSimpleValueType()))
|
|
return DAG.getSetCC(DL, VT, N0, Zero, Cond);
|
|
} else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
|
|
// If the target supports an 'and-not' or 'and-complement' logic operation,
|
|
// try to use that to make a comparison operation more efficient.
|
|
// But don't do this transform if the mask is a single bit because there are
|
|
// more efficient ways to deal with that case (for example, 'bt' on x86 or
|
|
// 'rlwinm' on PPC).
|
|
|
|
// Bail out if the compare operand that we want to turn into a zero is
|
|
// already a zero (otherwise, infinite loop).
|
|
auto *YConst = dyn_cast<ConstantSDNode>(Y);
|
|
if (YConst && YConst->isNullValue())
|
|
return SDValue();
|
|
|
|
// Transform this into: ~X & Y == 0.
|
|
SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
|
|
SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
|
|
return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// There are multiple IR patterns that could be checking whether certain
|
|
/// truncation of a signed number would be lossy or not. The pattern which is
|
|
/// best at IR level, may not lower optimally. Thus, we want to unfold it.
|
|
/// We are looking for the following pattern: (KeptBits is a constant)
|
|
/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
|
|
/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
|
|
/// KeptBits also can't be 1, that would have been folded to %x dstcond 0
|
|
/// We will unfold it into the natural trunc+sext pattern:
|
|
/// ((%x << C) a>> C) dstcond %x
|
|
/// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
|
|
SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
|
|
EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
|
|
const SDLoc &DL) const {
|
|
// We must be comparing with a constant.
|
|
ConstantSDNode *C1;
|
|
if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
|
|
return SDValue();
|
|
|
|
// N0 should be: add %x, (1 << (KeptBits-1))
|
|
if (N0->getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
|
|
// And we must be 'add'ing a constant.
|
|
ConstantSDNode *C01;
|
|
if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
|
|
return SDValue();
|
|
|
|
SDValue X = N0->getOperand(0);
|
|
EVT XVT = X.getValueType();
|
|
|
|
// Validate constants ...
|
|
|
|
APInt I1 = C1->getAPIntValue();
|
|
|
|
ISD::CondCode NewCond;
|
|
if (Cond == ISD::CondCode::SETULT) {
|
|
NewCond = ISD::CondCode::SETEQ;
|
|
} else if (Cond == ISD::CondCode::SETULE) {
|
|
NewCond = ISD::CondCode::SETEQ;
|
|
// But need to 'canonicalize' the constant.
|
|
I1 += 1;
|
|
} else if (Cond == ISD::CondCode::SETUGT) {
|
|
NewCond = ISD::CondCode::SETNE;
|
|
// But need to 'canonicalize' the constant.
|
|
I1 += 1;
|
|
} else if (Cond == ISD::CondCode::SETUGE) {
|
|
NewCond = ISD::CondCode::SETNE;
|
|
} else
|
|
return SDValue();
|
|
|
|
APInt I01 = C01->getAPIntValue();
|
|
|
|
auto checkConstants = [&I1, &I01]() -> bool {
|
|
// Both of them must be power-of-two, and the constant from setcc is bigger.
|
|
return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
|
|
};
|
|
|
|
if (checkConstants()) {
|
|
// Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
|
|
} else {
|
|
// What if we invert constants? (and the target predicate)
|
|
I1.negate();
|
|
I01.negate();
|
|
assert(XVT.isInteger());
|
|
NewCond = getSetCCInverse(NewCond, XVT);
|
|
if (!checkConstants())
|
|
return SDValue();
|
|
// Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
|
|
}
|
|
|
|
// They are power-of-two, so which bit is set?
|
|
const unsigned KeptBits = I1.logBase2();
|
|
const unsigned KeptBitsMinusOne = I01.logBase2();
|
|
|
|
// Magic!
|
|
if (KeptBits != (KeptBitsMinusOne + 1))
|
|
return SDValue();
|
|
assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
|
|
|
|
// We don't want to do this in every single case.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
|
|
XVT, KeptBits))
|
|
return SDValue();
|
|
|
|
const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
|
|
assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
|
|
|
|
// Unfold into: ((%x << C) a>> C) cond %x
|
|
// Where 'cond' will be either 'eq' or 'ne'.
|
|
SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
|
|
SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
|
|
SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
|
|
SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
|
|
|
|
return T2;
|
|
}
|
|
|
|
// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
|
|
SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
|
|
EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
|
|
DAGCombinerInfo &DCI, const SDLoc &DL) const {
|
|
assert(isConstOrConstSplat(N1C) &&
|
|
isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
|
|
"Should be a comparison with 0.");
|
|
assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
|
|
"Valid only for [in]equality comparisons.");
|
|
|
|
unsigned NewShiftOpcode;
|
|
SDValue X, C, Y;
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// Look for '(C l>>/<< Y)'.
|
|
auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
|
|
// The shift should be one-use.
|
|
if (!V.hasOneUse())
|
|
return false;
|
|
unsigned OldShiftOpcode = V.getOpcode();
|
|
switch (OldShiftOpcode) {
|
|
case ISD::SHL:
|
|
NewShiftOpcode = ISD::SRL;
|
|
break;
|
|
case ISD::SRL:
|
|
NewShiftOpcode = ISD::SHL;
|
|
break;
|
|
default:
|
|
return false; // must be a logical shift.
|
|
}
|
|
// We should be shifting a constant.
|
|
// FIXME: best to use isConstantOrConstantVector().
|
|
C = V.getOperand(0);
|
|
ConstantSDNode *CC =
|
|
isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
|
|
if (!CC)
|
|
return false;
|
|
Y = V.getOperand(1);
|
|
|
|
ConstantSDNode *XC =
|
|
isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
|
|
return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
|
|
X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
|
|
};
|
|
|
|
// LHS of comparison should be an one-use 'and'.
|
|
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
|
|
return SDValue();
|
|
|
|
X = N0.getOperand(0);
|
|
SDValue Mask = N0.getOperand(1);
|
|
|
|
// 'and' is commutative!
|
|
if (!Match(Mask)) {
|
|
std::swap(X, Mask);
|
|
if (!Match(Mask))
|
|
return SDValue();
|
|
}
|
|
|
|
EVT VT = X.getValueType();
|
|
|
|
// Produce:
|
|
// ((X 'OppositeShiftOpcode' Y) & C) Cond 0
|
|
SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
|
|
SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
|
|
SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
|
|
return T2;
|
|
}
|
|
|
|
/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
|
|
/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
|
|
/// handle the commuted versions of these patterns.
|
|
SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
|
|
ISD::CondCode Cond, const SDLoc &DL,
|
|
DAGCombinerInfo &DCI) const {
|
|
unsigned BOpcode = N0.getOpcode();
|
|
assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
|
|
"Unexpected binop");
|
|
assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
|
|
|
|
// (X + Y) == X --> Y == 0
|
|
// (X - Y) == X --> Y == 0
|
|
// (X ^ Y) == X --> Y == 0
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT OpVT = N0.getValueType();
|
|
SDValue X = N0.getOperand(0);
|
|
SDValue Y = N0.getOperand(1);
|
|
if (X == N1)
|
|
return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
|
|
|
|
if (Y != N1)
|
|
return SDValue();
|
|
|
|
// (X + Y) == Y --> X == 0
|
|
// (X ^ Y) == Y --> X == 0
|
|
if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
|
|
return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
|
|
|
|
// The shift would not be valid if the operands are boolean (i1).
|
|
if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
|
|
return SDValue();
|
|
|
|
// (X - Y) == Y --> X == Y << 1
|
|
EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
|
|
!DCI.isBeforeLegalize());
|
|
SDValue One = DAG.getConstant(1, DL, ShiftVT);
|
|
SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
|
|
if (!DCI.isCalledByLegalizer())
|
|
DCI.AddToWorklist(YShl1.getNode());
|
|
return DAG.getSetCC(DL, VT, X, YShl1, Cond);
|
|
}
|
|
|
|
/// Try to simplify a setcc built with the specified operands and cc. If it is
|
|
/// unable to simplify it, return a null SDValue.
|
|
SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
|
|
ISD::CondCode Cond, bool foldBooleans,
|
|
DAGCombinerInfo &DCI,
|
|
const SDLoc &dl) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const DataLayout &Layout = DAG.getDataLayout();
|
|
EVT OpVT = N0.getValueType();
|
|
|
|
// Constant fold or commute setcc.
|
|
if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
|
|
return Fold;
|
|
|
|
// Ensure that the constant occurs on the RHS and fold constant comparisons.
|
|
// TODO: Handle non-splat vector constants. All undef causes trouble.
|
|
ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
|
|
if (isConstOrConstSplat(N0) &&
|
|
(DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
|
|
return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
|
|
|
|
// If we have a subtract with the same 2 non-constant operands as this setcc
|
|
// -- but in reverse order -- then try to commute the operands of this setcc
|
|
// to match. A matching pair of setcc (cmp) and sub may be combined into 1
|
|
// instruction on some targets.
|
|
if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
|
|
(DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
|
|
DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
|
|
!DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
|
|
return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
|
|
|
|
if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
|
|
const APInt &C1 = N1C->getAPIntValue();
|
|
|
|
// If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
|
|
// equality comparison, then we're just comparing whether X itself is
|
|
// zero.
|
|
if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
|
|
N0.getOperand(0).getOpcode() == ISD::CTLZ &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant) {
|
|
const APInt &ShAmt = N0.getConstantOperandAPInt(1);
|
|
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
|
|
ShAmt == Log2_32(N0.getValueSizeInBits())) {
|
|
if ((C1 == 0) == (Cond == ISD::SETEQ)) {
|
|
// (srl (ctlz x), 5) == 0 -> X != 0
|
|
// (srl (ctlz x), 5) != 1 -> X != 0
|
|
Cond = ISD::SETNE;
|
|
} else {
|
|
// (srl (ctlz x), 5) != 0 -> X == 0
|
|
// (srl (ctlz x), 5) == 1 -> X == 0
|
|
Cond = ISD::SETEQ;
|
|
}
|
|
SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
|
|
Zero, Cond);
|
|
}
|
|
}
|
|
|
|
SDValue CTPOP = N0;
|
|
// Look through truncs that don't change the value of a ctpop.
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
|
|
CTPOP = N0.getOperand(0);
|
|
|
|
if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
|
|
(N0 == CTPOP ||
|
|
N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
|
|
EVT CTVT = CTPOP.getValueType();
|
|
SDValue CTOp = CTPOP.getOperand(0);
|
|
|
|
// (ctpop x) u< 2 -> (x & x-1) == 0
|
|
// (ctpop x) u> 1 -> (x & x-1) != 0
|
|
if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
|
|
SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
|
|
SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
|
|
SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
|
|
ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
|
|
return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
|
|
}
|
|
|
|
// If ctpop is not supported, expand a power-of-2 comparison based on it.
|
|
if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
|
|
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
|
|
// (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
|
|
// (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
|
|
SDValue Zero = DAG.getConstant(0, dl, CTVT);
|
|
SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
|
|
assert(CTVT.isInteger());
|
|
ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
|
|
SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
|
|
SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
|
|
SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
|
|
SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
|
|
unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
|
|
return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
|
|
}
|
|
}
|
|
|
|
// (zext x) == C --> x == (trunc C)
|
|
// (sext x) == C --> x == (trunc C)
|
|
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
|
|
DCI.isBeforeLegalize() && N0->hasOneUse()) {
|
|
unsigned MinBits = N0.getValueSizeInBits();
|
|
SDValue PreExt;
|
|
bool Signed = false;
|
|
if (N0->getOpcode() == ISD::ZERO_EXTEND) {
|
|
// ZExt
|
|
MinBits = N0->getOperand(0).getValueSizeInBits();
|
|
PreExt = N0->getOperand(0);
|
|
} else if (N0->getOpcode() == ISD::AND) {
|
|
// DAGCombine turns costly ZExts into ANDs
|
|
if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
|
|
if ((C->getAPIntValue()+1).isPowerOf2()) {
|
|
MinBits = C->getAPIntValue().countTrailingOnes();
|
|
PreExt = N0->getOperand(0);
|
|
}
|
|
} else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
|
|
// SExt
|
|
MinBits = N0->getOperand(0).getValueSizeInBits();
|
|
PreExt = N0->getOperand(0);
|
|
Signed = true;
|
|
} else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
|
|
// ZEXTLOAD / SEXTLOAD
|
|
if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
|
|
MinBits = LN0->getMemoryVT().getSizeInBits();
|
|
PreExt = N0;
|
|
} else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
|
|
Signed = true;
|
|
MinBits = LN0->getMemoryVT().getSizeInBits();
|
|
PreExt = N0;
|
|
}
|
|
}
|
|
|
|
// Figure out how many bits we need to preserve this constant.
|
|
unsigned ReqdBits = Signed ?
|
|
C1.getBitWidth() - C1.getNumSignBits() + 1 :
|
|
C1.getActiveBits();
|
|
|
|
// Make sure we're not losing bits from the constant.
|
|
if (MinBits > 0 &&
|
|
MinBits < C1.getBitWidth() &&
|
|
MinBits >= ReqdBits) {
|
|
EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
|
|
if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
|
|
// Will get folded away.
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
|
|
if (MinBits == 1 && C1 == 1)
|
|
// Invert the condition.
|
|
return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
|
|
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
|
|
SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
|
|
return DAG.getSetCC(dl, VT, Trunc, C, Cond);
|
|
}
|
|
|
|
// If truncating the setcc operands is not desirable, we can still
|
|
// simplify the expression in some cases:
|
|
// setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
|
|
// setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
|
|
// setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
|
|
// setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
|
|
// setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
|
|
// setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
|
|
SDValue TopSetCC = N0->getOperand(0);
|
|
unsigned N0Opc = N0->getOpcode();
|
|
bool SExt = (N0Opc == ISD::SIGN_EXTEND);
|
|
if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
|
|
TopSetCC.getOpcode() == ISD::SETCC &&
|
|
(N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
|
|
(isConstFalseVal(N1C) ||
|
|
isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
|
|
|
|
bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
|
|
(!N1C->isNullValue() && Cond == ISD::SETNE);
|
|
|
|
if (!Inverse)
|
|
return TopSetCC;
|
|
|
|
ISD::CondCode InvCond = ISD::getSetCCInverse(
|
|
cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
|
|
TopSetCC.getOperand(0).getValueType());
|
|
return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
|
|
TopSetCC.getOperand(1),
|
|
InvCond);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the LHS is '(and load, const)', the RHS is 0, the test is for
|
|
// equality or unsigned, and all 1 bits of the const are in the same
|
|
// partial word, see if we can shorten the load.
|
|
if (DCI.isBeforeLegalize() &&
|
|
!ISD::isSignedIntSetCC(Cond) &&
|
|
N0.getOpcode() == ISD::AND && C1 == 0 &&
|
|
N0.getNode()->hasOneUse() &&
|
|
isa<LoadSDNode>(N0.getOperand(0)) &&
|
|
N0.getOperand(0).getNode()->hasOneUse() &&
|
|
isa<ConstantSDNode>(N0.getOperand(1))) {
|
|
LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
|
|
APInt bestMask;
|
|
unsigned bestWidth = 0, bestOffset = 0;
|
|
if (Lod->isSimple() && Lod->isUnindexed()) {
|
|
unsigned origWidth = N0.getValueSizeInBits();
|
|
unsigned maskWidth = origWidth;
|
|
// We can narrow (e.g.) 16-bit extending loads on 32-bit target to
|
|
// 8 bits, but have to be careful...
|
|
if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
|
|
origWidth = Lod->getMemoryVT().getSizeInBits();
|
|
const APInt &Mask = N0.getConstantOperandAPInt(1);
|
|
for (unsigned width = origWidth / 2; width>=8; width /= 2) {
|
|
APInt newMask = APInt::getLowBitsSet(maskWidth, width);
|
|
for (unsigned offset=0; offset<origWidth/width; offset++) {
|
|
if (Mask.isSubsetOf(newMask)) {
|
|
if (Layout.isLittleEndian())
|
|
bestOffset = (uint64_t)offset * (width/8);
|
|
else
|
|
bestOffset = (origWidth/width - offset - 1) * (width/8);
|
|
bestMask = Mask.lshr(offset * (width/8) * 8);
|
|
bestWidth = width;
|
|
break;
|
|
}
|
|
newMask <<= width;
|
|
}
|
|
}
|
|
}
|
|
if (bestWidth) {
|
|
EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
|
|
if (newVT.isRound() &&
|
|
shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
|
|
SDValue Ptr = Lod->getBasePtr();
|
|
if (bestOffset != 0)
|
|
Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
|
|
unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
|
|
SDValue NewLoad = DAG.getLoad(
|
|
newVT, dl, Lod->getChain(), Ptr,
|
|
Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
|
|
return DAG.getSetCC(dl, VT,
|
|
DAG.getNode(ISD::AND, dl, newVT, NewLoad,
|
|
DAG.getConstant(bestMask.trunc(bestWidth),
|
|
dl, newVT)),
|
|
DAG.getConstant(0LL, dl, newVT), Cond);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the LHS is a ZERO_EXTEND, perform the comparison on the input.
|
|
if (N0.getOpcode() == ISD::ZERO_EXTEND) {
|
|
unsigned InSize = N0.getOperand(0).getValueSizeInBits();
|
|
|
|
// If the comparison constant has bits in the upper part, the
|
|
// zero-extended value could never match.
|
|
if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
|
|
C1.getBitWidth() - InSize))) {
|
|
switch (Cond) {
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
case ISD::SETEQ:
|
|
return DAG.getConstant(0, dl, VT);
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
case ISD::SETNE:
|
|
return DAG.getConstant(1, dl, VT);
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
// True if the sign bit of C1 is set.
|
|
return DAG.getConstant(C1.isNegative(), dl, VT);
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
// True if the sign bit of C1 isn't set.
|
|
return DAG.getConstant(C1.isNonNegative(), dl, VT);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we can perform the comparison with the low bits.
|
|
switch (Cond) {
|
|
case ISD::SETEQ:
|
|
case ISD::SETNE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
case ISD::SETULT:
|
|
case ISD::SETULE: {
|
|
EVT newVT = N0.getOperand(0).getValueType();
|
|
if (DCI.isBeforeLegalizeOps() ||
|
|
(isOperationLegal(ISD::SETCC, newVT) &&
|
|
isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
|
|
EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
|
|
SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
|
|
|
|
SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
|
|
NewConst, Cond);
|
|
return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break; // todo, be more careful with signed comparisons
|
|
}
|
|
} else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
|
|
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
|
|
EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
|
|
unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
|
|
EVT ExtDstTy = N0.getValueType();
|
|
unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
|
|
|
|
// If the constant doesn't fit into the number of bits for the source of
|
|
// the sign extension, it is impossible for both sides to be equal.
|
|
if (C1.getMinSignedBits() > ExtSrcTyBits)
|
|
return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
|
|
|
|
SDValue ZextOp;
|
|
EVT Op0Ty = N0.getOperand(0).getValueType();
|
|
if (Op0Ty == ExtSrcTy) {
|
|
ZextOp = N0.getOperand(0);
|
|
} else {
|
|
APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
|
|
ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
|
|
DAG.getConstant(Imm, dl, Op0Ty));
|
|
}
|
|
if (!DCI.isCalledByLegalizer())
|
|
DCI.AddToWorklist(ZextOp.getNode());
|
|
// Otherwise, make this a use of a zext.
|
|
return DAG.getSetCC(dl, VT, ZextOp,
|
|
DAG.getConstant(C1 & APInt::getLowBitsSet(
|
|
ExtDstTyBits,
|
|
ExtSrcTyBits),
|
|
dl, ExtDstTy),
|
|
Cond);
|
|
} else if ((N1C->isNullValue() || N1C->isOne()) &&
|
|
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
|
|
// SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
|
|
if (N0.getOpcode() == ISD::SETCC &&
|
|
isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
|
|
(N0.getValueType() == MVT::i1 ||
|
|
getBooleanContents(N0.getOperand(0).getValueType()) ==
|
|
ZeroOrOneBooleanContent)) {
|
|
bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
|
|
if (TrueWhenTrue)
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
|
|
// Invert the condition.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
|
|
CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
|
|
if (DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
|
|
}
|
|
|
|
if ((N0.getOpcode() == ISD::XOR ||
|
|
(N0.getOpcode() == ISD::AND &&
|
|
N0.getOperand(0).getOpcode() == ISD::XOR &&
|
|
N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
|
|
isa<ConstantSDNode>(N0.getOperand(1)) &&
|
|
cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
|
|
// If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
|
|
// can only do this if the top bits are known zero.
|
|
unsigned BitWidth = N0.getValueSizeInBits();
|
|
if (DAG.MaskedValueIsZero(N0,
|
|
APInt::getHighBitsSet(BitWidth,
|
|
BitWidth-1))) {
|
|
// Okay, get the un-inverted input value.
|
|
SDValue Val;
|
|
if (N0.getOpcode() == ISD::XOR) {
|
|
Val = N0.getOperand(0);
|
|
} else {
|
|
assert(N0.getOpcode() == ISD::AND &&
|
|
N0.getOperand(0).getOpcode() == ISD::XOR);
|
|
// ((X^1)&1)^1 -> X & 1
|
|
Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
|
|
N0.getOperand(0).getOperand(0),
|
|
N0.getOperand(1));
|
|
}
|
|
|
|
return DAG.getSetCC(dl, VT, Val, N1,
|
|
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
|
|
}
|
|
} else if (N1C->isOne()) {
|
|
SDValue Op0 = N0;
|
|
if (Op0.getOpcode() == ISD::TRUNCATE)
|
|
Op0 = Op0.getOperand(0);
|
|
|
|
if ((Op0.getOpcode() == ISD::XOR) &&
|
|
Op0.getOperand(0).getOpcode() == ISD::SETCC &&
|
|
Op0.getOperand(1).getOpcode() == ISD::SETCC) {
|
|
SDValue XorLHS = Op0.getOperand(0);
|
|
SDValue XorRHS = Op0.getOperand(1);
|
|
// Ensure that the input setccs return an i1 type or 0/1 value.
|
|
if (Op0.getValueType() == MVT::i1 ||
|
|
(getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
|
|
ZeroOrOneBooleanContent &&
|
|
getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
|
|
ZeroOrOneBooleanContent)) {
|
|
// (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
|
|
Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
|
|
return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
|
|
}
|
|
}
|
|
if (Op0.getOpcode() == ISD::AND &&
|
|
isa<ConstantSDNode>(Op0.getOperand(1)) &&
|
|
cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
|
|
// If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
|
|
if (Op0.getValueType().bitsGT(VT))
|
|
Op0 = DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
|
|
DAG.getConstant(1, dl, VT));
|
|
else if (Op0.getValueType().bitsLT(VT))
|
|
Op0 = DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
|
|
DAG.getConstant(1, dl, VT));
|
|
|
|
return DAG.getSetCC(dl, VT, Op0,
|
|
DAG.getConstant(0, dl, Op0.getValueType()),
|
|
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
|
|
}
|
|
if (Op0.getOpcode() == ISD::AssertZext &&
|
|
cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
|
|
return DAG.getSetCC(dl, VT, Op0,
|
|
DAG.getConstant(0, dl, Op0.getValueType()),
|
|
Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
|
|
}
|
|
}
|
|
|
|
// Given:
|
|
// icmp eq/ne (urem %x, %y), 0
|
|
// Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
|
|
// icmp eq/ne %x, 0
|
|
if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
|
|
(Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
|
|
KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
|
|
KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
|
|
if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
|
|
}
|
|
|
|
if (SDValue V =
|
|
optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
|
|
return V;
|
|
}
|
|
|
|
// These simplifications apply to splat vectors as well.
|
|
// TODO: Handle more splat vector cases.
|
|
if (auto *N1C = isConstOrConstSplat(N1)) {
|
|
const APInt &C1 = N1C->getAPIntValue();
|
|
|
|
APInt MinVal, MaxVal;
|
|
unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
|
|
if (ISD::isSignedIntSetCC(Cond)) {
|
|
MinVal = APInt::getSignedMinValue(OperandBitSize);
|
|
MaxVal = APInt::getSignedMaxValue(OperandBitSize);
|
|
} else {
|
|
MinVal = APInt::getMinValue(OperandBitSize);
|
|
MaxVal = APInt::getMaxValue(OperandBitSize);
|
|
}
|
|
|
|
// Canonicalize GE/LE comparisons to use GT/LT comparisons.
|
|
if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
|
|
// X >= MIN --> true
|
|
if (C1 == MinVal)
|
|
return DAG.getBoolConstant(true, dl, VT, OpVT);
|
|
|
|
if (!VT.isVector()) { // TODO: Support this for vectors.
|
|
// X >= C0 --> X > (C0 - 1)
|
|
APInt C = C1 - 1;
|
|
ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
|
|
if ((DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
|
|
(!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
|
|
isLegalICmpImmediate(C.getSExtValue())))) {
|
|
return DAG.getSetCC(dl, VT, N0,
|
|
DAG.getConstant(C, dl, N1.getValueType()),
|
|
NewCC);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
|
|
// X <= MAX --> true
|
|
if (C1 == MaxVal)
|
|
return DAG.getBoolConstant(true, dl, VT, OpVT);
|
|
|
|
// X <= C0 --> X < (C0 + 1)
|
|
if (!VT.isVector()) { // TODO: Support this for vectors.
|
|
APInt C = C1 + 1;
|
|
ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
|
|
if ((DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
|
|
(!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
|
|
isLegalICmpImmediate(C.getSExtValue())))) {
|
|
return DAG.getSetCC(dl, VT, N0,
|
|
DAG.getConstant(C, dl, N1.getValueType()),
|
|
NewCC);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
|
|
if (C1 == MinVal)
|
|
return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
|
|
|
|
// TODO: Support this for vectors after legalize ops.
|
|
if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
|
|
// Canonicalize setlt X, Max --> setne X, Max
|
|
if (C1 == MaxVal)
|
|
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
|
|
|
|
// If we have setult X, 1, turn it into seteq X, 0
|
|
if (C1 == MinVal+1)
|
|
return DAG.getSetCC(dl, VT, N0,
|
|
DAG.getConstant(MinVal, dl, N0.getValueType()),
|
|
ISD::SETEQ);
|
|
}
|
|
}
|
|
|
|
if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
|
|
if (C1 == MaxVal)
|
|
return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
|
|
|
|
// TODO: Support this for vectors after legalize ops.
|
|
if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
|
|
// Canonicalize setgt X, Min --> setne X, Min
|
|
if (C1 == MinVal)
|
|
return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
|
|
|
|
// If we have setugt X, Max-1, turn it into seteq X, Max
|
|
if (C1 == MaxVal-1)
|
|
return DAG.getSetCC(dl, VT, N0,
|
|
DAG.getConstant(MaxVal, dl, N0.getValueType()),
|
|
ISD::SETEQ);
|
|
}
|
|
}
|
|
|
|
if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
|
|
// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
|
|
if (C1.isNullValue())
|
|
if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
|
|
VT, N0, N1, Cond, DCI, dl))
|
|
return CC;
|
|
}
|
|
|
|
// If we have "setcc X, C0", check to see if we can shrink the immediate
|
|
// by changing cc.
|
|
// TODO: Support this for vectors after legalize ops.
|
|
if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
|
|
// SETUGT X, SINTMAX -> SETLT X, 0
|
|
if (Cond == ISD::SETUGT &&
|
|
C1 == APInt::getSignedMaxValue(OperandBitSize))
|
|
return DAG.getSetCC(dl, VT, N0,
|
|
DAG.getConstant(0, dl, N1.getValueType()),
|
|
ISD::SETLT);
|
|
|
|
// SETULT X, SINTMIN -> SETGT X, -1
|
|
if (Cond == ISD::SETULT &&
|
|
C1 == APInt::getSignedMinValue(OperandBitSize)) {
|
|
SDValue ConstMinusOne =
|
|
DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
|
|
N1.getValueType());
|
|
return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Back to non-vector simplifications.
|
|
// TODO: Can we do these for vector splats?
|
|
if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
const APInt &C1 = N1C->getAPIntValue();
|
|
EVT ShValTy = N0.getValueType();
|
|
|
|
// Fold bit comparisons when we can.
|
|
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
|
|
(VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
|
|
N0.getOpcode() == ISD::AND) {
|
|
if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
EVT ShiftTy =
|
|
getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
|
|
if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
|
|
// Perform the xform if the AND RHS is a single bit.
|
|
unsigned ShCt = AndRHS->getAPIntValue().logBase2();
|
|
if (AndRHS->getAPIntValue().isPowerOf2() &&
|
|
!TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT,
|
|
DAG.getNode(ISD::SRL, dl, ShValTy, N0,
|
|
DAG.getConstant(ShCt, dl, ShiftTy)));
|
|
}
|
|
} else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
|
|
// (X & 8) == 8 --> (X & 8) >> 3
|
|
// Perform the xform if C1 is a single bit.
|
|
unsigned ShCt = C1.logBase2();
|
|
if (C1.isPowerOf2() &&
|
|
!TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT,
|
|
DAG.getNode(ISD::SRL, dl, ShValTy, N0,
|
|
DAG.getConstant(ShCt, dl, ShiftTy)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (C1.getMinSignedBits() <= 64 &&
|
|
!isLegalICmpImmediate(C1.getSExtValue())) {
|
|
EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
|
|
// (X & -256) == 256 -> (X >> 8) == 1
|
|
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
|
|
N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
|
|
if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
const APInt &AndRHSC = AndRHS->getAPIntValue();
|
|
if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
|
|
unsigned ShiftBits = AndRHSC.countTrailingZeros();
|
|
if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
|
|
SDValue Shift =
|
|
DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
|
|
DAG.getConstant(ShiftBits, dl, ShiftTy));
|
|
SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
|
|
return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
|
|
}
|
|
}
|
|
}
|
|
} else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
|
|
Cond == ISD::SETULE || Cond == ISD::SETUGT) {
|
|
bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
|
|
// X < 0x100000000 -> (X >> 32) < 1
|
|
// X >= 0x100000000 -> (X >> 32) >= 1
|
|
// X <= 0x0ffffffff -> (X >> 32) < 1
|
|
// X > 0x0ffffffff -> (X >> 32) >= 1
|
|
unsigned ShiftBits;
|
|
APInt NewC = C1;
|
|
ISD::CondCode NewCond = Cond;
|
|
if (AdjOne) {
|
|
ShiftBits = C1.countTrailingOnes();
|
|
NewC = NewC + 1;
|
|
NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
|
|
} else {
|
|
ShiftBits = C1.countTrailingZeros();
|
|
}
|
|
NewC.lshrInPlace(ShiftBits);
|
|
if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
|
|
isLegalICmpImmediate(NewC.getSExtValue()) &&
|
|
!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
|
|
SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
|
|
DAG.getConstant(ShiftBits, dl, ShiftTy));
|
|
SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
|
|
return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
|
|
auto *CFP = cast<ConstantFPSDNode>(N1);
|
|
assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
|
|
|
|
// Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
|
|
// constant if knowing that the operand is non-nan is enough. We prefer to
|
|
// have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
|
|
// materialize 0.0.
|
|
if (Cond == ISD::SETO || Cond == ISD::SETUO)
|
|
return DAG.getSetCC(dl, VT, N0, N0, Cond);
|
|
|
|
// setcc (fneg x), C -> setcc swap(pred) x, -C
|
|
if (N0.getOpcode() == ISD::FNEG) {
|
|
ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
|
|
if (DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
|
|
SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
|
|
}
|
|
}
|
|
|
|
// If the condition is not legal, see if we can find an equivalent one
|
|
// which is legal.
|
|
if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
|
|
// If the comparison was an awkward floating-point == or != and one of
|
|
// the comparison operands is infinity or negative infinity, convert the
|
|
// condition to a less-awkward <= or >=.
|
|
if (CFP->getValueAPF().isInfinity()) {
|
|
bool IsNegInf = CFP->getValueAPF().isNegative();
|
|
ISD::CondCode NewCond = ISD::SETCC_INVALID;
|
|
switch (Cond) {
|
|
case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
|
|
case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
|
|
case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
|
|
case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
|
|
default: break;
|
|
}
|
|
if (NewCond != ISD::SETCC_INVALID &&
|
|
isCondCodeLegal(NewCond, N0.getSimpleValueType()))
|
|
return DAG.getSetCC(dl, VT, N0, N1, NewCond);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (N0 == N1) {
|
|
// The sext(setcc()) => setcc() optimization relies on the appropriate
|
|
// constant being emitted.
|
|
assert(!N0.getValueType().isInteger() &&
|
|
"Integer types should be handled by FoldSetCC");
|
|
|
|
bool EqTrue = ISD::isTrueWhenEqual(Cond);
|
|
unsigned UOF = ISD::getUnorderedFlavor(Cond);
|
|
if (UOF == 2) // FP operators that are undefined on NaNs.
|
|
return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
|
|
if (UOF == unsigned(EqTrue))
|
|
return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
|
|
// Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
|
|
// if it is not already.
|
|
ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
|
|
if (NewCond != Cond &&
|
|
(DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(NewCond, N0.getSimpleValueType())))
|
|
return DAG.getSetCC(dl, VT, N0, N1, NewCond);
|
|
}
|
|
|
|
if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
|
|
N0.getValueType().isInteger()) {
|
|
if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
|
|
N0.getOpcode() == ISD::XOR) {
|
|
// Simplify (X+Y) == (X+Z) --> Y == Z
|
|
if (N0.getOpcode() == N1.getOpcode()) {
|
|
if (N0.getOperand(0) == N1.getOperand(0))
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
|
|
if (N0.getOperand(1) == N1.getOperand(1))
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
|
|
if (isCommutativeBinOp(N0.getOpcode())) {
|
|
// If X op Y == Y op X, try other combinations.
|
|
if (N0.getOperand(0) == N1.getOperand(1))
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
|
|
Cond);
|
|
if (N0.getOperand(1) == N1.getOperand(0))
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
|
|
Cond);
|
|
}
|
|
}
|
|
|
|
// If RHS is a legal immediate value for a compare instruction, we need
|
|
// to be careful about increasing register pressure needlessly.
|
|
bool LegalRHSImm = false;
|
|
|
|
if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
|
|
if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
// Turn (X+C1) == C2 --> X == C2-C1
|
|
if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
|
|
return DAG.getSetCC(dl, VT, N0.getOperand(0),
|
|
DAG.getConstant(RHSC->getAPIntValue()-
|
|
LHSR->getAPIntValue(),
|
|
dl, N0.getValueType()), Cond);
|
|
}
|
|
|
|
// Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
|
|
if (N0.getOpcode() == ISD::XOR)
|
|
// If we know that all of the inverted bits are zero, don't bother
|
|
// performing the inversion.
|
|
if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
|
|
return
|
|
DAG.getSetCC(dl, VT, N0.getOperand(0),
|
|
DAG.getConstant(LHSR->getAPIntValue() ^
|
|
RHSC->getAPIntValue(),
|
|
dl, N0.getValueType()),
|
|
Cond);
|
|
}
|
|
|
|
// Turn (C1-X) == C2 --> X == C1-C2
|
|
if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
|
|
if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
|
|
return
|
|
DAG.getSetCC(dl, VT, N0.getOperand(1),
|
|
DAG.getConstant(SUBC->getAPIntValue() -
|
|
RHSC->getAPIntValue(),
|
|
dl, N0.getValueType()),
|
|
Cond);
|
|
}
|
|
}
|
|
|
|
// Could RHSC fold directly into a compare?
|
|
if (RHSC->getValueType(0).getSizeInBits() <= 64)
|
|
LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
|
|
}
|
|
|
|
// (X+Y) == X --> Y == 0 and similar folds.
|
|
// Don't do this if X is an immediate that can fold into a cmp
|
|
// instruction and X+Y has other uses. It could be an induction variable
|
|
// chain, and the transform would increase register pressure.
|
|
if (!LegalRHSImm || N0.hasOneUse())
|
|
if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
|
|
return V;
|
|
}
|
|
|
|
if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
|
|
N1.getOpcode() == ISD::XOR)
|
|
if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
|
|
return V;
|
|
|
|
if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
|
|
return V;
|
|
}
|
|
|
|
// Fold remainder of division by a constant.
|
|
if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
|
|
N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
|
|
// When division is cheap or optimizing for minimum size,
|
|
// fall through to DIVREM creation by skipping this fold.
|
|
if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
|
|
if (N0.getOpcode() == ISD::UREM) {
|
|
if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
|
|
return Folded;
|
|
} else if (N0.getOpcode() == ISD::SREM) {
|
|
if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
|
|
return Folded;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fold away ALL boolean setcc's.
|
|
if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
|
|
SDValue Temp;
|
|
switch (Cond) {
|
|
default: llvm_unreachable("Unknown integer setcc!");
|
|
case ISD::SETEQ: // X == Y -> ~(X^Y)
|
|
Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
|
|
N0 = DAG.getNOT(dl, Temp, OpVT);
|
|
if (!DCI.isCalledByLegalizer())
|
|
DCI.AddToWorklist(Temp.getNode());
|
|
break;
|
|
case ISD::SETNE: // X != Y --> (X^Y)
|
|
N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
|
|
break;
|
|
case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
|
|
case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
|
|
Temp = DAG.getNOT(dl, N0, OpVT);
|
|
N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
|
|
if (!DCI.isCalledByLegalizer())
|
|
DCI.AddToWorklist(Temp.getNode());
|
|
break;
|
|
case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
|
|
case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
|
|
Temp = DAG.getNOT(dl, N1, OpVT);
|
|
N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
|
|
if (!DCI.isCalledByLegalizer())
|
|
DCI.AddToWorklist(Temp.getNode());
|
|
break;
|
|
case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
|
|
case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
|
|
Temp = DAG.getNOT(dl, N0, OpVT);
|
|
N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
|
|
if (!DCI.isCalledByLegalizer())
|
|
DCI.AddToWorklist(Temp.getNode());
|
|
break;
|
|
case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
|
|
case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
|
|
Temp = DAG.getNOT(dl, N1, OpVT);
|
|
N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
|
|
break;
|
|
}
|
|
if (VT.getScalarType() != MVT::i1) {
|
|
if (!DCI.isCalledByLegalizer())
|
|
DCI.AddToWorklist(N0.getNode());
|
|
// FIXME: If running after legalize, we probably can't do this.
|
|
ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
|
|
N0 = DAG.getNode(ExtendCode, dl, VT, N0);
|
|
}
|
|
return N0;
|
|
}
|
|
|
|
// Could not fold it.
|
|
return SDValue();
|
|
}
|
|
|
|
/// Returns true (and the GlobalValue and the offset) if the node is a
|
|
/// GlobalAddress + offset.
|
|
bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
|
|
int64_t &Offset) const {
|
|
|
|
SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
|
|
|
|
if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
|
|
GA = GASD->getGlobal();
|
|
Offset += GASD->getOffset();
|
|
return true;
|
|
}
|
|
|
|
if (N->getOpcode() == ISD::ADD) {
|
|
SDValue N1 = N->getOperand(0);
|
|
SDValue N2 = N->getOperand(1);
|
|
if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
|
|
if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
|
|
Offset += V->getSExtValue();
|
|
return true;
|
|
}
|
|
} else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
|
|
if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
|
|
Offset += V->getSExtValue();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue TargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
// Default implementation: no optimization.
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inline Assembler Implementation Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetLowering::ConstraintType
|
|
TargetLowering::getConstraintType(StringRef Constraint) const {
|
|
unsigned S = Constraint.size();
|
|
|
|
if (S == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'r':
|
|
return C_RegisterClass;
|
|
case 'm': // memory
|
|
case 'o': // offsetable
|
|
case 'V': // not offsetable
|
|
return C_Memory;
|
|
case 'n': // Simple Integer
|
|
case 'E': // Floating Point Constant
|
|
case 'F': // Floating Point Constant
|
|
return C_Immediate;
|
|
case 'i': // Simple Integer or Relocatable Constant
|
|
case 's': // Relocatable Constant
|
|
case 'p': // Address.
|
|
case 'X': // Allow ANY value.
|
|
case 'I': // Target registers.
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'O':
|
|
case 'P':
|
|
case '<':
|
|
case '>':
|
|
return C_Other;
|
|
}
|
|
}
|
|
|
|
if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
|
|
if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
|
|
return C_Memory;
|
|
return C_Register;
|
|
}
|
|
return C_Unknown;
|
|
}
|
|
|
|
/// Try to replace an X constraint, which matches anything, with another that
|
|
/// has more specific requirements based on the type of the corresponding
|
|
/// operand.
|
|
const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
|
|
if (ConstraintVT.isInteger())
|
|
return "r";
|
|
if (ConstraintVT.isFloatingPoint())
|
|
return "f"; // works for many targets
|
|
return nullptr;
|
|
}
|
|
|
|
SDValue TargetLowering::LowerAsmOutputForConstraint(
|
|
SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
|
|
SelectionDAG &DAG) const {
|
|
return SDValue();
|
|
}
|
|
|
|
/// Lower the specified operand into the Ops vector.
|
|
/// If it is invalid, don't add anything to Ops.
|
|
void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
|
|
if (Constraint.length() > 1) return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default: break;
|
|
case 'X': // Allows any operand; labels (basic block) use this.
|
|
if (Op.getOpcode() == ISD::BasicBlock ||
|
|
Op.getOpcode() == ISD::TargetBlockAddress) {
|
|
Ops.push_back(Op);
|
|
return;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case 'i': // Simple Integer or Relocatable Constant
|
|
case 'n': // Simple Integer
|
|
case 's': { // Relocatable Constant
|
|
|
|
GlobalAddressSDNode *GA;
|
|
ConstantSDNode *C;
|
|
BlockAddressSDNode *BA;
|
|
uint64_t Offset = 0;
|
|
|
|
// Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
|
|
// etc., since getelementpointer is variadic. We can't use
|
|
// SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
|
|
// while in this case the GA may be furthest from the root node which is
|
|
// likely an ISD::ADD.
|
|
while (1) {
|
|
if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
|
|
Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
|
|
GA->getValueType(0),
|
|
Offset + GA->getOffset()));
|
|
return;
|
|
} else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
|
|
ConstraintLetter != 's') {
|
|
// gcc prints these as sign extended. Sign extend value to 64 bits
|
|
// now; without this it would get ZExt'd later in
|
|
// ScheduleDAGSDNodes::EmitNode, which is very generic.
|
|
bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
|
|
BooleanContent BCont = getBooleanContents(MVT::i64);
|
|
ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
|
|
: ISD::SIGN_EXTEND;
|
|
int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
|
|
: C->getSExtValue();
|
|
Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
|
|
SDLoc(C), MVT::i64));
|
|
return;
|
|
} else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
|
|
ConstraintLetter != 'n') {
|
|
Ops.push_back(DAG.getTargetBlockAddress(
|
|
BA->getBlockAddress(), BA->getValueType(0),
|
|
Offset + BA->getOffset(), BA->getTargetFlags()));
|
|
return;
|
|
} else {
|
|
const unsigned OpCode = Op.getOpcode();
|
|
if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
|
|
if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
|
|
Op = Op.getOperand(1);
|
|
// Subtraction is not commutative.
|
|
else if (OpCode == ISD::ADD &&
|
|
(C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
|
|
Op = Op.getOperand(0);
|
|
else
|
|
return;
|
|
Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
|
|
continue;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
|
|
StringRef Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.empty() || Constraint[0] != '{')
|
|
return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
|
|
assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
|
|
|
|
// Remove the braces from around the name.
|
|
StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *> R =
|
|
std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
|
|
|
|
// Figure out which register class contains this reg.
|
|
for (const TargetRegisterClass *RC : RI->regclasses()) {
|
|
// If none of the value types for this register class are valid, we
|
|
// can't use it. For example, 64-bit reg classes on 32-bit targets.
|
|
if (!isLegalRC(*RI, *RC))
|
|
continue;
|
|
|
|
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
|
|
I != E; ++I) {
|
|
if (RegName.equals_lower(RI->getRegAsmName(*I))) {
|
|
std::pair<unsigned, const TargetRegisterClass *> S =
|
|
std::make_pair(*I, RC);
|
|
|
|
// If this register class has the requested value type, return it,
|
|
// otherwise keep searching and return the first class found
|
|
// if no other is found which explicitly has the requested type.
|
|
if (RI->isTypeLegalForClass(*RC, VT))
|
|
return S;
|
|
if (!R.second)
|
|
R = S;
|
|
}
|
|
}
|
|
}
|
|
|
|
return R;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constraint Selection.
|
|
|
|
/// Return true of this is an input operand that is a matching constraint like
|
|
/// "4".
|
|
bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
|
|
assert(!ConstraintCode.empty() && "No known constraint!");
|
|
return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
|
|
}
|
|
|
|
/// If this is an input matching constraint, this method returns the output
|
|
/// operand it matches.
|
|
unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
|
|
assert(!ConstraintCode.empty() && "No known constraint!");
|
|
return atoi(ConstraintCode.c_str());
|
|
}
|
|
|
|
/// Split up the constraint string from the inline assembly value into the
|
|
/// specific constraints and their prefixes, and also tie in the associated
|
|
/// operand values.
|
|
/// If this returns an empty vector, and if the constraint string itself
|
|
/// isn't empty, there was an error parsing.
|
|
TargetLowering::AsmOperandInfoVector
|
|
TargetLowering::ParseConstraints(const DataLayout &DL,
|
|
const TargetRegisterInfo *TRI,
|
|
const CallBase &Call) const {
|
|
/// Information about all of the constraints.
|
|
AsmOperandInfoVector ConstraintOperands;
|
|
const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
|
|
unsigned maCount = 0; // Largest number of multiple alternative constraints.
|
|
|
|
// Do a prepass over the constraints, canonicalizing them, and building up the
|
|
// ConstraintOperands list.
|
|
unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
|
|
unsigned ResNo = 0; // ResNo - The result number of the next output.
|
|
|
|
for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
|
|
ConstraintOperands.emplace_back(std::move(CI));
|
|
AsmOperandInfo &OpInfo = ConstraintOperands.back();
|
|
|
|
// Update multiple alternative constraint count.
|
|
if (OpInfo.multipleAlternatives.size() > maCount)
|
|
maCount = OpInfo.multipleAlternatives.size();
|
|
|
|
OpInfo.ConstraintVT = MVT::Other;
|
|
|
|
// Compute the value type for each operand.
|
|
switch (OpInfo.Type) {
|
|
case InlineAsm::isOutput:
|
|
// Indirect outputs just consume an argument.
|
|
if (OpInfo.isIndirect) {
|
|
OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
|
|
break;
|
|
}
|
|
|
|
// The return value of the call is this value. As such, there is no
|
|
// corresponding argument.
|
|
assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
|
|
if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
|
|
OpInfo.ConstraintVT =
|
|
getSimpleValueType(DL, STy->getElementType(ResNo));
|
|
} else {
|
|
assert(ResNo == 0 && "Asm only has one result!");
|
|
OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
|
|
}
|
|
++ResNo;
|
|
break;
|
|
case InlineAsm::isInput:
|
|
OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
|
|
break;
|
|
case InlineAsm::isClobber:
|
|
// Nothing to do.
|
|
break;
|
|
}
|
|
|
|
if (OpInfo.CallOperandVal) {
|
|
llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
|
|
if (OpInfo.isIndirect) {
|
|
llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
|
|
if (!PtrTy)
|
|
report_fatal_error("Indirect operand for inline asm not a pointer!");
|
|
OpTy = PtrTy->getElementType();
|
|
}
|
|
|
|
// Look for vector wrapped in a struct. e.g. { <16 x i8> }.
|
|
if (StructType *STy = dyn_cast<StructType>(OpTy))
|
|
if (STy->getNumElements() == 1)
|
|
OpTy = STy->getElementType(0);
|
|
|
|
// If OpTy is not a single value, it may be a struct/union that we
|
|
// can tile with integers.
|
|
if (!OpTy->isSingleValueType() && OpTy->isSized()) {
|
|
unsigned BitSize = DL.getTypeSizeInBits(OpTy);
|
|
switch (BitSize) {
|
|
default: break;
|
|
case 1:
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
case 128:
|
|
OpInfo.ConstraintVT =
|
|
MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
|
|
break;
|
|
}
|
|
} else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
|
|
unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
|
|
OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
|
|
} else {
|
|
OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we have multiple alternative constraints, select the best alternative.
|
|
if (!ConstraintOperands.empty()) {
|
|
if (maCount) {
|
|
unsigned bestMAIndex = 0;
|
|
int bestWeight = -1;
|
|
// weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
|
|
int weight = -1;
|
|
unsigned maIndex;
|
|
// Compute the sums of the weights for each alternative, keeping track
|
|
// of the best (highest weight) one so far.
|
|
for (maIndex = 0; maIndex < maCount; ++maIndex) {
|
|
int weightSum = 0;
|
|
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
|
|
cIndex != eIndex; ++cIndex) {
|
|
AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
|
|
if (OpInfo.Type == InlineAsm::isClobber)
|
|
continue;
|
|
|
|
// If this is an output operand with a matching input operand,
|
|
// look up the matching input. If their types mismatch, e.g. one
|
|
// is an integer, the other is floating point, or their sizes are
|
|
// different, flag it as an maCantMatch.
|
|
if (OpInfo.hasMatchingInput()) {
|
|
AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
|
|
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
|
|
if ((OpInfo.ConstraintVT.isInteger() !=
|
|
Input.ConstraintVT.isInteger()) ||
|
|
(OpInfo.ConstraintVT.getSizeInBits() !=
|
|
Input.ConstraintVT.getSizeInBits())) {
|
|
weightSum = -1; // Can't match.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
|
|
if (weight == -1) {
|
|
weightSum = -1;
|
|
break;
|
|
}
|
|
weightSum += weight;
|
|
}
|
|
// Update best.
|
|
if (weightSum > bestWeight) {
|
|
bestWeight = weightSum;
|
|
bestMAIndex = maIndex;
|
|
}
|
|
}
|
|
|
|
// Now select chosen alternative in each constraint.
|
|
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
|
|
cIndex != eIndex; ++cIndex) {
|
|
AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
|
|
if (cInfo.Type == InlineAsm::isClobber)
|
|
continue;
|
|
cInfo.selectAlternative(bestMAIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check and hook up tied operands, choose constraint code to use.
|
|
for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
|
|
cIndex != eIndex; ++cIndex) {
|
|
AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
|
|
|
|
// If this is an output operand with a matching input operand, look up the
|
|
// matching input. If their types mismatch, e.g. one is an integer, the
|
|
// other is floating point, or their sizes are different, flag it as an
|
|
// error.
|
|
if (OpInfo.hasMatchingInput()) {
|
|
AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
|
|
|
|
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
|
|
std::pair<unsigned, const TargetRegisterClass *> MatchRC =
|
|
getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
|
|
OpInfo.ConstraintVT);
|
|
std::pair<unsigned, const TargetRegisterClass *> InputRC =
|
|
getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
|
|
Input.ConstraintVT);
|
|
if ((OpInfo.ConstraintVT.isInteger() !=
|
|
Input.ConstraintVT.isInteger()) ||
|
|
(MatchRC.second != InputRC.second)) {
|
|
report_fatal_error("Unsupported asm: input constraint"
|
|
" with a matching output constraint of"
|
|
" incompatible type!");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ConstraintOperands;
|
|
}
|
|
|
|
/// Return an integer indicating how general CT is.
|
|
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
|
|
switch (CT) {
|
|
case TargetLowering::C_Immediate:
|
|
case TargetLowering::C_Other:
|
|
case TargetLowering::C_Unknown:
|
|
return 0;
|
|
case TargetLowering::C_Register:
|
|
return 1;
|
|
case TargetLowering::C_RegisterClass:
|
|
return 2;
|
|
case TargetLowering::C_Memory:
|
|
return 3;
|
|
}
|
|
llvm_unreachable("Invalid constraint type");
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
TargetLowering::getMultipleConstraintMatchWeight(
|
|
AsmOperandInfo &info, int maIndex) const {
|
|
InlineAsm::ConstraintCodeVector *rCodes;
|
|
if (maIndex >= (int)info.multipleAlternatives.size())
|
|
rCodes = &info.Codes;
|
|
else
|
|
rCodes = &info.multipleAlternatives[maIndex].Codes;
|
|
ConstraintWeight BestWeight = CW_Invalid;
|
|
|
|
// Loop over the options, keeping track of the most general one.
|
|
for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
|
|
ConstraintWeight weight =
|
|
getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
|
|
if (weight > BestWeight)
|
|
BestWeight = weight;
|
|
}
|
|
|
|
return BestWeight;
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
TargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
case 'i': // immediate integer.
|
|
case 'n': // immediate integer with a known value.
|
|
if (isa<ConstantInt>(CallOperandVal))
|
|
weight = CW_Constant;
|
|
break;
|
|
case 's': // non-explicit intregal immediate.
|
|
if (isa<GlobalValue>(CallOperandVal))
|
|
weight = CW_Constant;
|
|
break;
|
|
case 'E': // immediate float if host format.
|
|
case 'F': // immediate float.
|
|
if (isa<ConstantFP>(CallOperandVal))
|
|
weight = CW_Constant;
|
|
break;
|
|
case '<': // memory operand with autodecrement.
|
|
case '>': // memory operand with autoincrement.
|
|
case 'm': // memory operand.
|
|
case 'o': // offsettable memory operand
|
|
case 'V': // non-offsettable memory operand
|
|
weight = CW_Memory;
|
|
break;
|
|
case 'r': // general register.
|
|
case 'g': // general register, memory operand or immediate integer.
|
|
// note: Clang converts "g" to "imr".
|
|
if (CallOperandVal->getType()->isIntegerTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'X': // any operand.
|
|
default:
|
|
weight = CW_Default;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
/// If there are multiple different constraints that we could pick for this
|
|
/// operand (e.g. "imr") try to pick the 'best' one.
|
|
/// This is somewhat tricky: constraints fall into four classes:
|
|
/// Other -> immediates and magic values
|
|
/// Register -> one specific register
|
|
/// RegisterClass -> a group of regs
|
|
/// Memory -> memory
|
|
/// Ideally, we would pick the most specific constraint possible: if we have
|
|
/// something that fits into a register, we would pick it. The problem here
|
|
/// is that if we have something that could either be in a register or in
|
|
/// memory that use of the register could cause selection of *other*
|
|
/// operands to fail: they might only succeed if we pick memory. Because of
|
|
/// this the heuristic we use is:
|
|
///
|
|
/// 1) If there is an 'other' constraint, and if the operand is valid for
|
|
/// that constraint, use it. This makes us take advantage of 'i'
|
|
/// constraints when available.
|
|
/// 2) Otherwise, pick the most general constraint present. This prefers
|
|
/// 'm' over 'r', for example.
|
|
///
|
|
static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
|
|
const TargetLowering &TLI,
|
|
SDValue Op, SelectionDAG *DAG) {
|
|
assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
|
|
unsigned BestIdx = 0;
|
|
TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
|
|
int BestGenerality = -1;
|
|
|
|
// Loop over the options, keeping track of the most general one.
|
|
for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
|
|
TargetLowering::ConstraintType CType =
|
|
TLI.getConstraintType(OpInfo.Codes[i]);
|
|
|
|
// Indirect 'other' or 'immediate' constraints are not allowed.
|
|
if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
|
|
CType == TargetLowering::C_Register ||
|
|
CType == TargetLowering::C_RegisterClass))
|
|
continue;
|
|
|
|
// If this is an 'other' or 'immediate' constraint, see if the operand is
|
|
// valid for it. For example, on X86 we might have an 'rI' constraint. If
|
|
// the operand is an integer in the range [0..31] we want to use I (saving a
|
|
// load of a register), otherwise we must use 'r'.
|
|
if ((CType == TargetLowering::C_Other ||
|
|
CType == TargetLowering::C_Immediate) && Op.getNode()) {
|
|
assert(OpInfo.Codes[i].size() == 1 &&
|
|
"Unhandled multi-letter 'other' constraint");
|
|
std::vector<SDValue> ResultOps;
|
|
TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
|
|
ResultOps, *DAG);
|
|
if (!ResultOps.empty()) {
|
|
BestType = CType;
|
|
BestIdx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Things with matching constraints can only be registers, per gcc
|
|
// documentation. This mainly affects "g" constraints.
|
|
if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
|
|
continue;
|
|
|
|
// This constraint letter is more general than the previous one, use it.
|
|
int Generality = getConstraintGenerality(CType);
|
|
if (Generality > BestGenerality) {
|
|
BestType = CType;
|
|
BestIdx = i;
|
|
BestGenerality = Generality;
|
|
}
|
|
}
|
|
|
|
OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
|
|
OpInfo.ConstraintType = BestType;
|
|
}
|
|
|
|
/// Determines the constraint code and constraint type to use for the specific
|
|
/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
|
|
void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
|
|
SDValue Op,
|
|
SelectionDAG *DAG) const {
|
|
assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
|
|
|
|
// Single-letter constraints ('r') are very common.
|
|
if (OpInfo.Codes.size() == 1) {
|
|
OpInfo.ConstraintCode = OpInfo.Codes[0];
|
|
OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
|
|
} else {
|
|
ChooseConstraint(OpInfo, *this, Op, DAG);
|
|
}
|
|
|
|
// 'X' matches anything.
|
|
if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
|
|
// Labels and constants are handled elsewhere ('X' is the only thing
|
|
// that matches labels). For Functions, the type here is the type of
|
|
// the result, which is not what we want to look at; leave them alone.
|
|
Value *v = OpInfo.CallOperandVal;
|
|
if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
|
|
OpInfo.CallOperandVal = v;
|
|
return;
|
|
}
|
|
|
|
if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
|
|
return;
|
|
|
|
// Otherwise, try to resolve it to something we know about by looking at
|
|
// the actual operand type.
|
|
if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
|
|
OpInfo.ConstraintCode = Repl;
|
|
OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given an exact SDIV by a constant, create a multiplication
|
|
/// with the multiplicative inverse of the constant.
|
|
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
|
|
const SDLoc &dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDNode *> &Created) {
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT SVT = VT.getScalarType();
|
|
EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
|
|
EVT ShSVT = ShVT.getScalarType();
|
|
|
|
bool UseSRA = false;
|
|
SmallVector<SDValue, 16> Shifts, Factors;
|
|
|
|
auto BuildSDIVPattern = [&](ConstantSDNode *C) {
|
|
if (C->isNullValue())
|
|
return false;
|
|
APInt Divisor = C->getAPIntValue();
|
|
unsigned Shift = Divisor.countTrailingZeros();
|
|
if (Shift) {
|
|
Divisor.ashrInPlace(Shift);
|
|
UseSRA = true;
|
|
}
|
|
// Calculate the multiplicative inverse, using Newton's method.
|
|
APInt t;
|
|
APInt Factor = Divisor;
|
|
while ((t = Divisor * Factor) != 1)
|
|
Factor *= APInt(Divisor.getBitWidth(), 2) - t;
|
|
Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
|
|
Factors.push_back(DAG.getConstant(Factor, dl, SVT));
|
|
return true;
|
|
};
|
|
|
|
// Collect all magic values from the build vector.
|
|
if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
|
|
return SDValue();
|
|
|
|
SDValue Shift, Factor;
|
|
if (VT.isVector()) {
|
|
Shift = DAG.getBuildVector(ShVT, dl, Shifts);
|
|
Factor = DAG.getBuildVector(VT, dl, Factors);
|
|
} else {
|
|
Shift = Shifts[0];
|
|
Factor = Factors[0];
|
|
}
|
|
|
|
SDValue Res = Op0;
|
|
|
|
// Shift the value upfront if it is even, so the LSB is one.
|
|
if (UseSRA) {
|
|
// TODO: For UDIV use SRL instead of SRA.
|
|
SDNodeFlags Flags;
|
|
Flags.setExact(true);
|
|
Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
|
|
Created.push_back(Res.getNode());
|
|
}
|
|
|
|
return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
|
|
}
|
|
|
|
SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
|
|
SelectionDAG &DAG,
|
|
SmallVectorImpl<SDNode *> &Created) const {
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLI.isIntDivCheap(N->getValueType(0), Attr))
|
|
return SDValue(N, 0); // Lower SDIV as SDIV
|
|
return SDValue();
|
|
}
|
|
|
|
/// Given an ISD::SDIV node expressing a divide by constant,
|
|
/// return a DAG expression to select that will generate the same value by
|
|
/// multiplying by a magic number.
|
|
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
|
|
SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
|
|
bool IsAfterLegalization,
|
|
SmallVectorImpl<SDNode *> &Created) const {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
EVT SVT = VT.getScalarType();
|
|
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
EVT ShSVT = ShVT.getScalarType();
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
|
|
// Check to see if we can do this.
|
|
// FIXME: We should be more aggressive here.
|
|
if (!isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// If the sdiv has an 'exact' bit we can use a simpler lowering.
|
|
if (N->getFlags().hasExact())
|
|
return BuildExactSDIV(*this, N, dl, DAG, Created);
|
|
|
|
SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
|
|
|
|
auto BuildSDIVPattern = [&](ConstantSDNode *C) {
|
|
if (C->isNullValue())
|
|
return false;
|
|
|
|
const APInt &Divisor = C->getAPIntValue();
|
|
APInt::ms magics = Divisor.magic();
|
|
int NumeratorFactor = 0;
|
|
int ShiftMask = -1;
|
|
|
|
if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
|
|
// If d is +1/-1, we just multiply the numerator by +1/-1.
|
|
NumeratorFactor = Divisor.getSExtValue();
|
|
magics.m = 0;
|
|
magics.s = 0;
|
|
ShiftMask = 0;
|
|
} else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
|
|
// If d > 0 and m < 0, add the numerator.
|
|
NumeratorFactor = 1;
|
|
} else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
|
|
// If d < 0 and m > 0, subtract the numerator.
|
|
NumeratorFactor = -1;
|
|
}
|
|
|
|
MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
|
|
Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
|
|
Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
|
|
ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
|
|
return true;
|
|
};
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// Collect the shifts / magic values from each element.
|
|
if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
|
|
return SDValue();
|
|
|
|
SDValue MagicFactor, Factor, Shift, ShiftMask;
|
|
if (VT.isVector()) {
|
|
MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
|
|
Factor = DAG.getBuildVector(VT, dl, Factors);
|
|
Shift = DAG.getBuildVector(ShVT, dl, Shifts);
|
|
ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
|
|
} else {
|
|
MagicFactor = MagicFactors[0];
|
|
Factor = Factors[0];
|
|
Shift = Shifts[0];
|
|
ShiftMask = ShiftMasks[0];
|
|
}
|
|
|
|
// Multiply the numerator (operand 0) by the magic value.
|
|
// FIXME: We should support doing a MUL in a wider type.
|
|
SDValue Q;
|
|
if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
|
|
: isOperationLegalOrCustom(ISD::MULHS, VT))
|
|
Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
|
|
else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
|
|
: isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
|
|
SDValue LoHi =
|
|
DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
|
|
Q = SDValue(LoHi.getNode(), 1);
|
|
} else
|
|
return SDValue(); // No mulhs or equivalent.
|
|
Created.push_back(Q.getNode());
|
|
|
|
// (Optionally) Add/subtract the numerator using Factor.
|
|
Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
|
|
Created.push_back(Factor.getNode());
|
|
Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
|
|
Created.push_back(Q.getNode());
|
|
|
|
// Shift right algebraic by shift value.
|
|
Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
|
|
Created.push_back(Q.getNode());
|
|
|
|
// Extract the sign bit, mask it and add it to the quotient.
|
|
SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
|
|
SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
|
|
Created.push_back(T.getNode());
|
|
T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
|
|
Created.push_back(T.getNode());
|
|
return DAG.getNode(ISD::ADD, dl, VT, Q, T);
|
|
}
|
|
|
|
/// Given an ISD::UDIV node expressing a divide by constant,
|
|
/// return a DAG expression to select that will generate the same value by
|
|
/// multiplying by a magic number.
|
|
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
|
|
SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
|
|
bool IsAfterLegalization,
|
|
SmallVectorImpl<SDNode *> &Created) const {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
EVT SVT = VT.getScalarType();
|
|
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
EVT ShSVT = ShVT.getScalarType();
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
|
|
// Check to see if we can do this.
|
|
// FIXME: We should be more aggressive here.
|
|
if (!isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
bool UseNPQ = false;
|
|
SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
|
|
|
|
auto BuildUDIVPattern = [&](ConstantSDNode *C) {
|
|
if (C->isNullValue())
|
|
return false;
|
|
// FIXME: We should use a narrower constant when the upper
|
|
// bits are known to be zero.
|
|
APInt Divisor = C->getAPIntValue();
|
|
APInt::mu magics = Divisor.magicu();
|
|
unsigned PreShift = 0, PostShift = 0;
|
|
|
|
// If the divisor is even, we can avoid using the expensive fixup by
|
|
// shifting the divided value upfront.
|
|
if (magics.a != 0 && !Divisor[0]) {
|
|
PreShift = Divisor.countTrailingZeros();
|
|
// Get magic number for the shifted divisor.
|
|
magics = Divisor.lshr(PreShift).magicu(PreShift);
|
|
assert(magics.a == 0 && "Should use cheap fixup now");
|
|
}
|
|
|
|
APInt Magic = magics.m;
|
|
|
|
unsigned SelNPQ;
|
|
if (magics.a == 0 || Divisor.isOneValue()) {
|
|
assert(magics.s < Divisor.getBitWidth() &&
|
|
"We shouldn't generate an undefined shift!");
|
|
PostShift = magics.s;
|
|
SelNPQ = false;
|
|
} else {
|
|
PostShift = magics.s - 1;
|
|
SelNPQ = true;
|
|
}
|
|
|
|
PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
|
|
MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
|
|
NPQFactors.push_back(
|
|
DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
|
|
: APInt::getNullValue(EltBits),
|
|
dl, SVT));
|
|
PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
|
|
UseNPQ |= SelNPQ;
|
|
return true;
|
|
};
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// Collect the shifts/magic values from each element.
|
|
if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
|
|
return SDValue();
|
|
|
|
SDValue PreShift, PostShift, MagicFactor, NPQFactor;
|
|
if (VT.isVector()) {
|
|
PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
|
|
MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
|
|
NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
|
|
PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
|
|
} else {
|
|
PreShift = PreShifts[0];
|
|
MagicFactor = MagicFactors[0];
|
|
PostShift = PostShifts[0];
|
|
}
|
|
|
|
SDValue Q = N0;
|
|
Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
|
|
Created.push_back(Q.getNode());
|
|
|
|
// FIXME: We should support doing a MUL in a wider type.
|
|
auto GetMULHU = [&](SDValue X, SDValue Y) {
|
|
if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
|
|
: isOperationLegalOrCustom(ISD::MULHU, VT))
|
|
return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
|
|
if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
|
|
: isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
|
|
SDValue LoHi =
|
|
DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
|
|
return SDValue(LoHi.getNode(), 1);
|
|
}
|
|
return SDValue(); // No mulhu or equivalent
|
|
};
|
|
|
|
// Multiply the numerator (operand 0) by the magic value.
|
|
Q = GetMULHU(Q, MagicFactor);
|
|
if (!Q)
|
|
return SDValue();
|
|
|
|
Created.push_back(Q.getNode());
|
|
|
|
if (UseNPQ) {
|
|
SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
|
|
Created.push_back(NPQ.getNode());
|
|
|
|
// For vectors we might have a mix of non-NPQ/NPQ paths, so use
|
|
// MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
|
|
if (VT.isVector())
|
|
NPQ = GetMULHU(NPQ, NPQFactor);
|
|
else
|
|
NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
|
|
|
|
Created.push_back(NPQ.getNode());
|
|
|
|
Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
|
|
Created.push_back(Q.getNode());
|
|
}
|
|
|
|
Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
|
|
Created.push_back(Q.getNode());
|
|
|
|
SDValue One = DAG.getConstant(1, dl, VT);
|
|
SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
|
|
return DAG.getSelect(dl, VT, IsOne, N0, Q);
|
|
}
|
|
|
|
/// If all values in Values that *don't* match the predicate are same 'splat'
|
|
/// value, then replace all values with that splat value.
|
|
/// Else, if AlternativeReplacement was provided, then replace all values that
|
|
/// do match predicate with AlternativeReplacement value.
|
|
static void
|
|
turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
|
|
std::function<bool(SDValue)> Predicate,
|
|
SDValue AlternativeReplacement = SDValue()) {
|
|
SDValue Replacement;
|
|
// Is there a value for which the Predicate does *NOT* match? What is it?
|
|
auto SplatValue = llvm::find_if_not(Values, Predicate);
|
|
if (SplatValue != Values.end()) {
|
|
// Does Values consist only of SplatValue's and values matching Predicate?
|
|
if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
|
|
return Value == *SplatValue || Predicate(Value);
|
|
})) // Then we shall replace values matching predicate with SplatValue.
|
|
Replacement = *SplatValue;
|
|
}
|
|
if (!Replacement) {
|
|
// Oops, we did not find the "baseline" splat value.
|
|
if (!AlternativeReplacement)
|
|
return; // Nothing to do.
|
|
// Let's replace with provided value then.
|
|
Replacement = AlternativeReplacement;
|
|
}
|
|
std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
|
|
}
|
|
|
|
/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
|
|
/// where the divisor is constant and the comparison target is zero,
|
|
/// return a DAG expression that will generate the same comparison result
|
|
/// using only multiplications, additions and shifts/rotations.
|
|
/// Ref: "Hacker's Delight" 10-17.
|
|
SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
|
|
SDValue CompTargetNode,
|
|
ISD::CondCode Cond,
|
|
DAGCombinerInfo &DCI,
|
|
const SDLoc &DL) const {
|
|
SmallVector<SDNode *, 5> Built;
|
|
if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
|
|
DCI, DL, Built)) {
|
|
for (SDNode *N : Built)
|
|
DCI.AddToWorklist(N);
|
|
return Folded;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
|
|
SDValue CompTargetNode, ISD::CondCode Cond,
|
|
DAGCombinerInfo &DCI, const SDLoc &DL,
|
|
SmallVectorImpl<SDNode *> &Created) const {
|
|
// fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
|
|
// - D must be constant, with D = D0 * 2^K where D0 is odd
|
|
// - P is the multiplicative inverse of D0 modulo 2^W
|
|
// - Q = floor(((2^W) - 1) / D)
|
|
// where W is the width of the common type of N and D.
|
|
assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
|
|
"Only applicable for (in)equality comparisons.");
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
EVT VT = REMNode.getValueType();
|
|
EVT SVT = VT.getScalarType();
|
|
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
EVT ShSVT = ShVT.getScalarType();
|
|
|
|
// If MUL is unavailable, we cannot proceed in any case.
|
|
if (!isOperationLegalOrCustom(ISD::MUL, VT))
|
|
return SDValue();
|
|
|
|
bool ComparingWithAllZeros = true;
|
|
bool AllComparisonsWithNonZerosAreTautological = true;
|
|
bool HadTautologicalLanes = false;
|
|
bool AllLanesAreTautological = true;
|
|
bool HadEvenDivisor = false;
|
|
bool AllDivisorsArePowerOfTwo = true;
|
|
bool HadTautologicalInvertedLanes = false;
|
|
SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
|
|
|
|
auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
|
|
// Division by 0 is UB. Leave it to be constant-folded elsewhere.
|
|
if (CDiv->isNullValue())
|
|
return false;
|
|
|
|
const APInt &D = CDiv->getAPIntValue();
|
|
const APInt &Cmp = CCmp->getAPIntValue();
|
|
|
|
ComparingWithAllZeros &= Cmp.isNullValue();
|
|
|
|
// x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
|
|
// if C2 is not less than C1, the comparison is always false.
|
|
// But we will only be able to produce the comparison that will give the
|
|
// opposive tautological answer. So this lane would need to be fixed up.
|
|
bool TautologicalInvertedLane = D.ule(Cmp);
|
|
HadTautologicalInvertedLanes |= TautologicalInvertedLane;
|
|
|
|
// If all lanes are tautological (either all divisors are ones, or divisor
|
|
// is not greater than the constant we are comparing with),
|
|
// we will prefer to avoid the fold.
|
|
bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
|
|
HadTautologicalLanes |= TautologicalLane;
|
|
AllLanesAreTautological &= TautologicalLane;
|
|
|
|
// If we are comparing with non-zero, we need'll need to subtract said
|
|
// comparison value from the LHS. But there is no point in doing that if
|
|
// every lane where we are comparing with non-zero is tautological..
|
|
if (!Cmp.isNullValue())
|
|
AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
|
|
|
|
// Decompose D into D0 * 2^K
|
|
unsigned K = D.countTrailingZeros();
|
|
assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
|
|
APInt D0 = D.lshr(K);
|
|
|
|
// D is even if it has trailing zeros.
|
|
HadEvenDivisor |= (K != 0);
|
|
// D is a power-of-two if D0 is one.
|
|
// If all divisors are power-of-two, we will prefer to avoid the fold.
|
|
AllDivisorsArePowerOfTwo &= D0.isOneValue();
|
|
|
|
// P = inv(D0, 2^W)
|
|
// 2^W requires W + 1 bits, so we have to extend and then truncate.
|
|
unsigned W = D.getBitWidth();
|
|
APInt P = D0.zext(W + 1)
|
|
.multiplicativeInverse(APInt::getSignedMinValue(W + 1))
|
|
.trunc(W);
|
|
assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
|
|
assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
|
|
|
|
// Q = floor((2^W - 1) u/ D)
|
|
// R = ((2^W - 1) u% D)
|
|
APInt Q, R;
|
|
APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
|
|
|
|
// If we are comparing with zero, then that comparison constant is okay,
|
|
// else it may need to be one less than that.
|
|
if (Cmp.ugt(R))
|
|
Q -= 1;
|
|
|
|
assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
|
|
"We are expecting that K is always less than all-ones for ShSVT");
|
|
|
|
// If the lane is tautological the result can be constant-folded.
|
|
if (TautologicalLane) {
|
|
// Set P and K amount to a bogus values so we can try to splat them.
|
|
P = 0;
|
|
K = -1;
|
|
// And ensure that comparison constant is tautological,
|
|
// it will always compare true/false.
|
|
Q = -1;
|
|
}
|
|
|
|
PAmts.push_back(DAG.getConstant(P, DL, SVT));
|
|
KAmts.push_back(
|
|
DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
|
|
QAmts.push_back(DAG.getConstant(Q, DL, SVT));
|
|
return true;
|
|
};
|
|
|
|
SDValue N = REMNode.getOperand(0);
|
|
SDValue D = REMNode.getOperand(1);
|
|
|
|
// Collect the values from each element.
|
|
if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
|
|
return SDValue();
|
|
|
|
// If all lanes are tautological, the result can be constant-folded.
|
|
if (AllLanesAreTautological)
|
|
return SDValue();
|
|
|
|
// If this is a urem by a powers-of-two, avoid the fold since it can be
|
|
// best implemented as a bit test.
|
|
if (AllDivisorsArePowerOfTwo)
|
|
return SDValue();
|
|
|
|
SDValue PVal, KVal, QVal;
|
|
if (VT.isVector()) {
|
|
if (HadTautologicalLanes) {
|
|
// Try to turn PAmts into a splat, since we don't care about the values
|
|
// that are currently '0'. If we can't, just keep '0'`s.
|
|
turnVectorIntoSplatVector(PAmts, isNullConstant);
|
|
// Try to turn KAmts into a splat, since we don't care about the values
|
|
// that are currently '-1'. If we can't, change them to '0'`s.
|
|
turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
|
|
DAG.getConstant(0, DL, ShSVT));
|
|
}
|
|
|
|
PVal = DAG.getBuildVector(VT, DL, PAmts);
|
|
KVal = DAG.getBuildVector(ShVT, DL, KAmts);
|
|
QVal = DAG.getBuildVector(VT, DL, QAmts);
|
|
} else {
|
|
PVal = PAmts[0];
|
|
KVal = KAmts[0];
|
|
QVal = QAmts[0];
|
|
}
|
|
|
|
if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
|
|
if (!isOperationLegalOrCustom(ISD::SUB, VT))
|
|
return SDValue(); // FIXME: Could/should use `ISD::ADD`?
|
|
assert(CompTargetNode.getValueType() == N.getValueType() &&
|
|
"Expecting that the types on LHS and RHS of comparisons match.");
|
|
N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
|
|
}
|
|
|
|
// (mul N, P)
|
|
SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
|
|
Created.push_back(Op0.getNode());
|
|
|
|
// Rotate right only if any divisor was even. We avoid rotates for all-odd
|
|
// divisors as a performance improvement, since rotating by 0 is a no-op.
|
|
if (HadEvenDivisor) {
|
|
// We need ROTR to do this.
|
|
if (!isOperationLegalOrCustom(ISD::ROTR, VT))
|
|
return SDValue();
|
|
SDNodeFlags Flags;
|
|
Flags.setExact(true);
|
|
// UREM: (rotr (mul N, P), K)
|
|
Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
|
|
Created.push_back(Op0.getNode());
|
|
}
|
|
|
|
// UREM: (setule/setugt (rotr (mul N, P), K), Q)
|
|
SDValue NewCC =
|
|
DAG.getSetCC(DL, SETCCVT, Op0, QVal,
|
|
((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
|
|
if (!HadTautologicalInvertedLanes)
|
|
return NewCC;
|
|
|
|
// If any lanes previously compared always-false, the NewCC will give
|
|
// always-true result for them, so we need to fixup those lanes.
|
|
// Or the other way around for inequality predicate.
|
|
assert(VT.isVector() && "Can/should only get here for vectors.");
|
|
Created.push_back(NewCC.getNode());
|
|
|
|
// x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
|
|
// if C2 is not less than C1, the comparison is always false.
|
|
// But we have produced the comparison that will give the
|
|
// opposive tautological answer. So these lanes would need to be fixed up.
|
|
SDValue TautologicalInvertedChannels =
|
|
DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
|
|
Created.push_back(TautologicalInvertedChannels.getNode());
|
|
|
|
if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
|
|
// If we have a vector select, let's replace the comparison results in the
|
|
// affected lanes with the correct tautological result.
|
|
SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
|
|
DL, SETCCVT, SETCCVT);
|
|
return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
|
|
Replacement, NewCC);
|
|
}
|
|
|
|
// Else, we can just invert the comparison result in the appropriate lanes.
|
|
if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
|
|
return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
|
|
TautologicalInvertedChannels);
|
|
|
|
return SDValue(); // Don't know how to lower.
|
|
}
|
|
|
|
/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
|
|
/// where the divisor is constant and the comparison target is zero,
|
|
/// return a DAG expression that will generate the same comparison result
|
|
/// using only multiplications, additions and shifts/rotations.
|
|
/// Ref: "Hacker's Delight" 10-17.
|
|
SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
|
|
SDValue CompTargetNode,
|
|
ISD::CondCode Cond,
|
|
DAGCombinerInfo &DCI,
|
|
const SDLoc &DL) const {
|
|
SmallVector<SDNode *, 7> Built;
|
|
if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
|
|
DCI, DL, Built)) {
|
|
assert(Built.size() <= 7 && "Max size prediction failed.");
|
|
for (SDNode *N : Built)
|
|
DCI.AddToWorklist(N);
|
|
return Folded;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
|
|
SDValue CompTargetNode, ISD::CondCode Cond,
|
|
DAGCombinerInfo &DCI, const SDLoc &DL,
|
|
SmallVectorImpl<SDNode *> &Created) const {
|
|
// Fold:
|
|
// (seteq/ne (srem N, D), 0)
|
|
// To:
|
|
// (setule/ugt (rotr (add (mul N, P), A), K), Q)
|
|
//
|
|
// - D must be constant, with D = D0 * 2^K where D0 is odd
|
|
// - P is the multiplicative inverse of D0 modulo 2^W
|
|
// - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
|
|
// - Q = floor((2 * A) / (2^K))
|
|
// where W is the width of the common type of N and D.
|
|
assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
|
|
"Only applicable for (in)equality comparisons.");
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
EVT VT = REMNode.getValueType();
|
|
EVT SVT = VT.getScalarType();
|
|
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
EVT ShSVT = ShVT.getScalarType();
|
|
|
|
// If MUL is unavailable, we cannot proceed in any case.
|
|
if (!isOperationLegalOrCustom(ISD::MUL, VT))
|
|
return SDValue();
|
|
|
|
// TODO: Could support comparing with non-zero too.
|
|
ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
|
|
if (!CompTarget || !CompTarget->isNullValue())
|
|
return SDValue();
|
|
|
|
bool HadIntMinDivisor = false;
|
|
bool HadOneDivisor = false;
|
|
bool AllDivisorsAreOnes = true;
|
|
bool HadEvenDivisor = false;
|
|
bool NeedToApplyOffset = false;
|
|
bool AllDivisorsArePowerOfTwo = true;
|
|
SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
|
|
|
|
auto BuildSREMPattern = [&](ConstantSDNode *C) {
|
|
// Division by 0 is UB. Leave it to be constant-folded elsewhere.
|
|
if (C->isNullValue())
|
|
return false;
|
|
|
|
// FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
|
|
|
|
// WARNING: this fold is only valid for positive divisors!
|
|
APInt D = C->getAPIntValue();
|
|
if (D.isNegative())
|
|
D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
|
|
|
|
HadIntMinDivisor |= D.isMinSignedValue();
|
|
|
|
// If all divisors are ones, we will prefer to avoid the fold.
|
|
HadOneDivisor |= D.isOneValue();
|
|
AllDivisorsAreOnes &= D.isOneValue();
|
|
|
|
// Decompose D into D0 * 2^K
|
|
unsigned K = D.countTrailingZeros();
|
|
assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
|
|
APInt D0 = D.lshr(K);
|
|
|
|
if (!D.isMinSignedValue()) {
|
|
// D is even if it has trailing zeros; unless it's INT_MIN, in which case
|
|
// we don't care about this lane in this fold, we'll special-handle it.
|
|
HadEvenDivisor |= (K != 0);
|
|
}
|
|
|
|
// D is a power-of-two if D0 is one. This includes INT_MIN.
|
|
// If all divisors are power-of-two, we will prefer to avoid the fold.
|
|
AllDivisorsArePowerOfTwo &= D0.isOneValue();
|
|
|
|
// P = inv(D0, 2^W)
|
|
// 2^W requires W + 1 bits, so we have to extend and then truncate.
|
|
unsigned W = D.getBitWidth();
|
|
APInt P = D0.zext(W + 1)
|
|
.multiplicativeInverse(APInt::getSignedMinValue(W + 1))
|
|
.trunc(W);
|
|
assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
|
|
assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
|
|
|
|
// A = floor((2^(W - 1) - 1) / D0) & -2^K
|
|
APInt A = APInt::getSignedMaxValue(W).udiv(D0);
|
|
A.clearLowBits(K);
|
|
|
|
if (!D.isMinSignedValue()) {
|
|
// If divisor INT_MIN, then we don't care about this lane in this fold,
|
|
// we'll special-handle it.
|
|
NeedToApplyOffset |= A != 0;
|
|
}
|
|
|
|
// Q = floor((2 * A) / (2^K))
|
|
APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
|
|
|
|
assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
|
|
"We are expecting that A is always less than all-ones for SVT");
|
|
assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
|
|
"We are expecting that K is always less than all-ones for ShSVT");
|
|
|
|
// If the divisor is 1 the result can be constant-folded. Likewise, we
|
|
// don't care about INT_MIN lanes, those can be set to undef if appropriate.
|
|
if (D.isOneValue()) {
|
|
// Set P, A and K to a bogus values so we can try to splat them.
|
|
P = 0;
|
|
A = -1;
|
|
K = -1;
|
|
|
|
// x ?% 1 == 0 <--> true <--> x u<= -1
|
|
Q = -1;
|
|
}
|
|
|
|
PAmts.push_back(DAG.getConstant(P, DL, SVT));
|
|
AAmts.push_back(DAG.getConstant(A, DL, SVT));
|
|
KAmts.push_back(
|
|
DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
|
|
QAmts.push_back(DAG.getConstant(Q, DL, SVT));
|
|
return true;
|
|
};
|
|
|
|
SDValue N = REMNode.getOperand(0);
|
|
SDValue D = REMNode.getOperand(1);
|
|
|
|
// Collect the values from each element.
|
|
if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
|
|
return SDValue();
|
|
|
|
// If this is a srem by a one, avoid the fold since it can be constant-folded.
|
|
if (AllDivisorsAreOnes)
|
|
return SDValue();
|
|
|
|
// If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
|
|
// since it can be best implemented as a bit test.
|
|
if (AllDivisorsArePowerOfTwo)
|
|
return SDValue();
|
|
|
|
SDValue PVal, AVal, KVal, QVal;
|
|
if (VT.isVector()) {
|
|
if (HadOneDivisor) {
|
|
// Try to turn PAmts into a splat, since we don't care about the values
|
|
// that are currently '0'. If we can't, just keep '0'`s.
|
|
turnVectorIntoSplatVector(PAmts, isNullConstant);
|
|
// Try to turn AAmts into a splat, since we don't care about the
|
|
// values that are currently '-1'. If we can't, change them to '0'`s.
|
|
turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
|
|
DAG.getConstant(0, DL, SVT));
|
|
// Try to turn KAmts into a splat, since we don't care about the values
|
|
// that are currently '-1'. If we can't, change them to '0'`s.
|
|
turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
|
|
DAG.getConstant(0, DL, ShSVT));
|
|
}
|
|
|
|
PVal = DAG.getBuildVector(VT, DL, PAmts);
|
|
AVal = DAG.getBuildVector(VT, DL, AAmts);
|
|
KVal = DAG.getBuildVector(ShVT, DL, KAmts);
|
|
QVal = DAG.getBuildVector(VT, DL, QAmts);
|
|
} else {
|
|
PVal = PAmts[0];
|
|
AVal = AAmts[0];
|
|
KVal = KAmts[0];
|
|
QVal = QAmts[0];
|
|
}
|
|
|
|
// (mul N, P)
|
|
SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
|
|
Created.push_back(Op0.getNode());
|
|
|
|
if (NeedToApplyOffset) {
|
|
// We need ADD to do this.
|
|
if (!isOperationLegalOrCustom(ISD::ADD, VT))
|
|
return SDValue();
|
|
|
|
// (add (mul N, P), A)
|
|
Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
|
|
Created.push_back(Op0.getNode());
|
|
}
|
|
|
|
// Rotate right only if any divisor was even. We avoid rotates for all-odd
|
|
// divisors as a performance improvement, since rotating by 0 is a no-op.
|
|
if (HadEvenDivisor) {
|
|
// We need ROTR to do this.
|
|
if (!isOperationLegalOrCustom(ISD::ROTR, VT))
|
|
return SDValue();
|
|
SDNodeFlags Flags;
|
|
Flags.setExact(true);
|
|
// SREM: (rotr (add (mul N, P), A), K)
|
|
Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
|
|
Created.push_back(Op0.getNode());
|
|
}
|
|
|
|
// SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
|
|
SDValue Fold =
|
|
DAG.getSetCC(DL, SETCCVT, Op0, QVal,
|
|
((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
|
|
|
|
// If we didn't have lanes with INT_MIN divisor, then we're done.
|
|
if (!HadIntMinDivisor)
|
|
return Fold;
|
|
|
|
// That fold is only valid for positive divisors. Which effectively means,
|
|
// it is invalid for INT_MIN divisors. So if we have such a lane,
|
|
// we must fix-up results for said lanes.
|
|
assert(VT.isVector() && "Can/should only get here for vectors.");
|
|
|
|
if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
|
|
!isOperationLegalOrCustom(ISD::AND, VT) ||
|
|
!isOperationLegalOrCustom(Cond, VT) ||
|
|
!isOperationLegalOrCustom(ISD::VSELECT, VT))
|
|
return SDValue();
|
|
|
|
Created.push_back(Fold.getNode());
|
|
|
|
SDValue IntMin = DAG.getConstant(
|
|
APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
|
|
SDValue IntMax = DAG.getConstant(
|
|
APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
|
|
SDValue Zero =
|
|
DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
|
|
|
|
// Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
|
|
SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
|
|
Created.push_back(DivisorIsIntMin.getNode());
|
|
|
|
// (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
|
|
SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
|
|
Created.push_back(Masked.getNode());
|
|
SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
|
|
Created.push_back(MaskedIsZero.getNode());
|
|
|
|
// To produce final result we need to blend 2 vectors: 'SetCC' and
|
|
// 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
|
|
// from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
|
|
// constant-folded, select can get lowered to a shuffle with constant mask.
|
|
SDValue Blended =
|
|
DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
|
|
|
|
return Blended;
|
|
}
|
|
|
|
bool TargetLowering::
|
|
verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
|
|
if (!isa<ConstantSDNode>(Op.getOperand(0))) {
|
|
DAG.getContext()->emitError("argument to '__builtin_return_address' must "
|
|
"be a constant integer");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
|
|
bool LegalOps, bool OptForSize,
|
|
NegatibleCost &Cost,
|
|
unsigned Depth) const {
|
|
// fneg is removable even if it has multiple uses.
|
|
if (Op.getOpcode() == ISD::FNEG) {
|
|
Cost = NegatibleCost::Cheaper;
|
|
return Op.getOperand(0);
|
|
}
|
|
|
|
// Don't recurse exponentially.
|
|
if (Depth > SelectionDAG::MaxRecursionDepth)
|
|
return SDValue();
|
|
|
|
// Pre-increment recursion depth for use in recursive calls.
|
|
++Depth;
|
|
const SDNodeFlags Flags = Op->getFlags();
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
EVT VT = Op.getValueType();
|
|
unsigned Opcode = Op.getOpcode();
|
|
|
|
// Don't allow anything with multiple uses unless we know it is free.
|
|
if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
|
|
bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
|
|
isFPExtFree(VT, Op.getOperand(0).getValueType());
|
|
if (!IsFreeExtend)
|
|
return SDValue();
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
|
|
switch (Opcode) {
|
|
case ISD::ConstantFP: {
|
|
// Don't invert constant FP values after legalization unless the target says
|
|
// the negated constant is legal.
|
|
bool IsOpLegal =
|
|
isOperationLegal(ISD::ConstantFP, VT) ||
|
|
isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
|
|
OptForSize);
|
|
|
|
if (LegalOps && !IsOpLegal)
|
|
break;
|
|
|
|
APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
|
|
V.changeSign();
|
|
SDValue CFP = DAG.getConstantFP(V, DL, VT);
|
|
|
|
// If we already have the use of the negated floating constant, it is free
|
|
// to negate it even it has multiple uses.
|
|
if (!Op.hasOneUse() && CFP.use_empty())
|
|
break;
|
|
Cost = NegatibleCost::Neutral;
|
|
return CFP;
|
|
}
|
|
case ISD::BUILD_VECTOR: {
|
|
// Only permit BUILD_VECTOR of constants.
|
|
if (llvm::any_of(Op->op_values(), [&](SDValue N) {
|
|
return !N.isUndef() && !isa<ConstantFPSDNode>(N);
|
|
}))
|
|
break;
|
|
|
|
bool IsOpLegal =
|
|
(isOperationLegal(ISD::ConstantFP, VT) &&
|
|
isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
|
|
llvm::all_of(Op->op_values(), [&](SDValue N) {
|
|
return N.isUndef() ||
|
|
isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
|
|
OptForSize);
|
|
});
|
|
|
|
if (LegalOps && !IsOpLegal)
|
|
break;
|
|
|
|
SmallVector<SDValue, 4> Ops;
|
|
for (SDValue C : Op->op_values()) {
|
|
if (C.isUndef()) {
|
|
Ops.push_back(C);
|
|
continue;
|
|
}
|
|
APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
|
|
V.changeSign();
|
|
Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
|
|
}
|
|
Cost = NegatibleCost::Neutral;
|
|
return DAG.getBuildVector(VT, DL, Ops);
|
|
}
|
|
case ISD::FADD: {
|
|
if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
|
|
break;
|
|
|
|
// After operation legalization, it might not be legal to create new FSUBs.
|
|
if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
|
|
break;
|
|
SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
|
|
|
|
// fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
|
|
NegatibleCost CostX = NegatibleCost::Expensive;
|
|
SDValue NegX =
|
|
getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
|
|
// fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
|
|
NegatibleCost CostY = NegatibleCost::Expensive;
|
|
SDValue NegY =
|
|
getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
|
|
|
|
// Negate the X if its cost is less or equal than Y.
|
|
if (NegX && (CostX <= CostY)) {
|
|
Cost = CostX;
|
|
return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
|
|
}
|
|
|
|
// Negate the Y if it is not expensive.
|
|
if (NegY) {
|
|
Cost = CostY;
|
|
return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::FSUB: {
|
|
// We can't turn -(A-B) into B-A when we honor signed zeros.
|
|
if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
|
|
break;
|
|
|
|
SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
|
|
// fold (fneg (fsub 0, Y)) -> Y
|
|
if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
|
|
if (C->isZero()) {
|
|
Cost = NegatibleCost::Cheaper;
|
|
return Y;
|
|
}
|
|
|
|
// fold (fneg (fsub X, Y)) -> (fsub Y, X)
|
|
Cost = NegatibleCost::Neutral;
|
|
return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
|
|
}
|
|
case ISD::FMUL:
|
|
case ISD::FDIV: {
|
|
SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
|
|
|
|
// fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
|
|
NegatibleCost CostX = NegatibleCost::Expensive;
|
|
SDValue NegX =
|
|
getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
|
|
// fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
|
|
NegatibleCost CostY = NegatibleCost::Expensive;
|
|
SDValue NegY =
|
|
getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
|
|
|
|
// Negate the X if its cost is less or equal than Y.
|
|
if (NegX && (CostX <= CostY)) {
|
|
Cost = CostX;
|
|
return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
|
|
}
|
|
|
|
// Ignore X * 2.0 because that is expected to be canonicalized to X + X.
|
|
if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
|
|
if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
|
|
break;
|
|
|
|
// Negate the Y if it is not expensive.
|
|
if (NegY) {
|
|
Cost = CostY;
|
|
return DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
|
|
}
|
|
break;
|
|
}
|
|
case ISD::FMA:
|
|
case ISD::FMAD: {
|
|
if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
|
|
break;
|
|
|
|
SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
|
|
NegatibleCost CostZ = NegatibleCost::Expensive;
|
|
SDValue NegZ =
|
|
getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
|
|
// Give up if fail to negate the Z.
|
|
if (!NegZ)
|
|
break;
|
|
|
|
// fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
|
|
NegatibleCost CostX = NegatibleCost::Expensive;
|
|
SDValue NegX =
|
|
getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
|
|
// fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
|
|
NegatibleCost CostY = NegatibleCost::Expensive;
|
|
SDValue NegY =
|
|
getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
|
|
|
|
// Negate the X if its cost is less or equal than Y.
|
|
if (NegX && (CostX <= CostY)) {
|
|
Cost = std::min(CostX, CostZ);
|
|
return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
|
|
}
|
|
|
|
// Negate the Y if it is not expensive.
|
|
if (NegY) {
|
|
Cost = std::min(CostY, CostZ);
|
|
return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::FP_EXTEND:
|
|
case ISD::FSIN:
|
|
if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
|
|
OptForSize, Cost, Depth))
|
|
return DAG.getNode(Opcode, DL, VT, NegV);
|
|
break;
|
|
case ISD::FP_ROUND:
|
|
if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
|
|
OptForSize, Cost, Depth))
|
|
return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
|
|
break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Legalization Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
|
|
SDValue LHS, SDValue RHS,
|
|
SmallVectorImpl<SDValue> &Result,
|
|
EVT HiLoVT, SelectionDAG &DAG,
|
|
MulExpansionKind Kind, SDValue LL,
|
|
SDValue LH, SDValue RL, SDValue RH) const {
|
|
assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
|
|
Opcode == ISD::SMUL_LOHI);
|
|
|
|
bool HasMULHS = (Kind == MulExpansionKind::Always) ||
|
|
isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
|
|
bool HasMULHU = (Kind == MulExpansionKind::Always) ||
|
|
isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
|
|
bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
|
|
isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
|
|
bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
|
|
isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
|
|
|
|
if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
|
|
return false;
|
|
|
|
unsigned OuterBitSize = VT.getScalarSizeInBits();
|
|
unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
|
|
unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
|
|
unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
|
|
|
|
// LL, LH, RL, and RH must be either all NULL or all set to a value.
|
|
assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
|
|
(!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
|
|
|
|
SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
|
|
auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
|
|
bool Signed) -> bool {
|
|
if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
|
|
Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
|
|
Hi = SDValue(Lo.getNode(), 1);
|
|
return true;
|
|
}
|
|
if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
|
|
Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
|
|
Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
SDValue Lo, Hi;
|
|
|
|
if (!LL.getNode() && !RL.getNode() &&
|
|
isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
|
|
LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
|
|
RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
|
|
}
|
|
|
|
if (!LL.getNode())
|
|
return false;
|
|
|
|
APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
|
|
if (DAG.MaskedValueIsZero(LHS, HighMask) &&
|
|
DAG.MaskedValueIsZero(RHS, HighMask)) {
|
|
// The inputs are both zero-extended.
|
|
if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
|
|
Result.push_back(Lo);
|
|
Result.push_back(Hi);
|
|
if (Opcode != ISD::MUL) {
|
|
SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
|
|
Result.push_back(Zero);
|
|
Result.push_back(Zero);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
|
|
RHSSB > InnerBitSize) {
|
|
// The input values are both sign-extended.
|
|
// TODO non-MUL case?
|
|
if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
|
|
Result.push_back(Lo);
|
|
Result.push_back(Hi);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
unsigned ShiftAmount = OuterBitSize - InnerBitSize;
|
|
EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
|
|
// FIXME getShiftAmountTy does not always return a sensible result when VT
|
|
// is an illegal type, and so the type may be too small to fit the shift
|
|
// amount. Override it with i32. The shift will have to be legalized.
|
|
ShiftAmountTy = MVT::i32;
|
|
}
|
|
SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
|
|
|
|
if (!LH.getNode() && !RH.getNode() &&
|
|
isOperationLegalOrCustom(ISD::SRL, VT) &&
|
|
isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
|
|
LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
|
|
LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
|
|
RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
|
|
RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
|
|
}
|
|
|
|
if (!LH.getNode())
|
|
return false;
|
|
|
|
if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
|
|
return false;
|
|
|
|
Result.push_back(Lo);
|
|
|
|
if (Opcode == ISD::MUL) {
|
|
RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
|
|
LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
|
|
Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
|
|
Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
|
|
Result.push_back(Hi);
|
|
return true;
|
|
}
|
|
|
|
// Compute the full width result.
|
|
auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
|
|
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
|
|
Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
|
|
Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
|
|
return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
|
|
};
|
|
|
|
SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
|
|
if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
|
|
return false;
|
|
|
|
// This is effectively the add part of a multiply-add of half-sized operands,
|
|
// so it cannot overflow.
|
|
Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
|
|
|
|
if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
|
|
return false;
|
|
|
|
SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
|
|
EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
|
|
bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
|
|
isOperationLegalOrCustom(ISD::ADDE, VT));
|
|
if (UseGlue)
|
|
Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
|
|
Merge(Lo, Hi));
|
|
else
|
|
Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
|
|
Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
|
|
|
|
SDValue Carry = Next.getValue(1);
|
|
Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
|
|
Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
|
|
|
|
if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
|
|
return false;
|
|
|
|
if (UseGlue)
|
|
Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
|
|
Carry);
|
|
else
|
|
Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
|
|
Zero, Carry);
|
|
|
|
Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
|
|
|
|
if (Opcode == ISD::SMUL_LOHI) {
|
|
SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
|
|
Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
|
|
|
|
NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
|
|
Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
|
|
}
|
|
|
|
Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
|
|
Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
|
|
Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
|
|
return true;
|
|
}
|
|
|
|
bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
|
|
SelectionDAG &DAG, MulExpansionKind Kind,
|
|
SDValue LL, SDValue LH, SDValue RL,
|
|
SDValue RH) const {
|
|
SmallVector<SDValue, 2> Result;
|
|
bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
|
|
N->getOperand(0), N->getOperand(1), Result, HiLoVT,
|
|
DAG, Kind, LL, LH, RL, RH);
|
|
if (Ok) {
|
|
assert(Result.size() == 2);
|
|
Lo = Result[0];
|
|
Hi = Result[1];
|
|
}
|
|
return Ok;
|
|
}
|
|
|
|
// Check that (every element of) Z is undef or not an exact multiple of BW.
|
|
static bool isNonZeroModBitWidth(SDValue Z, unsigned BW) {
|
|
return ISD::matchUnaryPredicate(
|
|
Z,
|
|
[=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
|
|
true);
|
|
}
|
|
|
|
bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Node->getValueType(0);
|
|
|
|
if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
|
|
!isOperationLegalOrCustom(ISD::SRL, VT) ||
|
|
!isOperationLegalOrCustom(ISD::SUB, VT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
|
|
return false;
|
|
|
|
SDValue X = Node->getOperand(0);
|
|
SDValue Y = Node->getOperand(1);
|
|
SDValue Z = Node->getOperand(2);
|
|
|
|
unsigned BW = VT.getScalarSizeInBits();
|
|
bool IsFSHL = Node->getOpcode() == ISD::FSHL;
|
|
SDLoc DL(SDValue(Node, 0));
|
|
|
|
EVT ShVT = Z.getValueType();
|
|
|
|
SDValue ShX, ShY;
|
|
SDValue ShAmt, InvShAmt;
|
|
if (isNonZeroModBitWidth(Z, BW)) {
|
|
// fshl: X << C | Y >> (BW - C)
|
|
// fshr: X << (BW - C) | Y >> C
|
|
// where C = Z % BW is not zero
|
|
SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
|
|
ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
|
|
InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
|
|
ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
|
|
ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
|
|
} else {
|
|
// fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
|
|
// fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
|
|
SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
|
|
if (isPowerOf2_32(BW)) {
|
|
// Z % BW -> Z & (BW - 1)
|
|
ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
|
|
// (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
|
|
InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
|
|
} else {
|
|
SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
|
|
ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
|
|
InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
|
|
}
|
|
|
|
SDValue One = DAG.getConstant(1, DL, ShVT);
|
|
if (IsFSHL) {
|
|
ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
|
|
SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
|
|
ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
|
|
} else {
|
|
SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
|
|
ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
|
|
ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
|
|
}
|
|
}
|
|
Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
|
|
return true;
|
|
}
|
|
|
|
// TODO: Merge with expandFunnelShift.
|
|
bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Node->getValueType(0);
|
|
unsigned EltSizeInBits = VT.getScalarSizeInBits();
|
|
bool IsLeft = Node->getOpcode() == ISD::ROTL;
|
|
SDValue Op0 = Node->getOperand(0);
|
|
SDValue Op1 = Node->getOperand(1);
|
|
SDLoc DL(SDValue(Node, 0));
|
|
|
|
EVT ShVT = Op1.getValueType();
|
|
SDValue Zero = DAG.getConstant(0, DL, ShVT);
|
|
|
|
assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
|
|
"Expecting the type bitwidth to be a power of 2");
|
|
|
|
// If a rotate in the other direction is supported, use it.
|
|
unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
|
|
if (isOperationLegalOrCustom(RevRot, VT)) {
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
|
|
Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
|
|
return true;
|
|
}
|
|
|
|
if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
|
|
!isOperationLegalOrCustom(ISD::SRL, VT) ||
|
|
!isOperationLegalOrCustom(ISD::SUB, VT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
|
|
return false;
|
|
|
|
// Otherwise,
|
|
// (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and -c, w-1)))
|
|
// (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and -c, w-1)))
|
|
//
|
|
unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
|
|
unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
|
|
SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
|
|
SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
|
|
SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
|
|
SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
|
|
Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
|
|
DAG.getNode(HsOpc, DL, VT, Op0, And1));
|
|
return true;
|
|
}
|
|
|
|
bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
|
|
SelectionDAG &DAG) const {
|
|
unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
|
|
SDValue Src = Node->getOperand(OpNo);
|
|
EVT SrcVT = Src.getValueType();
|
|
EVT DstVT = Node->getValueType(0);
|
|
SDLoc dl(SDValue(Node, 0));
|
|
|
|
// FIXME: Only f32 to i64 conversions are supported.
|
|
if (SrcVT != MVT::f32 || DstVT != MVT::i64)
|
|
return false;
|
|
|
|
if (Node->isStrictFPOpcode())
|
|
// When a NaN is converted to an integer a trap is allowed. We can't
|
|
// use this expansion here because it would eliminate that trap. Other
|
|
// traps are also allowed and cannot be eliminated. See
|
|
// IEEE 754-2008 sec 5.8.
|
|
return false;
|
|
|
|
// Expand f32 -> i64 conversion
|
|
// This algorithm comes from compiler-rt's implementation of fixsfdi:
|
|
// https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
|
|
unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
|
|
EVT IntVT = SrcVT.changeTypeToInteger();
|
|
EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
|
|
|
|
SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
|
|
SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
|
|
SDValue Bias = DAG.getConstant(127, dl, IntVT);
|
|
SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
|
|
SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
|
|
SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
|
|
|
|
SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
|
|
|
|
SDValue ExponentBits = DAG.getNode(
|
|
ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
|
|
DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
|
|
SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
|
|
|
|
SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
|
|
DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
|
|
DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
|
|
Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
|
|
|
|
SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
|
|
DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
|
|
DAG.getConstant(0x00800000, dl, IntVT));
|
|
|
|
R = DAG.getZExtOrTrunc(R, dl, DstVT);
|
|
|
|
R = DAG.getSelectCC(
|
|
dl, Exponent, ExponentLoBit,
|
|
DAG.getNode(ISD::SHL, dl, DstVT, R,
|
|
DAG.getZExtOrTrunc(
|
|
DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
|
|
dl, IntShVT)),
|
|
DAG.getNode(ISD::SRL, dl, DstVT, R,
|
|
DAG.getZExtOrTrunc(
|
|
DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
|
|
dl, IntShVT)),
|
|
ISD::SETGT);
|
|
|
|
SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
|
|
DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
|
|
|
|
Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
|
|
DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
|
|
return true;
|
|
}
|
|
|
|
bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
|
|
SDValue &Chain,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(SDValue(Node, 0));
|
|
unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
|
|
SDValue Src = Node->getOperand(OpNo);
|
|
|
|
EVT SrcVT = Src.getValueType();
|
|
EVT DstVT = Node->getValueType(0);
|
|
EVT SetCCVT =
|
|
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
|
|
EVT DstSetCCVT =
|
|
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
|
|
|
|
// Only expand vector types if we have the appropriate vector bit operations.
|
|
unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
|
|
ISD::FP_TO_SINT;
|
|
if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
|
|
return false;
|
|
|
|
// If the maximum float value is smaller then the signed integer range,
|
|
// the destination signmask can't be represented by the float, so we can
|
|
// just use FP_TO_SINT directly.
|
|
const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
|
|
APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
|
|
APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
|
|
if (APFloat::opOverflow &
|
|
APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
|
|
if (Node->isStrictFPOpcode()) {
|
|
Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
|
|
{ Node->getOperand(0), Src });
|
|
Chain = Result.getValue(1);
|
|
} else
|
|
Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
|
|
return true;
|
|
}
|
|
|
|
SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
|
|
SDValue Sel;
|
|
|
|
if (Node->isStrictFPOpcode()) {
|
|
Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
|
|
Node->getOperand(0), /*IsSignaling*/ true);
|
|
Chain = Sel.getValue(1);
|
|
} else {
|
|
Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
|
|
}
|
|
|
|
bool Strict = Node->isStrictFPOpcode() ||
|
|
shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
|
|
|
|
if (Strict) {
|
|
// Expand based on maximum range of FP_TO_SINT, if the value exceeds the
|
|
// signmask then offset (the result of which should be fully representable).
|
|
// Sel = Src < 0x8000000000000000
|
|
// FltOfs = select Sel, 0, 0x8000000000000000
|
|
// IntOfs = select Sel, 0, 0x8000000000000000
|
|
// Result = fp_to_sint(Src - FltOfs) ^ IntOfs
|
|
|
|
// TODO: Should any fast-math-flags be set for the FSUB?
|
|
SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
|
|
DAG.getConstantFP(0.0, dl, SrcVT), Cst);
|
|
Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
|
|
SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
|
|
DAG.getConstant(0, dl, DstVT),
|
|
DAG.getConstant(SignMask, dl, DstVT));
|
|
SDValue SInt;
|
|
if (Node->isStrictFPOpcode()) {
|
|
SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
|
|
{ Chain, Src, FltOfs });
|
|
SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
|
|
{ Val.getValue(1), Val });
|
|
Chain = SInt.getValue(1);
|
|
} else {
|
|
SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
|
|
SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
|
|
}
|
|
Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
|
|
} else {
|
|
// Expand based on maximum range of FP_TO_SINT:
|
|
// True = fp_to_sint(Src)
|
|
// False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
|
|
// Result = select (Src < 0x8000000000000000), True, False
|
|
|
|
SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
|
|
// TODO: Should any fast-math-flags be set for the FSUB?
|
|
SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
|
|
DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
|
|
False = DAG.getNode(ISD::XOR, dl, DstVT, False,
|
|
DAG.getConstant(SignMask, dl, DstVT));
|
|
Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
|
|
Result = DAG.getSelect(dl, DstVT, Sel, True, False);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
|
|
SDValue &Chain,
|
|
SelectionDAG &DAG) const {
|
|
unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
|
|
SDValue Src = Node->getOperand(OpNo);
|
|
EVT SrcVT = Src.getValueType();
|
|
EVT DstVT = Node->getValueType(0);
|
|
|
|
if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
|
|
return false;
|
|
|
|
// Only expand vector types if we have the appropriate vector bit operations.
|
|
if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
|
|
!isOperationLegalOrCustom(ISD::FADD, DstVT) ||
|
|
!isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
|
|
return false;
|
|
|
|
SDLoc dl(SDValue(Node, 0));
|
|
EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
|
|
|
|
// Implementation of unsigned i64 to f64 following the algorithm in
|
|
// __floatundidf in compiler_rt. This implementation has the advantage
|
|
// of performing rounding correctly, both in the default rounding mode
|
|
// and in all alternate rounding modes.
|
|
SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
|
|
SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
|
|
BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
|
|
SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
|
|
SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
|
|
SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
|
|
|
|
SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
|
|
SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
|
|
SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
|
|
SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
|
|
SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
|
|
SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
|
|
if (Node->isStrictFPOpcode()) {
|
|
SDValue HiSub =
|
|
DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
|
|
{Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
|
|
Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
|
|
{HiSub.getValue(1), LoFlt, HiSub});
|
|
Chain = Result.getValue(1);
|
|
} else {
|
|
SDValue HiSub =
|
|
DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
|
|
Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Node);
|
|
unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
|
|
ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
|
|
EVT VT = Node->getValueType(0);
|
|
if (isOperationLegalOrCustom(NewOp, VT)) {
|
|
SDValue Quiet0 = Node->getOperand(0);
|
|
SDValue Quiet1 = Node->getOperand(1);
|
|
|
|
if (!Node->getFlags().hasNoNaNs()) {
|
|
// Insert canonicalizes if it's possible we need to quiet to get correct
|
|
// sNaN behavior.
|
|
if (!DAG.isKnownNeverSNaN(Quiet0)) {
|
|
Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
|
|
Node->getFlags());
|
|
}
|
|
if (!DAG.isKnownNeverSNaN(Quiet1)) {
|
|
Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
|
|
Node->getFlags());
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
|
|
}
|
|
|
|
// If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
|
|
// instead if there are no NaNs.
|
|
if (Node->getFlags().hasNoNaNs()) {
|
|
unsigned IEEE2018Op =
|
|
Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
|
|
if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
|
|
return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
|
|
Node->getOperand(1), Node->getFlags());
|
|
}
|
|
}
|
|
|
|
// If none of the above worked, but there are no NaNs, then expand to
|
|
// a compare/select sequence. This is required for correctness since
|
|
// InstCombine might have canonicalized a fcmp+select sequence to a
|
|
// FMINNUM/FMAXNUM node. If we were to fall through to the default
|
|
// expansion to libcall, we might introduce a link-time dependency
|
|
// on libm into a file that originally did not have one.
|
|
if (Node->getFlags().hasNoNaNs()) {
|
|
ISD::CondCode Pred =
|
|
Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
|
|
SDValue Op1 = Node->getOperand(0);
|
|
SDValue Op2 = Node->getOperand(1);
|
|
SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
|
|
// Copy FMF flags, but always set the no-signed-zeros flag
|
|
// as this is implied by the FMINNUM/FMAXNUM semantics.
|
|
SDNodeFlags Flags = Node->getFlags();
|
|
Flags.setNoSignedZeros(true);
|
|
SelCC->setFlags(Flags);
|
|
return SelCC;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
SDValue Op = Node->getOperand(0);
|
|
unsigned Len = VT.getScalarSizeInBits();
|
|
assert(VT.isInteger() && "CTPOP not implemented for this type.");
|
|
|
|
// TODO: Add support for irregular type lengths.
|
|
if (!(Len <= 128 && Len % 8 == 0))
|
|
return false;
|
|
|
|
// Only expand vector types if we have the appropriate vector bit operations.
|
|
if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
|
|
!isOperationLegalOrCustom(ISD::SUB, VT) ||
|
|
!isOperationLegalOrCustom(ISD::SRL, VT) ||
|
|
(Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
|
|
return false;
|
|
|
|
// This is the "best" algorithm from
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
|
|
SDValue Mask55 =
|
|
DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
|
|
SDValue Mask33 =
|
|
DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
|
|
SDValue Mask0F =
|
|
DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
|
|
SDValue Mask01 =
|
|
DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
|
|
|
|
// v = v - ((v >> 1) & 0x55555555...)
|
|
Op = DAG.getNode(ISD::SUB, dl, VT, Op,
|
|
DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::SRL, dl, VT, Op,
|
|
DAG.getConstant(1, dl, ShVT)),
|
|
Mask55));
|
|
// v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
|
|
Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
|
|
DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::SRL, dl, VT, Op,
|
|
DAG.getConstant(2, dl, ShVT)),
|
|
Mask33));
|
|
// v = (v + (v >> 4)) & 0x0F0F0F0F...
|
|
Op = DAG.getNode(ISD::AND, dl, VT,
|
|
DAG.getNode(ISD::ADD, dl, VT, Op,
|
|
DAG.getNode(ISD::SRL, dl, VT, Op,
|
|
DAG.getConstant(4, dl, ShVT))),
|
|
Mask0F);
|
|
// v = (v * 0x01010101...) >> (Len - 8)
|
|
if (Len > 8)
|
|
Op =
|
|
DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
|
|
DAG.getConstant(Len - 8, dl, ShVT));
|
|
|
|
Result = Op;
|
|
return true;
|
|
}
|
|
|
|
bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
SDValue Op = Node->getOperand(0);
|
|
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
|
|
|
|
// If the non-ZERO_UNDEF version is supported we can use that instead.
|
|
if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
|
|
isOperationLegalOrCustom(ISD::CTLZ, VT)) {
|
|
Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
|
|
return true;
|
|
}
|
|
|
|
// If the ZERO_UNDEF version is supported use that and handle the zero case.
|
|
if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
|
|
EVT SetCCVT =
|
|
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
|
|
SDValue Zero = DAG.getConstant(0, dl, VT);
|
|
SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
|
|
Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
|
|
DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
|
|
return true;
|
|
}
|
|
|
|
// Only expand vector types if we have the appropriate vector bit operations.
|
|
if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
|
|
!isOperationLegalOrCustom(ISD::CTPOP, VT) ||
|
|
!isOperationLegalOrCustom(ISD::SRL, VT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
|
|
return false;
|
|
|
|
// for now, we do this:
|
|
// x = x | (x >> 1);
|
|
// x = x | (x >> 2);
|
|
// ...
|
|
// x = x | (x >>16);
|
|
// x = x | (x >>32); // for 64-bit input
|
|
// return popcount(~x);
|
|
//
|
|
// Ref: "Hacker's Delight" by Henry Warren
|
|
for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
|
|
SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
|
|
Op = DAG.getNode(ISD::OR, dl, VT, Op,
|
|
DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
|
|
}
|
|
Op = DAG.getNOT(dl, Op, VT);
|
|
Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
|
|
return true;
|
|
}
|
|
|
|
bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
SDValue Op = Node->getOperand(0);
|
|
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
|
|
|
|
// If the non-ZERO_UNDEF version is supported we can use that instead.
|
|
if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
|
|
isOperationLegalOrCustom(ISD::CTTZ, VT)) {
|
|
Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
|
|
return true;
|
|
}
|
|
|
|
// If the ZERO_UNDEF version is supported use that and handle the zero case.
|
|
if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
|
|
EVT SetCCVT =
|
|
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
|
|
SDValue Zero = DAG.getConstant(0, dl, VT);
|
|
SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
|
|
Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
|
|
DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
|
|
return true;
|
|
}
|
|
|
|
// Only expand vector types if we have the appropriate vector bit operations.
|
|
if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
|
|
(!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
|
|
!isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
|
|
!isOperationLegalOrCustom(ISD::SUB, VT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
|
|
return false;
|
|
|
|
// for now, we use: { return popcount(~x & (x - 1)); }
|
|
// unless the target has ctlz but not ctpop, in which case we use:
|
|
// { return 32 - nlz(~x & (x-1)); }
|
|
// Ref: "Hacker's Delight" by Henry Warren
|
|
SDValue Tmp = DAG.getNode(
|
|
ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
|
|
DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
|
|
|
|
// If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
|
|
if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
|
|
Result =
|
|
DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
|
|
DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
|
|
return true;
|
|
}
|
|
|
|
Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
|
|
return true;
|
|
}
|
|
|
|
bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
// Only expand vector types if we have the appropriate vector operations.
|
|
if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
|
|
!isOperationLegalOrCustom(ISD::ADD, VT) ||
|
|
!isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
|
|
return false;
|
|
|
|
SDValue Shift =
|
|
DAG.getNode(ISD::SRA, dl, VT, Op,
|
|
DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
|
|
SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
|
|
Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
|
|
return true;
|
|
}
|
|
|
|
std::pair<SDValue, SDValue>
|
|
TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc SL(LD);
|
|
SDValue Chain = LD->getChain();
|
|
SDValue BasePTR = LD->getBasePtr();
|
|
EVT SrcVT = LD->getMemoryVT();
|
|
EVT DstVT = LD->getValueType(0);
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
|
|
unsigned NumElem = SrcVT.getVectorNumElements();
|
|
|
|
EVT SrcEltVT = SrcVT.getScalarType();
|
|
EVT DstEltVT = DstVT.getScalarType();
|
|
|
|
// A vector must always be stored in memory as-is, i.e. without any padding
|
|
// between the elements, since various code depend on it, e.g. in the
|
|
// handling of a bitcast of a vector type to int, which may be done with a
|
|
// vector store followed by an integer load. A vector that does not have
|
|
// elements that are byte-sized must therefore be stored as an integer
|
|
// built out of the extracted vector elements.
|
|
if (!SrcEltVT.isByteSized()) {
|
|
unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
|
|
EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
|
|
|
|
unsigned NumSrcBits = SrcVT.getSizeInBits();
|
|
EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
|
|
|
|
unsigned SrcEltBits = SrcEltVT.getSizeInBits();
|
|
SDValue SrcEltBitMask = DAG.getConstant(
|
|
APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
|
|
|
|
// Load the whole vector and avoid masking off the top bits as it makes
|
|
// the codegen worse.
|
|
SDValue Load =
|
|
DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
|
|
LD->getPointerInfo(), SrcIntVT, LD->getAlignment(),
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
|
|
SmallVector<SDValue, 8> Vals;
|
|
for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
|
|
unsigned ShiftIntoIdx =
|
|
(DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
|
|
SDValue ShiftAmount =
|
|
DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
|
|
LoadVT, SL, /*LegalTypes=*/false);
|
|
SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
|
|
SDValue Elt =
|
|
DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
|
|
SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
|
|
|
|
if (ExtType != ISD::NON_EXTLOAD) {
|
|
unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
|
|
Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
|
|
}
|
|
|
|
Vals.push_back(Scalar);
|
|
}
|
|
|
|
SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
|
|
return std::make_pair(Value, Load.getValue(1));
|
|
}
|
|
|
|
unsigned Stride = SrcEltVT.getSizeInBits() / 8;
|
|
assert(SrcEltVT.isByteSized());
|
|
|
|
SmallVector<SDValue, 8> Vals;
|
|
SmallVector<SDValue, 8> LoadChains;
|
|
|
|
for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
|
|
SDValue ScalarLoad =
|
|
DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
|
|
LD->getPointerInfo().getWithOffset(Idx * Stride),
|
|
SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
|
|
BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
|
|
|
|
Vals.push_back(ScalarLoad.getValue(0));
|
|
LoadChains.push_back(ScalarLoad.getValue(1));
|
|
}
|
|
|
|
SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
|
|
SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
|
|
|
|
return std::make_pair(Value, NewChain);
|
|
}
|
|
|
|
SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc SL(ST);
|
|
|
|
SDValue Chain = ST->getChain();
|
|
SDValue BasePtr = ST->getBasePtr();
|
|
SDValue Value = ST->getValue();
|
|
EVT StVT = ST->getMemoryVT();
|
|
|
|
// The type of the data we want to save
|
|
EVT RegVT = Value.getValueType();
|
|
EVT RegSclVT = RegVT.getScalarType();
|
|
|
|
// The type of data as saved in memory.
|
|
EVT MemSclVT = StVT.getScalarType();
|
|
|
|
unsigned NumElem = StVT.getVectorNumElements();
|
|
|
|
// A vector must always be stored in memory as-is, i.e. without any padding
|
|
// between the elements, since various code depend on it, e.g. in the
|
|
// handling of a bitcast of a vector type to int, which may be done with a
|
|
// vector store followed by an integer load. A vector that does not have
|
|
// elements that are byte-sized must therefore be stored as an integer
|
|
// built out of the extracted vector elements.
|
|
if (!MemSclVT.isByteSized()) {
|
|
unsigned NumBits = StVT.getSizeInBits();
|
|
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
|
|
|
|
SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
|
|
|
|
for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
|
|
DAG.getVectorIdxConstant(Idx, SL));
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
|
|
SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
|
|
unsigned ShiftIntoIdx =
|
|
(DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
|
|
SDValue ShiftAmount =
|
|
DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
|
|
SDValue ShiftedElt =
|
|
DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
|
|
CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
|
|
}
|
|
|
|
return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
|
|
ST->getAlignment(), ST->getMemOperand()->getFlags(),
|
|
ST->getAAInfo());
|
|
}
|
|
|
|
// Store Stride in bytes
|
|
unsigned Stride = MemSclVT.getSizeInBits() / 8;
|
|
assert(Stride && "Zero stride!");
|
|
// Extract each of the elements from the original vector and save them into
|
|
// memory individually.
|
|
SmallVector<SDValue, 8> Stores;
|
|
for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
|
|
DAG.getVectorIdxConstant(Idx, SL));
|
|
|
|
SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
|
|
|
|
// This scalar TruncStore may be illegal, but we legalize it later.
|
|
SDValue Store = DAG.getTruncStore(
|
|
Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
|
|
MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
|
|
ST->getMemOperand()->getFlags(), ST->getAAInfo());
|
|
|
|
Stores.push_back(Store);
|
|
}
|
|
|
|
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
|
|
}
|
|
|
|
std::pair<SDValue, SDValue>
|
|
TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
|
|
assert(LD->getAddressingMode() == ISD::UNINDEXED &&
|
|
"unaligned indexed loads not implemented!");
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Ptr = LD->getBasePtr();
|
|
EVT VT = LD->getValueType(0);
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDLoc dl(LD);
|
|
auto &MF = DAG.getMachineFunction();
|
|
|
|
if (VT.isFloatingPoint() || VT.isVector()) {
|
|
EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
|
|
if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
|
|
if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
|
|
LoadedVT.isVector()) {
|
|
// Scalarize the load and let the individual components be handled.
|
|
return scalarizeVectorLoad(LD, DAG);
|
|
}
|
|
|
|
// Expand to a (misaligned) integer load of the same size,
|
|
// then bitconvert to floating point or vector.
|
|
SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
|
|
LD->getMemOperand());
|
|
SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
|
|
if (LoadedVT != VT)
|
|
Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
|
|
ISD::ANY_EXTEND, dl, VT, Result);
|
|
|
|
return std::make_pair(Result, newLoad.getValue(1));
|
|
}
|
|
|
|
// Copy the value to a (aligned) stack slot using (unaligned) integer
|
|
// loads and stores, then do a (aligned) load from the stack slot.
|
|
MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
|
|
unsigned LoadedBytes = LoadedVT.getStoreSize();
|
|
unsigned RegBytes = RegVT.getSizeInBits() / 8;
|
|
unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
|
|
|
|
// Make sure the stack slot is also aligned for the register type.
|
|
SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
|
|
auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
|
|
SmallVector<SDValue, 8> Stores;
|
|
SDValue StackPtr = StackBase;
|
|
unsigned Offset = 0;
|
|
|
|
EVT PtrVT = Ptr.getValueType();
|
|
EVT StackPtrVT = StackPtr.getValueType();
|
|
|
|
SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
|
|
SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
|
|
|
|
// Do all but one copies using the full register width.
|
|
for (unsigned i = 1; i < NumRegs; i++) {
|
|
// Load one integer register's worth from the original location.
|
|
SDValue Load = DAG.getLoad(
|
|
RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
|
|
MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
|
|
LD->getAAInfo());
|
|
// Follow the load with a store to the stack slot. Remember the store.
|
|
Stores.push_back(DAG.getStore(
|
|
Load.getValue(1), dl, Load, StackPtr,
|
|
MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
|
|
// Increment the pointers.
|
|
Offset += RegBytes;
|
|
|
|
Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
|
|
StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
|
|
}
|
|
|
|
// The last copy may be partial. Do an extending load.
|
|
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
8 * (LoadedBytes - Offset));
|
|
SDValue Load =
|
|
DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(Offset), MemVT,
|
|
MinAlign(LD->getAlignment(), Offset),
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
// Follow the load with a store to the stack slot. Remember the store.
|
|
// On big-endian machines this requires a truncating store to ensure
|
|
// that the bits end up in the right place.
|
|
Stores.push_back(DAG.getTruncStore(
|
|
Load.getValue(1), dl, Load, StackPtr,
|
|
MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
|
|
|
|
// The order of the stores doesn't matter - say it with a TokenFactor.
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
|
|
|
|
// Finally, perform the original load only redirected to the stack slot.
|
|
Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
|
|
MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
|
|
LoadedVT);
|
|
|
|
// Callers expect a MERGE_VALUES node.
|
|
return std::make_pair(Load, TF);
|
|
}
|
|
|
|
assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
|
|
"Unaligned load of unsupported type.");
|
|
|
|
// Compute the new VT that is half the size of the old one. This is an
|
|
// integer MVT.
|
|
unsigned NumBits = LoadedVT.getSizeInBits();
|
|
EVT NewLoadedVT;
|
|
NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
|
|
NumBits >>= 1;
|
|
|
|
unsigned Alignment = LD->getAlignment();
|
|
unsigned IncrementSize = NumBits / 8;
|
|
ISD::LoadExtType HiExtType = LD->getExtensionType();
|
|
|
|
// If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
|
|
if (HiExtType == ISD::NON_EXTLOAD)
|
|
HiExtType = ISD::ZEXTLOAD;
|
|
|
|
// Load the value in two parts
|
|
SDValue Lo, Hi;
|
|
if (DAG.getDataLayout().isLittleEndian()) {
|
|
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
|
|
NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
|
|
LD->getAAInfo());
|
|
|
|
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
|
|
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(IncrementSize),
|
|
NewLoadedVT, MinAlign(Alignment, IncrementSize),
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
} else {
|
|
Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
|
|
NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
|
|
LD->getAAInfo());
|
|
|
|
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
|
|
Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
|
|
LD->getPointerInfo().getWithOffset(IncrementSize),
|
|
NewLoadedVT, MinAlign(Alignment, IncrementSize),
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
}
|
|
|
|
// aggregate the two parts
|
|
SDValue ShiftAmount =
|
|
DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
|
|
DAG.getDataLayout()));
|
|
SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
|
|
Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
|
|
|
|
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
|
|
Hi.getValue(1));
|
|
|
|
return std::make_pair(Result, TF);
|
|
}
|
|
|
|
SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
|
|
SelectionDAG &DAG) const {
|
|
assert(ST->getAddressingMode() == ISD::UNINDEXED &&
|
|
"unaligned indexed stores not implemented!");
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
SDValue Val = ST->getValue();
|
|
EVT VT = Val.getValueType();
|
|
int Alignment = ST->getAlignment();
|
|
auto &MF = DAG.getMachineFunction();
|
|
EVT StoreMemVT = ST->getMemoryVT();
|
|
|
|
SDLoc dl(ST);
|
|
if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
|
|
EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
|
|
if (isTypeLegal(intVT)) {
|
|
if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
|
|
StoreMemVT.isVector()) {
|
|
// Scalarize the store and let the individual components be handled.
|
|
SDValue Result = scalarizeVectorStore(ST, DAG);
|
|
return Result;
|
|
}
|
|
// Expand to a bitconvert of the value to the integer type of the
|
|
// same size, then a (misaligned) int store.
|
|
// FIXME: Does not handle truncating floating point stores!
|
|
SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
|
|
Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
|
|
Alignment, ST->getMemOperand()->getFlags());
|
|
return Result;
|
|
}
|
|
// Do a (aligned) store to a stack slot, then copy from the stack slot
|
|
// to the final destination using (unaligned) integer loads and stores.
|
|
MVT RegVT = getRegisterType(
|
|
*DAG.getContext(),
|
|
EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
|
|
EVT PtrVT = Ptr.getValueType();
|
|
unsigned StoredBytes = StoreMemVT.getStoreSize();
|
|
unsigned RegBytes = RegVT.getSizeInBits() / 8;
|
|
unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
|
|
|
|
// Make sure the stack slot is also aligned for the register type.
|
|
SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
|
|
auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
|
|
|
|
// Perform the original store, only redirected to the stack slot.
|
|
SDValue Store = DAG.getTruncStore(
|
|
Chain, dl, Val, StackPtr,
|
|
MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
|
|
|
|
EVT StackPtrVT = StackPtr.getValueType();
|
|
|
|
SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
|
|
SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
|
|
SmallVector<SDValue, 8> Stores;
|
|
unsigned Offset = 0;
|
|
|
|
// Do all but one copies using the full register width.
|
|
for (unsigned i = 1; i < NumRegs; i++) {
|
|
// Load one integer register's worth from the stack slot.
|
|
SDValue Load = DAG.getLoad(
|
|
RegVT, dl, Store, StackPtr,
|
|
MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
|
|
// Store it to the final location. Remember the store.
|
|
Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
|
|
ST->getPointerInfo().getWithOffset(Offset),
|
|
MinAlign(ST->getAlignment(), Offset),
|
|
ST->getMemOperand()->getFlags()));
|
|
// Increment the pointers.
|
|
Offset += RegBytes;
|
|
StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
|
|
Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
|
|
}
|
|
|
|
// The last store may be partial. Do a truncating store. On big-endian
|
|
// machines this requires an extending load from the stack slot to ensure
|
|
// that the bits are in the right place.
|
|
EVT LoadMemVT =
|
|
EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
|
|
|
|
// Load from the stack slot.
|
|
SDValue Load = DAG.getExtLoad(
|
|
ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
|
|
MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
|
|
|
|
Stores.push_back(
|
|
DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
|
|
ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
|
|
MinAlign(ST->getAlignment(), Offset),
|
|
ST->getMemOperand()->getFlags(), ST->getAAInfo()));
|
|
// The order of the stores doesn't matter - say it with a TokenFactor.
|
|
SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
|
|
return Result;
|
|
}
|
|
|
|
assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
|
|
"Unaligned store of unknown type.");
|
|
// Get the half-size VT
|
|
EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
|
|
int NumBits = NewStoredVT.getSizeInBits();
|
|
int IncrementSize = NumBits / 8;
|
|
|
|
// Divide the stored value in two parts.
|
|
SDValue ShiftAmount = DAG.getConstant(
|
|
NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
|
|
SDValue Lo = Val;
|
|
SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
|
|
|
|
// Store the two parts
|
|
SDValue Store1, Store2;
|
|
Store1 = DAG.getTruncStore(Chain, dl,
|
|
DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
|
|
Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
|
|
ST->getMemOperand()->getFlags());
|
|
|
|
Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
|
|
Alignment = MinAlign(Alignment, IncrementSize);
|
|
Store2 = DAG.getTruncStore(
|
|
Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
|
|
ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
|
|
ST->getMemOperand()->getFlags(), ST->getAAInfo());
|
|
|
|
SDValue Result =
|
|
DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
|
|
const SDLoc &DL, EVT DataVT,
|
|
SelectionDAG &DAG,
|
|
bool IsCompressedMemory) const {
|
|
SDValue Increment;
|
|
EVT AddrVT = Addr.getValueType();
|
|
EVT MaskVT = Mask.getValueType();
|
|
assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
|
|
"Incompatible types of Data and Mask");
|
|
if (IsCompressedMemory) {
|
|
if (DataVT.isScalableVector())
|
|
report_fatal_error(
|
|
"Cannot currently handle compressed memory with scalable vectors");
|
|
// Incrementing the pointer according to number of '1's in the mask.
|
|
EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
|
|
SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
|
|
if (MaskIntVT.getSizeInBits() < 32) {
|
|
MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
|
|
MaskIntVT = MVT::i32;
|
|
}
|
|
|
|
// Count '1's with POPCNT.
|
|
Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
|
|
Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
|
|
// Scale is an element size in bytes.
|
|
SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
|
|
AddrVT);
|
|
Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
|
|
} else if (DataVT.isScalableVector()) {
|
|
Increment = DAG.getVScale(DL, AddrVT,
|
|
APInt(AddrVT.getSizeInBits().getFixedSize(),
|
|
DataVT.getStoreSize().getKnownMinSize()));
|
|
} else
|
|
Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
|
|
|
|
return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
|
|
}
|
|
|
|
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
|
|
SDValue Idx,
|
|
EVT VecVT,
|
|
const SDLoc &dl) {
|
|
if (isa<ConstantSDNode>(Idx))
|
|
return Idx;
|
|
|
|
EVT IdxVT = Idx.getValueType();
|
|
unsigned NElts = VecVT.getVectorNumElements();
|
|
if (isPowerOf2_32(NElts)) {
|
|
APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
|
|
Log2_32(NElts));
|
|
return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
|
|
DAG.getConstant(Imm, dl, IdxVT));
|
|
}
|
|
|
|
return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
|
|
DAG.getConstant(NElts - 1, dl, IdxVT));
|
|
}
|
|
|
|
SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
|
|
SDValue VecPtr, EVT VecVT,
|
|
SDValue Index) const {
|
|
SDLoc dl(Index);
|
|
// Make sure the index type is big enough to compute in.
|
|
Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
|
|
|
|
EVT EltVT = VecVT.getVectorElementType();
|
|
|
|
// Calculate the element offset and add it to the pointer.
|
|
unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
|
|
assert(EltSize * 8 == EltVT.getSizeInBits() &&
|
|
"Converting bits to bytes lost precision");
|
|
|
|
Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
|
|
|
|
EVT IdxVT = Index.getValueType();
|
|
|
|
Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
|
|
DAG.getConstant(EltSize, dl, IdxVT));
|
|
return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementation of Emulated TLS Model
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG) const {
|
|
// Access to address of TLS varialbe xyz is lowered to a function call:
|
|
// __emutls_get_address( address of global variable named "__emutls_v.xyz" )
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
|
|
SDLoc dl(GA);
|
|
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
|
|
Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
|
|
StringRef EmuTlsVarName(NameString);
|
|
GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
|
|
assert(EmuTlsVar && "Cannot find EmuTlsVar ");
|
|
Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
|
|
Entry.Ty = VoidPtrType;
|
|
Args.push_back(Entry);
|
|
|
|
SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
|
|
CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
|
|
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
|
|
// At last for X86 targets, maybe good for other targets too?
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI.setAdjustsStack(true); // Is this only for X86 target?
|
|
MFI.setHasCalls(true);
|
|
|
|
assert((GA->getOffset() == 0) &&
|
|
"Emulated TLS must have zero offset in GlobalAddressSDNode");
|
|
return CallResult.first;
|
|
}
|
|
|
|
SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
|
|
if (!isCtlzFast())
|
|
return SDValue();
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SDLoc dl(Op);
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
|
if (C->isNullValue() && CC == ISD::SETEQ) {
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
SDValue Zext = Op.getOperand(0);
|
|
if (VT.bitsLT(MVT::i32)) {
|
|
VT = MVT::i32;
|
|
Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
|
|
}
|
|
unsigned Log2b = Log2_32(VT.getSizeInBits());
|
|
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
|
|
SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
|
|
DAG.getConstant(Log2b, dl, MVT::i32));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
|
|
unsigned Opcode = Node->getOpcode();
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
EVT VT = LHS.getValueType();
|
|
SDLoc dl(Node);
|
|
|
|
assert(VT == RHS.getValueType() && "Expected operands to be the same type");
|
|
assert(VT.isInteger() && "Expected operands to be integers");
|
|
|
|
// usub.sat(a, b) -> umax(a, b) - b
|
|
if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
|
|
SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
|
|
return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
|
|
}
|
|
|
|
if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
|
|
SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
|
|
SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
|
|
return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
|
|
}
|
|
|
|
unsigned OverflowOp;
|
|
switch (Opcode) {
|
|
case ISD::SADDSAT:
|
|
OverflowOp = ISD::SADDO;
|
|
break;
|
|
case ISD::UADDSAT:
|
|
OverflowOp = ISD::UADDO;
|
|
break;
|
|
case ISD::SSUBSAT:
|
|
OverflowOp = ISD::SSUBO;
|
|
break;
|
|
case ISD::USUBSAT:
|
|
OverflowOp = ISD::USUBO;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Expected method to receive signed or unsigned saturation "
|
|
"addition or subtraction node.");
|
|
}
|
|
|
|
// FIXME: Should really try to split the vector in case it's legal on a
|
|
// subvector.
|
|
if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
|
|
return DAG.UnrollVectorOp(Node);
|
|
|
|
unsigned BitWidth = LHS.getScalarValueSizeInBits();
|
|
EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
|
|
LHS, RHS);
|
|
SDValue SumDiff = Result.getValue(0);
|
|
SDValue Overflow = Result.getValue(1);
|
|
SDValue Zero = DAG.getConstant(0, dl, VT);
|
|
SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
|
|
|
|
if (Opcode == ISD::UADDSAT) {
|
|
if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
|
|
// (LHS + RHS) | OverflowMask
|
|
SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
|
|
return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
|
|
}
|
|
// Overflow ? 0xffff.... : (LHS + RHS)
|
|
return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
|
|
} else if (Opcode == ISD::USUBSAT) {
|
|
if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
|
|
// (LHS - RHS) & ~OverflowMask
|
|
SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
|
|
SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
|
|
return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
|
|
}
|
|
// Overflow ? 0 : (LHS - RHS)
|
|
return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
|
|
} else {
|
|
// SatMax -> Overflow && SumDiff < 0
|
|
// SatMin -> Overflow && SumDiff >= 0
|
|
APInt MinVal = APInt::getSignedMinValue(BitWidth);
|
|
APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
|
|
SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
|
|
SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
|
|
SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
|
|
Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
|
|
return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
|
|
}
|
|
}
|
|
|
|
SDValue
|
|
TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
|
|
assert((Node->getOpcode() == ISD::SMULFIX ||
|
|
Node->getOpcode() == ISD::UMULFIX ||
|
|
Node->getOpcode() == ISD::SMULFIXSAT ||
|
|
Node->getOpcode() == ISD::UMULFIXSAT) &&
|
|
"Expected a fixed point multiplication opcode");
|
|
|
|
SDLoc dl(Node);
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
EVT VT = LHS.getValueType();
|
|
unsigned Scale = Node->getConstantOperandVal(2);
|
|
bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
|
|
Node->getOpcode() == ISD::UMULFIXSAT);
|
|
bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
|
|
Node->getOpcode() == ISD::SMULFIXSAT);
|
|
EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
unsigned VTSize = VT.getScalarSizeInBits();
|
|
|
|
if (!Scale) {
|
|
// [us]mul.fix(a, b, 0) -> mul(a, b)
|
|
if (!Saturating) {
|
|
if (isOperationLegalOrCustom(ISD::MUL, VT))
|
|
return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
|
|
} else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
|
|
SDValue Result =
|
|
DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
|
|
SDValue Product = Result.getValue(0);
|
|
SDValue Overflow = Result.getValue(1);
|
|
SDValue Zero = DAG.getConstant(0, dl, VT);
|
|
|
|
APInt MinVal = APInt::getSignedMinValue(VTSize);
|
|
APInt MaxVal = APInt::getSignedMaxValue(VTSize);
|
|
SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
|
|
SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
|
|
SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
|
|
Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
|
|
return DAG.getSelect(dl, VT, Overflow, Result, Product);
|
|
} else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
|
|
SDValue Result =
|
|
DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
|
|
SDValue Product = Result.getValue(0);
|
|
SDValue Overflow = Result.getValue(1);
|
|
|
|
APInt MaxVal = APInt::getMaxValue(VTSize);
|
|
SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
|
|
return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
|
|
}
|
|
}
|
|
|
|
assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
|
|
"Expected scale to be less than the number of bits if signed or at "
|
|
"most the number of bits if unsigned.");
|
|
assert(LHS.getValueType() == RHS.getValueType() &&
|
|
"Expected both operands to be the same type");
|
|
|
|
// Get the upper and lower bits of the result.
|
|
SDValue Lo, Hi;
|
|
unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
|
|
unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
|
|
if (isOperationLegalOrCustom(LoHiOp, VT)) {
|
|
SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
|
|
Lo = Result.getValue(0);
|
|
Hi = Result.getValue(1);
|
|
} else if (isOperationLegalOrCustom(HiOp, VT)) {
|
|
Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
|
|
Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
|
|
} else if (VT.isVector()) {
|
|
return SDValue();
|
|
} else {
|
|
report_fatal_error("Unable to expand fixed point multiplication.");
|
|
}
|
|
|
|
if (Scale == VTSize)
|
|
// Result is just the top half since we'd be shifting by the width of the
|
|
// operand. Overflow impossible so this works for both UMULFIX and
|
|
// UMULFIXSAT.
|
|
return Hi;
|
|
|
|
// The result will need to be shifted right by the scale since both operands
|
|
// are scaled. The result is given to us in 2 halves, so we only want part of
|
|
// both in the result.
|
|
EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
|
|
DAG.getConstant(Scale, dl, ShiftTy));
|
|
if (!Saturating)
|
|
return Result;
|
|
|
|
if (!Signed) {
|
|
// Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
|
|
// widened multiplication) aren't all zeroes.
|
|
|
|
// Saturate to max if ((Hi >> Scale) != 0),
|
|
// which is the same as if (Hi > ((1 << Scale) - 1))
|
|
APInt MaxVal = APInt::getMaxValue(VTSize);
|
|
SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
|
|
dl, VT);
|
|
Result = DAG.getSelectCC(dl, Hi, LowMask,
|
|
DAG.getConstant(MaxVal, dl, VT), Result,
|
|
ISD::SETUGT);
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
|
|
// widened multiplication) aren't all ones or all zeroes.
|
|
|
|
SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
|
|
SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
|
|
|
|
if (Scale == 0) {
|
|
SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
|
|
DAG.getConstant(VTSize - 1, dl, ShiftTy));
|
|
SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
|
|
// Saturated to SatMin if wide product is negative, and SatMax if wide
|
|
// product is positive ...
|
|
SDValue Zero = DAG.getConstant(0, dl, VT);
|
|
SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
|
|
ISD::SETLT);
|
|
// ... but only if we overflowed.
|
|
return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
|
|
}
|
|
|
|
// We handled Scale==0 above so all the bits to examine is in Hi.
|
|
|
|
// Saturate to max if ((Hi >> (Scale - 1)) > 0),
|
|
// which is the same as if (Hi > (1 << (Scale - 1)) - 1)
|
|
SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
|
|
dl, VT);
|
|
Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
|
|
// Saturate to min if (Hi >> (Scale - 1)) < -1),
|
|
// which is the same as if (HI < (-1 << (Scale - 1))
|
|
SDValue HighMask =
|
|
DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
|
|
dl, VT);
|
|
Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
|
|
return Result;
|
|
}
|
|
|
|
SDValue
|
|
TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
|
|
SDValue LHS, SDValue RHS,
|
|
unsigned Scale, SelectionDAG &DAG) const {
|
|
assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
|
|
Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
|
|
"Expected a fixed point division opcode");
|
|
|
|
EVT VT = LHS.getValueType();
|
|
bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
|
|
bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
|
|
EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
|
|
// If there is enough room in the type to upscale the LHS or downscale the
|
|
// RHS before the division, we can perform it in this type without having to
|
|
// resize. For signed operations, the LHS headroom is the number of
|
|
// redundant sign bits, and for unsigned ones it is the number of zeroes.
|
|
// The headroom for the RHS is the number of trailing zeroes.
|
|
unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
|
|
: DAG.computeKnownBits(LHS).countMinLeadingZeros();
|
|
unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
|
|
|
|
// For signed saturating operations, we need to be able to detect true integer
|
|
// division overflow; that is, when you have MIN / -EPS. However, this
|
|
// is undefined behavior and if we emit divisions that could take such
|
|
// values it may cause undesired behavior (arithmetic exceptions on x86, for
|
|
// example).
|
|
// Avoid this by requiring an extra bit so that we never get this case.
|
|
// FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
|
|
// signed saturating division, we need to emit a whopping 32-bit division.
|
|
if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
|
|
return SDValue();
|
|
|
|
unsigned LHSShift = std::min(LHSLead, Scale);
|
|
unsigned RHSShift = Scale - LHSShift;
|
|
|
|
// At this point, we know that if we shift the LHS up by LHSShift and the
|
|
// RHS down by RHSShift, we can emit a regular division with a final scaling
|
|
// factor of Scale.
|
|
|
|
EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
if (LHSShift)
|
|
LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
|
|
DAG.getConstant(LHSShift, dl, ShiftTy));
|
|
if (RHSShift)
|
|
RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
|
|
DAG.getConstant(RHSShift, dl, ShiftTy));
|
|
|
|
SDValue Quot;
|
|
if (Signed) {
|
|
// For signed operations, if the resulting quotient is negative and the
|
|
// remainder is nonzero, subtract 1 from the quotient to round towards
|
|
// negative infinity.
|
|
SDValue Rem;
|
|
// FIXME: Ideally we would always produce an SDIVREM here, but if the
|
|
// type isn't legal, SDIVREM cannot be expanded. There is no reason why
|
|
// we couldn't just form a libcall, but the type legalizer doesn't do it.
|
|
if (isTypeLegal(VT) &&
|
|
isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
|
|
Quot = DAG.getNode(ISD::SDIVREM, dl,
|
|
DAG.getVTList(VT, VT),
|
|
LHS, RHS);
|
|
Rem = Quot.getValue(1);
|
|
Quot = Quot.getValue(0);
|
|
} else {
|
|
Quot = DAG.getNode(ISD::SDIV, dl, VT,
|
|
LHS, RHS);
|
|
Rem = DAG.getNode(ISD::SREM, dl, VT,
|
|
LHS, RHS);
|
|
}
|
|
SDValue Zero = DAG.getConstant(0, dl, VT);
|
|
SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
|
|
SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
|
|
SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
|
|
SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
|
|
SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
|
|
DAG.getConstant(1, dl, VT));
|
|
Quot = DAG.getSelect(dl, VT,
|
|
DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
|
|
Sub1, Quot);
|
|
} else
|
|
Quot = DAG.getNode(ISD::UDIV, dl, VT,
|
|
LHS, RHS);
|
|
|
|
return Quot;
|
|
}
|
|
|
|
void TargetLowering::expandUADDSUBO(
|
|
SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
|
|
SDLoc dl(Node);
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
bool IsAdd = Node->getOpcode() == ISD::UADDO;
|
|
|
|
// If ADD/SUBCARRY is legal, use that instead.
|
|
unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
|
|
if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
|
|
SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
|
|
SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
|
|
{ LHS, RHS, CarryIn });
|
|
Result = SDValue(NodeCarry.getNode(), 0);
|
|
Overflow = SDValue(NodeCarry.getNode(), 1);
|
|
return;
|
|
}
|
|
|
|
Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
|
|
LHS.getValueType(), LHS, RHS);
|
|
|
|
EVT ResultType = Node->getValueType(1);
|
|
EVT SetCCType = getSetCCResultType(
|
|
DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
|
|
ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
|
|
SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
|
|
Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
|
|
}
|
|
|
|
void TargetLowering::expandSADDSUBO(
|
|
SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
|
|
SDLoc dl(Node);
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
bool IsAdd = Node->getOpcode() == ISD::SADDO;
|
|
|
|
Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
|
|
LHS.getValueType(), LHS, RHS);
|
|
|
|
EVT ResultType = Node->getValueType(1);
|
|
EVT OType = getSetCCResultType(
|
|
DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
|
|
|
|
// If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
|
|
unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
|
|
if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
|
|
SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
|
|
SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
|
|
Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
|
|
return;
|
|
}
|
|
|
|
SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
|
|
|
|
// For an addition, the result should be less than one of the operands (LHS)
|
|
// if and only if the other operand (RHS) is negative, otherwise there will
|
|
// be overflow.
|
|
// For a subtraction, the result should be less than one of the operands
|
|
// (LHS) if and only if the other operand (RHS) is (non-zero) positive,
|
|
// otherwise there will be overflow.
|
|
SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
|
|
SDValue ConditionRHS =
|
|
DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
|
|
|
|
Overflow = DAG.getBoolExtOrTrunc(
|
|
DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
|
|
ResultType, ResultType);
|
|
}
|
|
|
|
bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
|
|
SDValue &Overflow, SelectionDAG &DAG) const {
|
|
SDLoc dl(Node);
|
|
EVT VT = Node->getValueType(0);
|
|
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
SDValue LHS = Node->getOperand(0);
|
|
SDValue RHS = Node->getOperand(1);
|
|
bool isSigned = Node->getOpcode() == ISD::SMULO;
|
|
|
|
// For power-of-two multiplications we can use a simpler shift expansion.
|
|
if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
|
|
const APInt &C = RHSC->getAPIntValue();
|
|
// mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
|
|
if (C.isPowerOf2()) {
|
|
// smulo(x, signed_min) is same as umulo(x, signed_min).
|
|
bool UseArithShift = isSigned && !C.isMinSignedValue();
|
|
EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
|
|
SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
|
|
Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
|
|
Overflow = DAG.getSetCC(dl, SetCCVT,
|
|
DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
|
|
dl, VT, Result, ShiftAmt),
|
|
LHS, ISD::SETNE);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
|
|
if (VT.isVector())
|
|
WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
|
|
VT.getVectorNumElements());
|
|
|
|
SDValue BottomHalf;
|
|
SDValue TopHalf;
|
|
static const unsigned Ops[2][3] =
|
|
{ { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
|
|
{ ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
|
|
if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
|
|
BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
|
|
TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
|
|
} else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
|
|
BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
|
|
RHS);
|
|
TopHalf = BottomHalf.getValue(1);
|
|
} else if (isTypeLegal(WideVT)) {
|
|
LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
|
|
RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
|
|
SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
|
|
BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
|
|
SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
|
|
getShiftAmountTy(WideVT, DAG.getDataLayout()));
|
|
TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
|
|
DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
|
|
} else {
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
// We can fall back to a libcall with an illegal type for the MUL if we
|
|
// have a libcall big enough.
|
|
// Also, we can fall back to a division in some cases, but that's a big
|
|
// performance hit in the general case.
|
|
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
|
|
if (WideVT == MVT::i16)
|
|
LC = RTLIB::MUL_I16;
|
|
else if (WideVT == MVT::i32)
|
|
LC = RTLIB::MUL_I32;
|
|
else if (WideVT == MVT::i64)
|
|
LC = RTLIB::MUL_I64;
|
|
else if (WideVT == MVT::i128)
|
|
LC = RTLIB::MUL_I128;
|
|
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
|
|
|
|
SDValue HiLHS;
|
|
SDValue HiRHS;
|
|
if (isSigned) {
|
|
// The high part is obtained by SRA'ing all but one of the bits of low
|
|
// part.
|
|
unsigned LoSize = VT.getSizeInBits();
|
|
HiLHS =
|
|
DAG.getNode(ISD::SRA, dl, VT, LHS,
|
|
DAG.getConstant(LoSize - 1, dl,
|
|
getPointerTy(DAG.getDataLayout())));
|
|
HiRHS =
|
|
DAG.getNode(ISD::SRA, dl, VT, RHS,
|
|
DAG.getConstant(LoSize - 1, dl,
|
|
getPointerTy(DAG.getDataLayout())));
|
|
} else {
|
|
HiLHS = DAG.getConstant(0, dl, VT);
|
|
HiRHS = DAG.getConstant(0, dl, VT);
|
|
}
|
|
|
|
// Here we're passing the 2 arguments explicitly as 4 arguments that are
|
|
// pre-lowered to the correct types. This all depends upon WideVT not
|
|
// being a legal type for the architecture and thus has to be split to
|
|
// two arguments.
|
|
SDValue Ret;
|
|
TargetLowering::MakeLibCallOptions CallOptions;
|
|
CallOptions.setSExt(isSigned);
|
|
CallOptions.setIsPostTypeLegalization(true);
|
|
if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
|
|
// Halves of WideVT are packed into registers in different order
|
|
// depending on platform endianness. This is usually handled by
|
|
// the C calling convention, but we can't defer to it in
|
|
// the legalizer.
|
|
SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
|
|
Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
|
|
} else {
|
|
SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
|
|
Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
|
|
}
|
|
assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
|
|
"Ret value is a collection of constituent nodes holding result.");
|
|
if (DAG.getDataLayout().isLittleEndian()) {
|
|
// Same as above.
|
|
BottomHalf = Ret.getOperand(0);
|
|
TopHalf = Ret.getOperand(1);
|
|
} else {
|
|
BottomHalf = Ret.getOperand(1);
|
|
TopHalf = Ret.getOperand(0);
|
|
}
|
|
}
|
|
|
|
Result = BottomHalf;
|
|
if (isSigned) {
|
|
SDValue ShiftAmt = DAG.getConstant(
|
|
VT.getScalarSizeInBits() - 1, dl,
|
|
getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
|
|
SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
|
|
Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
|
|
} else {
|
|
Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
|
|
DAG.getConstant(0, dl, VT), ISD::SETNE);
|
|
}
|
|
|
|
// Truncate the result if SetCC returns a larger type than needed.
|
|
EVT RType = Node->getValueType(1);
|
|
if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
|
|
Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
|
|
|
|
assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
|
|
"Unexpected result type for S/UMULO legalization");
|
|
return true;
|
|
}
|
|
|
|
SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
|
|
SDLoc dl(Node);
|
|
bool NoNaN = Node->getFlags().hasNoNaNs();
|
|
unsigned BaseOpcode = 0;
|
|
switch (Node->getOpcode()) {
|
|
default: llvm_unreachable("Expected VECREDUCE opcode");
|
|
case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
|
|
case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
|
|
case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break;
|
|
case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
|
|
case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
|
|
case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
|
|
case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
|
|
case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
|
|
case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
|
|
case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
|
|
case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
|
|
case ISD::VECREDUCE_FMAX:
|
|
BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
|
|
break;
|
|
case ISD::VECREDUCE_FMIN:
|
|
BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
|
|
break;
|
|
}
|
|
|
|
SDValue Op = Node->getOperand(0);
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Try to use a shuffle reduction for power of two vectors.
|
|
if (VT.isPow2VectorType()) {
|
|
while (VT.getVectorNumElements() > 1) {
|
|
EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
|
|
if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
|
|
break;
|
|
|
|
SDValue Lo, Hi;
|
|
std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
|
|
Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
|
|
VT = HalfVT;
|
|
}
|
|
}
|
|
|
|
EVT EltVT = VT.getVectorElementType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
|
|
|
|
SDValue Res = Ops[0];
|
|
for (unsigned i = 1; i < NumElts; i++)
|
|
Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
|
|
|
|
// Result type may be wider than element type.
|
|
if (EltVT != Node->getValueType(0))
|
|
Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
|
|
return Res;
|
|
}
|
|
|
|
bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Node->getValueType(0);
|
|
SDLoc dl(Node);
|
|
bool isSigned = Node->getOpcode() == ISD::SREM;
|
|
unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
|
|
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
|
|
SDValue Dividend = Node->getOperand(0);
|
|
SDValue Divisor = Node->getOperand(1);
|
|
if (isOperationLegalOrCustom(DivRemOpc, VT)) {
|
|
SDVTList VTs = DAG.getVTList(VT, VT);
|
|
Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
|
|
return true;
|
|
} else if (isOperationLegalOrCustom(DivOpc, VT)) {
|
|
// X % Y -> X-X/Y*Y
|
|
SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
|
|
SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
|
|
Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|