1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Target/AMDGPU/SIInstrInfo.td
Sam Kolton 94d1ca9e9c AMDGPU] Assembler: better support for immediate literals in assembler.
Summary:
Prevously assembler parsed all literals as either 32-bit integers or 32-bit floating-point values. Because of this we couldn't support f64 literals.
E.g. in instruction "v_fract_f64 v[0:1], 0.5", literal 0.5 was encoded as 32-bit literal 0x3f000000, which is incorrect and will be interpreted as 3.0517578125E-5 instead of 0.5. Correct encoding is inline constant 240 (optimal) or 32-bit literal 0x3FE00000 at least.

With this change the way immediate literals are parsed is changed. All literals are always parsed as 64-bit values either integer or floating-point. Then we convert parsed literals to correct form based on information about type of operand parsed (was literal floating or binary) and type of expected instruction operands (is this f32/64 or b32/64 instruction).
Here are rules how we convert literals:
    - We parsed fp literal:
        - Instruction expects 64-bit operand:
            - If parsed literal is inlinable (e.g. v_fract_f64_e32 v[0:1], 0.5)
                - then we do nothing this literal
            - Else if literal is not-inlinable but instruction requires to inline it (e.g. this is e64 encoding, v_fract_f64_e64 v[0:1], 1.5)
                - report error
            - Else literal is not-inlinable but we can encode it as additional 32-bit literal constant
                - If instruction expect fp operand type (f64)
                    - Check if low 32 bits of literal are zeroes (e.g. v_fract_f64 v[0:1], 1.5)
                        - If so then do nothing
                    - Else (e.g. v_fract_f64 v[0:1], 3.1415)
                        - report warning that low 32 bits will be set to zeroes and precision will be lost
                        - set low 32 bits of literal to zeroes
                - Instruction expects integer operand type (e.g. s_mov_b64_e32 s[0:1], 1.5)
                    - report error as it is unclear how to encode this literal
        - Instruction expects 32-bit operand:
            - Convert parsed 64 bit fp literal to 32 bit fp. Allow lose of precision but not overflow or underflow
            - Is this literal inlinable and are we required to inline literal (e.g. v_trunc_f32_e64 v0, 0.5)
                - do nothing
                - Else report error
            - Do nothing. We can encode any other 32-bit fp literal (e.g. v_trunc_f32 v0, 10000000.0)
    - Parsed binary literal:
        - Is this literal inlinable (e.g. v_trunc_f32_e32 v0, 35)
            - do nothing
        - Else, are we required to inline this literal (e.g. v_trunc_f32_e64 v0, 35)
            - report error
        - Else, literal is not-inlinable and we are not required to inline it
            - Are high 32 bit of literal zeroes or same as sign bit (32 bit)
                - do nothing (e.g. v_trunc_f32 v0, 0xdeadbeef)
            - Else
                - report error (e.g. v_trunc_f32 v0, 0x123456789abcdef0)

For this change it is required that we know operand types of instruction (are they f32/64 or b32/64). I added several new register operands (they extend previous register operands) and set operand types to corresponding types:
'''
enum OperandType {
    OPERAND_REG_IMM32_INT,
    OPERAND_REG_IMM32_FP,
    OPERAND_REG_INLINE_C_INT,
    OPERAND_REG_INLINE_C_FP,
}
'''

This is not working yet:
    - Several tests are failing
    - Problems with predicate methods for inline immediates
    - LLVM generated assembler parts try to select e64 encoding before e32.
More changes are required for several AsmOperands.

Reviewers: vpykhtin, tstellarAMD

Subscribers: arsenm, kzhuravl, artem.tamazov

Differential Revision: https://reviews.llvm.org/D22922

llvm-svn: 281050
2016-09-09 14:44:04 +00:00

2645 lines
96 KiB
TableGen

//===-- SIInstrInfo.td - SI Instruction Infos -------------*- tablegen -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
def isCI : Predicate<"Subtarget->getGeneration() "
">= SISubtarget::SEA_ISLANDS">;
def isCIOnly : Predicate<"Subtarget->getGeneration() =="
"SISubtarget::SEA_ISLANDS">,
AssemblerPredicate <"FeatureSeaIslands">;
def DisableInst : Predicate <"false">, AssemblerPredicate<"FeatureDisable">;
class vop {
field bits<9> SI3;
field bits<10> VI3;
}
class vopc <bits<8> si, bits<8> vi = !add(0x40, si)> : vop {
field bits<8> SI = si;
field bits<8> VI = vi;
field bits<9> SI3 = {0, si{7-0}};
field bits<10> VI3 = {0, 0, vi{7-0}};
}
class vop1 <bits<8> si, bits<8> vi = si> : vop {
field bits<8> SI = si;
field bits<8> VI = vi;
field bits<9> SI3 = {1, 1, si{6-0}};
field bits<10> VI3 = !add(0x140, vi);
}
class vop2 <bits<6> si, bits<6> vi = si> : vop {
field bits<6> SI = si;
field bits<6> VI = vi;
field bits<9> SI3 = {1, 0, 0, si{5-0}};
field bits<10> VI3 = {0, 1, 0, 0, vi{5-0}};
}
// Specify a VOP2 opcode for SI and VOP3 opcode for VI
// that doesn't have VOP2 encoding on VI
class vop23 <bits<6> si, bits<10> vi> : vop2 <si> {
let VI3 = vi;
}
class vop3 <bits<9> si, bits<10> vi = {0, si}> : vop {
let SI3 = si;
let VI3 = vi;
}
// Execpt for the NONE field, this must be kept in sync with the
// SIEncodingFamily enum in AMDGPUInstrInfo.cpp
def SIEncodingFamily {
int NONE = -1;
int SI = 0;
int VI = 1;
}
//===----------------------------------------------------------------------===//
// SI DAG Nodes
//===----------------------------------------------------------------------===//
def SIload_constant : SDNode<"AMDGPUISD::LOAD_CONSTANT",
SDTypeProfile<1, 2, [SDTCisVT<0, f32>, SDTCisVT<1, v4i32>, SDTCisVT<2, i32>]>,
[SDNPMayLoad, SDNPMemOperand]
>;
def SIatomic_inc : SDNode<"AMDGPUISD::ATOMIC_INC", SDTAtomic2,
[SDNPMayLoad, SDNPMayStore, SDNPMemOperand, SDNPHasChain]
>;
def SIatomic_dec : SDNode<"AMDGPUISD::ATOMIC_DEC", SDTAtomic2,
[SDNPMayLoad, SDNPMayStore, SDNPMemOperand, SDNPHasChain]
>;
def SItbuffer_store : SDNode<"AMDGPUISD::TBUFFER_STORE_FORMAT",
SDTypeProfile<0, 13,
[SDTCisVT<0, v4i32>, // rsrc(SGPR)
SDTCisVT<1, iAny>, // vdata(VGPR)
SDTCisVT<2, i32>, // num_channels(imm)
SDTCisVT<3, i32>, // vaddr(VGPR)
SDTCisVT<4, i32>, // soffset(SGPR)
SDTCisVT<5, i32>, // inst_offset(imm)
SDTCisVT<6, i32>, // dfmt(imm)
SDTCisVT<7, i32>, // nfmt(imm)
SDTCisVT<8, i32>, // offen(imm)
SDTCisVT<9, i32>, // idxen(imm)
SDTCisVT<10, i32>, // glc(imm)
SDTCisVT<11, i32>, // slc(imm)
SDTCisVT<12, i32> // tfe(imm)
]>,
[SDNPMayStore, SDNPMemOperand, SDNPHasChain]
>;
def SIload_input : SDNode<"AMDGPUISD::LOAD_INPUT",
SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisVT<1, v4i32>, SDTCisVT<2, i16>,
SDTCisVT<3, i32>]>
>;
class SDSample<string opcode> : SDNode <opcode,
SDTypeProfile<1, 4, [SDTCisVT<0, v4f32>, SDTCisVT<2, v8i32>,
SDTCisVT<3, v4i32>, SDTCisVT<4, i32>]>
>;
def SIsample : SDSample<"AMDGPUISD::SAMPLE">;
def SIsampleb : SDSample<"AMDGPUISD::SAMPLEB">;
def SIsampled : SDSample<"AMDGPUISD::SAMPLED">;
def SIsamplel : SDSample<"AMDGPUISD::SAMPLEL">;
def SIpc_add_rel_offset : SDNode<"AMDGPUISD::PC_ADD_REL_OFFSET",
SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>, SDTCisSameAs<0,1>]>
>;
class MubufLoad <SDPatternOperator op> : PatFrag <
(ops node:$ptr), (op node:$ptr), [{
const MemSDNode *LD = cast<MemSDNode>(N);
return LD->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
LD->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS;
}]>;
def mubuf_load : MubufLoad <load>;
def mubuf_az_extloadi8 : MubufLoad <az_extloadi8>;
def mubuf_sextloadi8 : MubufLoad <sextloadi8>;
def mubuf_az_extloadi16 : MubufLoad <az_extloadi16>;
def mubuf_sextloadi16 : MubufLoad <sextloadi16>;
def mubuf_load_atomic : MubufLoad <atomic_load>;
//===----------------------------------------------------------------------===//
// PatFrags for global memory operations
//===----------------------------------------------------------------------===//
def atomic_inc_global : global_binary_atomic_op<SIatomic_inc>;
def atomic_dec_global : global_binary_atomic_op<SIatomic_dec>;
//===----------------------------------------------------------------------===//
// SDNodes and PatFrag for local loads and stores to enable s_mov_b32 m0, -1
// to be glued to the memory instructions.
//===----------------------------------------------------------------------===//
def SIld_local : SDNode <"ISD::LOAD", SDTLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand, SDNPInGlue]
>;
def si_ld_local : PatFrag <(ops node:$ptr), (SIld_local node:$ptr), [{
return cast<LoadSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}]>;
def si_load_local : PatFrag <(ops node:$ptr), (si_ld_local node:$ptr), [{
return cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED &&
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
}]>;
def si_load_local_align8 : Aligned8Bytes <
(ops node:$ptr), (si_load_local node:$ptr)
>;
def si_sextload_local : PatFrag <(ops node:$ptr), (si_ld_local node:$ptr), [{
return cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
}]>;
def si_az_extload_local : AZExtLoadBase <si_ld_local>;
multiclass SIExtLoadLocal <PatFrag ld_node> {
def _i8 : PatFrag <(ops node:$ptr), (ld_node node:$ptr),
[{return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i8;}]
>;
def _i16 : PatFrag <(ops node:$ptr), (ld_node node:$ptr),
[{return cast<LoadSDNode>(N)->getMemoryVT() == MVT::i16;}]
>;
}
defm si_sextload_local : SIExtLoadLocal <si_sextload_local>;
defm si_az_extload_local : SIExtLoadLocal <si_az_extload_local>;
def SIst_local : SDNode <"ISD::STORE", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand, SDNPInGlue]
>;
def si_st_local : PatFrag <
(ops node:$val, node:$ptr), (SIst_local node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
}]>;
def si_store_local : PatFrag <
(ops node:$val, node:$ptr), (si_st_local node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED &&
!cast<StoreSDNode>(N)->isTruncatingStore();
}]>;
def si_store_local_align8 : Aligned8Bytes <
(ops node:$val, node:$ptr), (si_store_local node:$val, node:$ptr)
>;
def si_truncstore_local : PatFrag <
(ops node:$val, node:$ptr), (si_st_local node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->isTruncatingStore();
}]>;
def si_truncstore_local_i8 : PatFrag <
(ops node:$val, node:$ptr), (si_truncstore_local node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def si_truncstore_local_i16 : PatFrag <
(ops node:$val, node:$ptr), (si_truncstore_local node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def si_setcc_uniform : PatFrag <
(ops node:$lhs, node:$rhs, node:$cond),
(setcc node:$lhs, node:$rhs, node:$cond), [{
for (SDNode *Use : N->uses()) {
if (Use->isMachineOpcode() || Use->getOpcode() != ISD::CopyToReg)
return false;
unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
if (Reg != AMDGPU::SCC)
return false;
}
return true;
}]>;
def si_uniform_br : PatFrag <
(ops node:$cond, node:$bb), (brcond node:$cond, node:$bb), [{
return isUniformBr(N);
}]>;
def si_uniform_br_scc : PatFrag <
(ops node:$cond, node:$bb), (si_uniform_br node:$cond, node:$bb), [{
return isCBranchSCC(N);
}]>;
multiclass SIAtomicM0Glue2 <string op_name, bit is_amdgpu = 0> {
def _glue : SDNode <
!if(is_amdgpu, "AMDGPUISD", "ISD")#"::ATOMIC_"#op_name, SDTAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand, SDNPInGlue]
>;
def _local : local_binary_atomic_op <!cast<SDNode>(NAME#"_glue")>;
}
defm si_atomic_load_add : SIAtomicM0Glue2 <"LOAD_ADD">;
defm si_atomic_load_sub : SIAtomicM0Glue2 <"LOAD_SUB">;
defm si_atomic_inc : SIAtomicM0Glue2 <"INC", 1>;
defm si_atomic_dec : SIAtomicM0Glue2 <"DEC", 1>;
defm si_atomic_load_and : SIAtomicM0Glue2 <"LOAD_AND">;
defm si_atomic_load_min : SIAtomicM0Glue2 <"LOAD_MIN">;
defm si_atomic_load_max : SIAtomicM0Glue2 <"LOAD_MAX">;
defm si_atomic_load_or : SIAtomicM0Glue2 <"LOAD_OR">;
defm si_atomic_load_xor : SIAtomicM0Glue2 <"LOAD_XOR">;
defm si_atomic_load_umin : SIAtomicM0Glue2 <"LOAD_UMIN">;
defm si_atomic_load_umax : SIAtomicM0Glue2 <"LOAD_UMAX">;
defm si_atomic_swap : SIAtomicM0Glue2 <"SWAP">;
def si_atomic_cmp_swap_glue : SDNode <"ISD::ATOMIC_CMP_SWAP", SDTAtomic3,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand, SDNPInGlue]
>;
defm si_atomic_cmp_swap : AtomicCmpSwapLocal <si_atomic_cmp_swap_glue>;
def as_i1imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i1);
}]>;
def as_i8imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i8);
}]>;
def as_i16imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i16);
}]>;
def as_i32imm: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
}]>;
def as_i64imm: SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i64);
}]>;
// Copied from the AArch64 backend:
def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(
N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
}]>;
// Copied from the AArch64 backend:
def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(
N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
}]>;
def SIMM16bit : PatLeaf <(imm),
[{return isInt<16>(N->getSExtValue());}]
>;
def IMM20bit : PatLeaf <(imm),
[{return isUInt<20>(N->getZExtValue());}]
>;
def mubuf_vaddr_offset : PatFrag<
(ops node:$ptr, node:$offset, node:$imm_offset),
(add (add node:$ptr, node:$offset), node:$imm_offset)
>;
class InlineImm <ValueType vt> : PatLeaf <(vt imm), [{
return isInlineImmediate(N);
}]>;
class InlineFPImm <ValueType vt> : PatLeaf <(vt fpimm), [{
return isInlineImmediate(N);
}]>;
class SGPRImm <dag frag> : PatLeaf<frag, [{
if (Subtarget->getGeneration() < SISubtarget::SOUTHERN_ISLANDS) {
return false;
}
const SIRegisterInfo *SIRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
U != E; ++U) {
const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
if (RC && SIRI->isSGPRClass(RC))
return true;
}
return false;
}]>;
//===----------------------------------------------------------------------===//
// Custom Operands
//===----------------------------------------------------------------------===//
def SoppBrTarget : AsmOperandClass {
let Name = "SoppBrTarget";
let ParserMethod = "parseSOppBrTarget";
}
def sopp_brtarget : Operand<OtherVT> {
let EncoderMethod = "getSOPPBrEncoding";
let OperandType = "OPERAND_PCREL";
let ParserMatchClass = SoppBrTarget;
}
def si_ga : Operand<iPTR>;
def InterpSlot : Operand<i32> {
let PrintMethod = "printInterpSlot";
}
def SendMsgMatchClass : AsmOperandClass {
let Name = "SendMsg";
let PredicateMethod = "isSendMsg";
let ParserMethod = "parseSendMsgOp";
let RenderMethod = "addImmOperands";
}
def SendMsgImm : Operand<i32> {
let PrintMethod = "printSendMsg";
let ParserMatchClass = SendMsgMatchClass;
}
def SWaitMatchClass : AsmOperandClass {
let Name = "SWaitCnt";
let RenderMethod = "addImmOperands";
let ParserMethod = "parseSWaitCntOps";
}
def WAIT_FLAG : Operand <i32> {
let ParserMatchClass = SWaitMatchClass;
let PrintMethod = "printWaitFlag";
}
include "SIInstrFormats.td"
include "VIInstrFormats.td"
class NamedMatchClass<string CName, bit Optional = 1> : AsmOperandClass {
let Name = "Imm"#CName;
let PredicateMethod = "is"#CName;
let ParserMethod = !if(Optional, "parseOptionalOperand", "parse"#CName);
let RenderMethod = "addImmOperands";
let IsOptional = Optional;
let DefaultMethod = !if(Optional, "default"#CName, ?);
}
class NamedOperandBit<string Name, AsmOperandClass MatchClass> : Operand<i1> {
let PrintMethod = "print"#Name;
let ParserMatchClass = MatchClass;
}
class NamedOperandU8<string Name, AsmOperandClass MatchClass> : Operand<i8> {
let PrintMethod = "print"#Name;
let ParserMatchClass = MatchClass;
}
class NamedOperandU16<string Name, AsmOperandClass MatchClass> : Operand<i16> {
let PrintMethod = "print"#Name;
let ParserMatchClass = MatchClass;
}
class NamedOperandU32<string Name, AsmOperandClass MatchClass> : Operand<i32> {
let PrintMethod = "print"#Name;
let ParserMatchClass = MatchClass;
}
let OperandType = "OPERAND_IMMEDIATE" in {
def offen : NamedOperandBit<"Offen", NamedMatchClass<"Offen">>;
def idxen : NamedOperandBit<"Idxen", NamedMatchClass<"Idxen">>;
def addr64 : NamedOperandBit<"Addr64", NamedMatchClass<"Addr64">>;
def offset : NamedOperandU16<"Offset", NamedMatchClass<"Offset">>;
def offset0 : NamedOperandU8<"Offset0", NamedMatchClass<"Offset0">>;
def offset1 : NamedOperandU8<"Offset1", NamedMatchClass<"Offset1">>;
def gds : NamedOperandBit<"GDS", NamedMatchClass<"GDS">>;
def omod : NamedOperandU32<"OModSI", NamedMatchClass<"OModSI">>;
def clampmod : NamedOperandBit<"ClampSI", NamedMatchClass<"ClampSI">>;
def glc : NamedOperandBit<"GLC", NamedMatchClass<"GLC">>;
def slc : NamedOperandBit<"SLC", NamedMatchClass<"SLC">>;
def tfe : NamedOperandBit<"TFE", NamedMatchClass<"TFE">>;
def unorm : NamedOperandBit<"UNorm", NamedMatchClass<"UNorm">>;
def da : NamedOperandBit<"DA", NamedMatchClass<"DA">>;
def r128 : NamedOperandBit<"R128", NamedMatchClass<"R128">>;
def lwe : NamedOperandBit<"LWE", NamedMatchClass<"LWE">>;
def dmask : NamedOperandU16<"DMask", NamedMatchClass<"DMask">>;
def dpp_ctrl : NamedOperandU32<"DPPCtrl", NamedMatchClass<"DPPCtrl", 0>>;
def row_mask : NamedOperandU32<"RowMask", NamedMatchClass<"RowMask">>;
def bank_mask : NamedOperandU32<"BankMask", NamedMatchClass<"BankMask">>;
def bound_ctrl : NamedOperandBit<"BoundCtrl", NamedMatchClass<"BoundCtrl">>;
def dst_sel : NamedOperandU32<"SDWADstSel", NamedMatchClass<"SDWADstSel">>;
def src0_sel : NamedOperandU32<"SDWASrc0Sel", NamedMatchClass<"SDWASrc0Sel">>;
def src1_sel : NamedOperandU32<"SDWASrc1Sel", NamedMatchClass<"SDWASrc1Sel">>;
def dst_unused : NamedOperandU32<"SDWADstUnused", NamedMatchClass<"SDWADstUnused">>;
def hwreg : NamedOperandU16<"Hwreg", NamedMatchClass<"Hwreg", 0>>;
} // End OperandType = "OPERAND_IMMEDIATE"
// 32-bit VALU immediate operand that uses the constant bus.
def KImmFP32MatchClass : AsmOperandClass {
let Name = "KImmFP32";
let PredicateMethod = "isKImmFP32";
let ParserMethod = "parseImm";
let RenderMethod = "addKImmFP32Operands";
}
def f32kimm : Operand<i32> {
let OperandNamespace = "AMDGPU";
let OperandType = "OPERAND_KIMM32";
let PrintMethod = "printU32ImmOperand";
let ParserMatchClass = KImmFP32MatchClass;
}
def VOPDstS64 : VOPDstOperand <SReg_64>;
class FPInputModsMatchClass <int opSize> : AsmOperandClass {
let Name = "RegOrImmWithFP"#opSize#"InputMods";
let ParserMethod = "parseRegOrImmWithFPInputMods";
let PredicateMethod = "isRegOrImmWithFP"#opSize#"InputMods";
}
def FP32InputModsMatchClass : FPInputModsMatchClass<32>;
def FP64InputModsMatchClass : FPInputModsMatchClass<64>;
class InputMods <AsmOperandClass matchClass> : Operand <i32> {
let OperandNamespace = "AMDGPU";
let OperandType = "OPERAND_INPUT_MODS";
let ParserMatchClass = matchClass;
}
class FPInputMods <FPInputModsMatchClass matchClass> : InputMods <matchClass> {
let PrintMethod = "printOperandAndFPInputMods";
}
def FP32InputMods : FPInputMods<FP32InputModsMatchClass>;
def FP64InputMods : FPInputMods<FP64InputModsMatchClass>;
class IntInputModsMatchClass <int opSize> : AsmOperandClass {
let Name = "RegOrImmWithInt"#opSize#"InputMods";
let ParserMethod = "parseRegOrImmWithIntInputMods";
let PredicateMethod = "isRegOrImmWithInt"#opSize#"InputMods";
}
def Int32InputModsMatchClass : IntInputModsMatchClass<32>;
def Int64InputModsMatchClass : IntInputModsMatchClass<64>;
class IntInputMods <IntInputModsMatchClass matchClass> : InputMods <matchClass> {
let PrintMethod = "printOperandAndIntInputMods";
}
def Int32InputMods : IntInputMods<Int32InputModsMatchClass>;
def Int64InputMods : IntInputMods<Int64InputModsMatchClass>;
//===----------------------------------------------------------------------===//
// Complex patterns
//===----------------------------------------------------------------------===//
def DS1Addr1Offset : ComplexPattern<i32, 2, "SelectDS1Addr1Offset">;
def DS64Bit4ByteAligned : ComplexPattern<i32, 3, "SelectDS64Bit4ByteAligned">;
def MUBUFAddr32 : ComplexPattern<i64, 9, "SelectMUBUFAddr32">;
def MUBUFAddr64 : ComplexPattern<i64, 7, "SelectMUBUFAddr64">;
def MUBUFAddr64Atomic : ComplexPattern<i64, 5, "SelectMUBUFAddr64">;
def MUBUFScratch : ComplexPattern<i64, 4, "SelectMUBUFScratch">;
def MUBUFOffset : ComplexPattern<i64, 6, "SelectMUBUFOffset">;
def MUBUFOffsetNoGLC : ComplexPattern<i64, 3, "SelectMUBUFOffset">;
def MUBUFOffsetAtomic : ComplexPattern<i64, 4, "SelectMUBUFOffset">;
def MUBUFIntrinsicOffset : ComplexPattern<i32, 2, "SelectMUBUFIntrinsicOffset">;
def MUBUFIntrinsicVOffset : ComplexPattern<i32, 3, "SelectMUBUFIntrinsicVOffset">;
def MOVRELOffset : ComplexPattern<i32, 2, "SelectMOVRELOffset">;
def VOP3Mods0 : ComplexPattern<untyped, 4, "SelectVOP3Mods0">;
def VOP3NoMods0 : ComplexPattern<untyped, 4, "SelectVOP3NoMods0">;
def VOP3Mods0Clamp : ComplexPattern<untyped, 3, "SelectVOP3Mods0Clamp">;
def VOP3Mods0Clamp0OMod : ComplexPattern<untyped, 4, "SelectVOP3Mods0Clamp0OMod">;
def VOP3Mods : ComplexPattern<untyped, 2, "SelectVOP3Mods">;
def VOP3NoMods : ComplexPattern<untyped, 2, "SelectVOP3NoMods">;
//===----------------------------------------------------------------------===//
// SI assembler operands
//===----------------------------------------------------------------------===//
def SIOperand {
int ZERO = 0x80;
int VCC = 0x6A;
int FLAT_SCR = 0x68;
}
def SRCMODS {
int NONE = 0;
int NEG = 1;
}
def DSTCLAMP {
int NONE = 0;
}
def DSTOMOD {
int NONE = 0;
}
//===----------------------------------------------------------------------===//
//
// SI Instruction multiclass helpers.
//
// Instructions with _32 take 32-bit operands.
// Instructions with _64 take 64-bit operands.
//
// VOP_* instructions can use either a 32-bit or 64-bit encoding. The 32-bit
// encoding is the standard encoding, but instruction that make use of
// any of the instruction modifiers must use the 64-bit encoding.
//
// Instructions with _e32 use the 32-bit encoding.
// Instructions with _e64 use the 64-bit encoding.
//
//===----------------------------------------------------------------------===//
class SIMCInstr <string pseudo, int subtarget> {
string PseudoInstr = pseudo;
int Subtarget = subtarget;
}
//===----------------------------------------------------------------------===//
// EXP classes
//===----------------------------------------------------------------------===//
class EXPCommon : InstSI<
(outs),
(ins i32imm:$en, i32imm:$tgt, i32imm:$compr, i32imm:$done, i32imm:$vm,
VGPR_32:$src0, VGPR_32:$src1, VGPR_32:$src2, VGPR_32:$src3),
"exp $en, $tgt, $compr, $done, $vm, $src0, $src1, $src2, $src3",
[] > {
let EXP_CNT = 1;
let Uses = [EXEC];
let SchedRW = [WriteExport];
}
multiclass EXP_m {
let isPseudo = 1, isCodeGenOnly = 1 in {
def "" : EXPCommon, SIMCInstr <"exp", SIEncodingFamily.NONE> ;
}
def _si : EXPCommon, SIMCInstr <"exp", SIEncodingFamily.SI>, EXPe {
let DecoderNamespace="SICI";
let DisableDecoder = DisableSIDecoder;
}
def _vi : EXPCommon, SIMCInstr <"exp", SIEncodingFamily.VI>, EXPe_vi {
let DecoderNamespace="VI";
let DisableDecoder = DisableVIDecoder;
}
}
//===----------------------------------------------------------------------===//
// Vector ALU classes
//===----------------------------------------------------------------------===//
class getNumSrcArgs<ValueType Src0, ValueType Src1, ValueType Src2> {
int ret =
!if (!eq(Src0.Value, untyped.Value), 0,
!if (!eq(Src1.Value, untyped.Value), 1, // VOP1
!if (!eq(Src2.Value, untyped.Value), 2, // VOP2
3))); // VOP3
}
// Returns the register class to use for the destination of VOP[123C]
// instructions for the given VT.
class getVALUDstForVT<ValueType VT> {
RegisterOperand ret = !if(!eq(VT.Size, 32), VOPDstOperand<VGPR_32>,
!if(!eq(VT.Size, 64), VOPDstOperand<VReg_64>,
!if(!eq(VT.Size, 16), VOPDstOperand<VGPR_32>,
VOPDstOperand<SReg_64>))); // else VT == i1
}
// Returns the register class to use for source 0 of VOP[12C]
// instructions for the given VT.
class getVOPSrc0ForVT<ValueType VT> {
bit isFP = !if(!eq(VT.Value, f16.Value), 1,
!if(!eq(VT.Value, f32.Value), 1,
!if(!eq(VT.Value, f64.Value), 1,
0)));
RegisterOperand ret = !if(isFP,
!if(!eq(VT.Size, 64), VSrc_f64, VSrc_f32),
!if(!eq(VT.Size, 64), VSrc_b64, VSrc_b32));
}
// Returns the vreg register class to use for source operand given VT
class getVregSrcForVT<ValueType VT> {
RegisterClass ret = !if(!eq(VT.Size, 64), VReg_64, VGPR_32);
}
// Returns the register class to use for sources of VOP3 instructions for the
// given VT.
class getVOP3SrcForVT<ValueType VT> {
bit isFP = !if(!eq(VT.Value, f16.Value), 1,
!if(!eq(VT.Value, f32.Value), 1,
!if(!eq(VT.Value, f64.Value), 1,
0)));
RegisterOperand ret =
!if(!eq(VT.Size, 64),
!if(isFP,
VCSrc_f64,
VCSrc_b64),
!if(!eq(VT.Value, i1.Value),
SCSrc_b64,
!if(isFP,
VCSrc_f32,
VCSrc_b32)
)
);
}
// Returns 1 if the source arguments have modifiers, 0 if they do not.
// XXX - do f16 instructions?
class hasModifiers<ValueType SrcVT> {
bit ret =
!if(!eq(SrcVT.Value, f32.Value), 1,
!if(!eq(SrcVT.Value, f64.Value), 1,
0));
}
// Return type of input modifiers operand for specified input operand
class getSrcMod <ValueType VT> {
bit isFP = !if(!eq(VT.Value, f16.Value), 1,
!if(!eq(VT.Value, f32.Value), 1,
!if(!eq(VT.Value, f64.Value), 1,
0)));
Operand ret = !if(!eq(VT.Size, 64),
!if(isFP, FP64InputMods, Int64InputMods),
!if(isFP, FP32InputMods, Int32InputMods));
}
// Returns the input arguments for VOP[12C] instructions for the given SrcVT.
class getIns32 <RegisterOperand Src0RC, RegisterClass Src1RC, int NumSrcArgs> {
dag ret = !if(!eq(NumSrcArgs, 1), (ins Src0RC:$src0), // VOP1
!if(!eq(NumSrcArgs, 2), (ins Src0RC:$src0, Src1RC:$src1), // VOP2
(ins)));
}
// Returns the input arguments for VOP3 instructions for the given SrcVT.
class getIns64 <RegisterOperand Src0RC, RegisterOperand Src1RC,
RegisterOperand Src2RC, int NumSrcArgs,
bit HasModifiers, Operand Src0Mod, Operand Src1Mod,
Operand Src2Mod> {
dag ret =
!if (!eq(NumSrcArgs, 0),
// VOP1 without input operands (V_NOP, V_CLREXCP)
(ins),
/* else */
!if (!eq(NumSrcArgs, 1),
!if (!eq(HasModifiers, 1),
// VOP1 with modifiers
(ins Src0Mod:$src0_modifiers, Src0RC:$src0,
clampmod:$clamp, omod:$omod)
/* else */,
// VOP1 without modifiers
(ins Src0RC:$src0)
/* endif */ ),
!if (!eq(NumSrcArgs, 2),
!if (!eq(HasModifiers, 1),
// VOP 2 with modifiers
(ins Src0Mod:$src0_modifiers, Src0RC:$src0,
Src1Mod:$src1_modifiers, Src1RC:$src1,
clampmod:$clamp, omod:$omod)
/* else */,
// VOP2 without modifiers
(ins Src0RC:$src0, Src1RC:$src1)
/* endif */ )
/* NumSrcArgs == 3 */,
!if (!eq(HasModifiers, 1),
// VOP3 with modifiers
(ins Src0Mod:$src0_modifiers, Src0RC:$src0,
Src1Mod:$src1_modifiers, Src1RC:$src1,
Src2Mod:$src2_modifiers, Src2RC:$src2,
clampmod:$clamp, omod:$omod)
/* else */,
// VOP3 without modifiers
(ins Src0RC:$src0, Src1RC:$src1, Src2RC:$src2)
/* endif */ ))));
}
class getInsDPP <RegisterClass Src0RC, RegisterClass Src1RC, int NumSrcArgs,
bit HasModifiers, Operand Src0Mod, Operand Src1Mod> {
dag ret = !if (!eq(NumSrcArgs, 0),
// VOP1 without input operands (V_NOP)
(ins dpp_ctrl:$dpp_ctrl, row_mask:$row_mask,
bank_mask:$bank_mask, bound_ctrl:$bound_ctrl),
!if (!eq(NumSrcArgs, 1),
!if (!eq(HasModifiers, 1),
// VOP1_DPP with modifiers
(ins Src0Mod:$src0_modifiers, Src0RC:$src0,
dpp_ctrl:$dpp_ctrl, row_mask:$row_mask,
bank_mask:$bank_mask, bound_ctrl:$bound_ctrl)
/* else */,
// VOP1_DPP without modifiers
(ins Src0RC:$src0, dpp_ctrl:$dpp_ctrl, row_mask:$row_mask,
bank_mask:$bank_mask, bound_ctrl:$bound_ctrl)
/* endif */)
/* NumSrcArgs == 2 */,
!if (!eq(HasModifiers, 1),
// VOP2_DPP with modifiers
(ins Src0Mod:$src0_modifiers, Src0RC:$src0,
Src1Mod:$src1_modifiers, Src1RC:$src1,
dpp_ctrl:$dpp_ctrl, row_mask:$row_mask,
bank_mask:$bank_mask, bound_ctrl:$bound_ctrl)
/* else */,
// VOP2_DPP without modifiers
(ins Src0RC:$src0, Src1RC:$src1, dpp_ctrl:$dpp_ctrl,
row_mask:$row_mask, bank_mask:$bank_mask,
bound_ctrl:$bound_ctrl)
/* endif */)));
}
class getInsSDWA <RegisterClass Src0RC, RegisterClass Src1RC, int NumSrcArgs,
bit HasFloatModifiers, Operand Src0Mod, Operand Src1Mod,
ValueType DstVT> {
dag ret = !if(!eq(NumSrcArgs, 0),
// VOP1 without input operands (V_NOP)
(ins),
!if(!eq(NumSrcArgs, 1),
!if(HasFloatModifiers,
// VOP1_SDWA with float modifiers
(ins Src0Mod:$src0_fmodifiers, Src0RC:$src0,
clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused,
src0_sel:$src0_sel),
// VOP1_SDWA with int modifiers
(ins Src0Mod:$src0_imodifiers, Src0RC:$src0,
clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused,
src0_sel:$src0_sel))
/* NumSrcArgs == 2 */,
!if(HasFloatModifiers,
!if(!eq(DstVT.Size, 1),
// VOPC_SDWA with float modifiers
(ins Src0Mod:$src0_fmodifiers, Src0RC:$src0,
Src1Mod:$src1_fmodifiers, Src1RC:$src1,
clampmod:$clamp, src0_sel:$src0_sel, src1_sel:$src1_sel),
// VOP2_SDWA or VOPC_SDWA with float modifiers
(ins Src0Mod:$src0_fmodifiers, Src0RC:$src0,
Src1Mod:$src1_fmodifiers, Src1RC:$src1,
clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused,
src0_sel:$src0_sel, src1_sel:$src1_sel)),
!if(!eq(DstVT.Size, 1),
// VOPC_SDWA with int modifiers
(ins Src0Mod:$src0_imodifiers, Src0RC:$src0,
Src1Mod:$src1_imodifiers, Src1RC:$src1,
clampmod:$clamp, src0_sel:$src0_sel, src1_sel:$src1_sel),
// VOP2_SDWA or VOPC_SDWA with int modifiers
(ins Src0Mod:$src0_imodifiers, Src0RC:$src0,
Src1Mod:$src1_imodifiers, Src1RC:$src1,
clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused,
src0_sel:$src0_sel, src1_sel:$src1_sel))
/* endif */)));
}
// Outs for DPP and SDWA
class getOutsExt <bit HasDst, ValueType DstVT, RegisterOperand DstRCDPP> {
dag ret = !if(HasDst,
!if(!eq(DstVT.Size, 1),
(outs), // no dst for VOPC, we use "vcc"-token as dst in SDWA VOPC instructions
(outs DstRCDPP:$vdst)),
(outs)); // V_NOP
}
// Returns the assembly string for the inputs and outputs of a VOP[12C]
// instruction. This does not add the _e32 suffix, so it can be reused
// by getAsm64.
class getAsm32 <bit HasDst, int NumSrcArgs, ValueType DstVT = i32> {
string dst = !if(!eq(DstVT.Size, 1), "$sdst", "$vdst"); // use $sdst for VOPC
string src0 = ", $src0";
string src1 = ", $src1";
string src2 = ", $src2";
string ret = !if(HasDst, dst, "") #
!if(!eq(NumSrcArgs, 1), src0, "") #
!if(!eq(NumSrcArgs, 2), src0#src1, "") #
!if(!eq(NumSrcArgs, 3), src0#src1#src2, "");
}
// Returns the assembly string for the inputs and outputs of a VOP3
// instruction.
class getAsm64 <bit HasDst, int NumSrcArgs, bit HasModifiers, ValueType DstVT = i32> {
string dst = !if(!eq(DstVT.Size, 1), "$sdst", "$vdst"); // use $sdst for VOPC
string src0 = !if(!eq(NumSrcArgs, 1), "$src0_modifiers", "$src0_modifiers,");
string src1 = !if(!eq(NumSrcArgs, 1), "",
!if(!eq(NumSrcArgs, 2), " $src1_modifiers",
" $src1_modifiers,"));
string src2 = !if(!eq(NumSrcArgs, 3), " $src2_modifiers", "");
string ret =
!if(!eq(HasModifiers, 0),
getAsm32<HasDst, NumSrcArgs, DstVT>.ret,
dst#", "#src0#src1#src2#"$clamp"#"$omod");
}
class getAsmDPP <bit HasDst, int NumSrcArgs, bit HasModifiers, ValueType DstVT = i32> {
string dst = !if(HasDst,
!if(!eq(DstVT.Size, 1),
"$sdst",
"$vdst"),
""); // use $sdst for VOPC
string src0 = !if(!eq(NumSrcArgs, 1), "$src0_modifiers", "$src0_modifiers,");
string src1 = !if(!eq(NumSrcArgs, 1), "",
!if(!eq(NumSrcArgs, 2), " $src1_modifiers",
" $src1_modifiers,"));
string args = !if(!eq(HasModifiers, 0),
getAsm32<0, NumSrcArgs, DstVT>.ret,
", "#src0#src1);
string ret = dst#args#" $dpp_ctrl$row_mask$bank_mask$bound_ctrl";
}
class getAsmSDWA <bit HasDst, int NumSrcArgs, bit HasFloatModifiers,
ValueType DstVT = i32> {
string dst = !if(HasDst,
!if(!eq(DstVT.Size, 1),
" vcc", // use vcc token as dst for VOPC instructioins
"$vdst"),
"");
string src0 = !if(HasFloatModifiers, "$src0_fmodifiers", "$src0_imodifiers");
string src1 = !if(HasFloatModifiers, "$src1_fmodifiers", "$src1_imodifiers");
string args = !if(!eq(NumSrcArgs, 0),
"",
!if(!eq(NumSrcArgs, 1),
", "#src0#"$clamp",
", "#src0#", "#src1#"$clamp"
)
);
string sdwa = !if(!eq(NumSrcArgs, 0),
"",
!if(!eq(NumSrcArgs, 1),
" $dst_sel $dst_unused $src0_sel",
!if(!eq(DstVT.Size, 1),
" $src0_sel $src1_sel", // No dst_sel and dst_unused for VOPC
" $dst_sel $dst_unused $src0_sel $src1_sel"
)
)
);
string ret = dst#args#sdwa;
}
// Function that checks if instruction supports DPP and SDWA
class getHasExt <int NumSrcArgs, ValueType DstVT = i32, ValueType Src0VT = i32,
ValueType Src1VT = i32> {
bit ret = !if(!eq(NumSrcArgs, 3),
0, // NumSrcArgs == 3 - No DPP or SDWA for VOP3
!if(!eq(DstVT.Size, 64),
0, // 64-bit dst - No DPP or SDWA for 64-bit operands
!if(!eq(Src0VT.Size, 64),
0, // 64-bit src0
!if(!eq(Src0VT.Size, 64),
0, // 64-bit src2
1
)
)
)
);
}
class VOPProfile <list<ValueType> _ArgVT> {
field list<ValueType> ArgVT = _ArgVT;
field ValueType DstVT = ArgVT[0];
field ValueType Src0VT = ArgVT[1];
field ValueType Src1VT = ArgVT[2];
field ValueType Src2VT = ArgVT[3];
field RegisterOperand DstRC = getVALUDstForVT<DstVT>.ret;
field RegisterOperand DstRCDPP = getVALUDstForVT<DstVT>.ret;
field RegisterOperand DstRCSDWA = getVALUDstForVT<DstVT>.ret;
field RegisterOperand Src0RC32 = getVOPSrc0ForVT<Src0VT>.ret;
field RegisterClass Src1RC32 = getVregSrcForVT<Src1VT>.ret;
field RegisterOperand Src0RC64 = getVOP3SrcForVT<Src0VT>.ret;
field RegisterOperand Src1RC64 = getVOP3SrcForVT<Src1VT>.ret;
field RegisterOperand Src2RC64 = getVOP3SrcForVT<Src2VT>.ret;
field RegisterClass Src0DPP = getVregSrcForVT<Src0VT>.ret;
field RegisterClass Src1DPP = getVregSrcForVT<Src1VT>.ret;
field RegisterClass Src0SDWA = getVregSrcForVT<Src0VT>.ret;
field RegisterClass Src1SDWA = getVregSrcForVT<Src1VT>.ret;
field Operand Src0Mod = getSrcMod<Src0VT>.ret;
field Operand Src1Mod = getSrcMod<Src1VT>.ret;
field Operand Src2Mod = getSrcMod<Src2VT>.ret;
field bit HasDst = !if(!eq(DstVT.Value, untyped.Value), 0, 1);
field bit HasDst32 = HasDst;
field int NumSrcArgs = getNumSrcArgs<Src0VT, Src1VT, Src2VT>.ret;
field bit HasModifiers = hasModifiers<Src0VT>.ret;
field bit HasExt = getHasExt<NumSrcArgs, DstVT, Src0VT, Src1VT>.ret;
field dag Outs = !if(HasDst,(outs DstRC:$vdst),(outs));
// VOP3b instructions are a special case with a second explicit
// output. This is manually overridden for them.
field dag Outs32 = Outs;
field dag Outs64 = Outs;
field dag OutsDPP = getOutsExt<HasDst, DstVT, DstRCDPP>.ret;
field dag OutsSDWA = getOutsExt<HasDst, DstVT, DstRCDPP>.ret;
field dag Ins32 = getIns32<Src0RC32, Src1RC32, NumSrcArgs>.ret;
field dag Ins64 = getIns64<Src0RC64, Src1RC64, Src2RC64, NumSrcArgs,
HasModifiers, Src0Mod, Src1Mod, Src2Mod>.ret;
field dag InsDPP = getInsDPP<Src0DPP, Src1DPP, NumSrcArgs,
HasModifiers, Src0Mod, Src1Mod>.ret;
field dag InsSDWA = getInsSDWA<Src0SDWA, Src1SDWA, NumSrcArgs,
HasModifiers, Src0Mod, Src1Mod, DstVT>.ret;
field string Asm32 = getAsm32<HasDst, NumSrcArgs, DstVT>.ret;
field string Asm64 = getAsm64<HasDst, NumSrcArgs, HasModifiers, DstVT>.ret;
field string AsmDPP = getAsmDPP<HasDst, NumSrcArgs, HasModifiers, DstVT>.ret;
field string AsmSDWA = getAsmSDWA<HasDst, NumSrcArgs, HasModifiers, DstVT>.ret;
}
class VOP_NO_EXT <VOPProfile p> : VOPProfile <p.ArgVT> {
let HasExt = 0;
}
// FIXME: I think these F16/I16 profiles will need to use f16/i16 types in order
// for the instruction patterns to work.
def VOP_F16_F16 : VOPProfile <[f16, f16, untyped, untyped]>;
def VOP_F16_I16 : VOPProfile <[f16, i32, untyped, untyped]>;
def VOP_I16_F16 : VOPProfile <[i32, f16, untyped, untyped]>;
def VOP_F16_F16_F16 : VOPProfile <[f16, f16, f16, untyped]>;
def VOP_F16_F16_I16 : VOPProfile <[f16, f16, i32, untyped]>;
def VOP_I16_I16_I16 : VOPProfile <[i32, i32, i32, untyped]>;
def VOP_I16_I16_I16_I16 : VOPProfile <[i32, i32, i32, i32, untyped]>;
def VOP_F16_F16_F16_F16 : VOPProfile <[f16, f16, f16, f16, untyped]>;
def VOP_NONE : VOPProfile <[untyped, untyped, untyped, untyped]>;
def VOP_F32_F32 : VOPProfile <[f32, f32, untyped, untyped]>;
def VOP_F32_F64 : VOPProfile <[f32, f64, untyped, untyped]>;
def VOP_F32_I32 : VOPProfile <[f32, i32, untyped, untyped]>;
def VOP_F64_F32 : VOPProfile <[f64, f32, untyped, untyped]>;
def VOP_F64_F64 : VOPProfile <[f64, f64, untyped, untyped]>;
def VOP_F64_I32 : VOPProfile <[f64, i32, untyped, untyped]>;
def VOP_I32_F32 : VOPProfile <[i32, f32, untyped, untyped]>;
def VOP_I32_F64 : VOPProfile <[i32, f64, untyped, untyped]>;
def VOP_I32_I32 : VOPProfile <[i32, i32, untyped, untyped]>;
def VOP_F32_F32_F32 : VOPProfile <[f32, f32, f32, untyped]>;
def VOP_F32_F32_I32 : VOPProfile <[f32, f32, i32, untyped]>;
def VOP_F64_F64_F64 : VOPProfile <[f64, f64, f64, untyped]>;
def VOP_F64_F64_I32 : VOPProfile <[f64, f64, i32, untyped]>;
def VOP_I32_F32_F32 : VOPProfile <[i32, f32, f32, untyped]>;
def VOP_I32_F32_I32 : VOPProfile <[i32, f32, i32, untyped]>;
def VOP_I32_I32_I32 : VOPProfile <[i32, i32, i32, untyped]>;
// Restrict src0 to be VGPR
def VOP_I32_VI32_NO_EXT : VOPProfile<[i32, i32, untyped, untyped]> {
let Src0RC32 = VRegSrc_32;
let Src0RC64 = VRegSrc_32;
let HasExt = 0;
}
// Special case because there are no true output operands. Hack vdst
// to be a src operand. The custom inserter must add a tied implicit
// def and use of the super register since there seems to be no way to
// add an implicit def of a virtual register in tablegen.
def VOP_MOVRELD : VOPProfile<[untyped, i32, untyped, untyped]> {
let Src0RC32 = VOPDstOperand<VGPR_32>;
let Src0RC64 = VOPDstOperand<VGPR_32>;
let Outs = (outs);
let Ins32 = (ins Src0RC32:$vdst, VSrc_b32:$src0);
let Ins64 = (ins Src0RC64:$vdst, VSrc_b32:$src0);
let InsDPP = (ins Src0RC32:$vdst, Src0RC32:$src0, dpp_ctrl:$dpp_ctrl, row_mask:$row_mask,
bank_mask:$bank_mask, bound_ctrl:$bound_ctrl);
let InsSDWA = (ins Src0RC32:$vdst, Int32InputMods:$src0_imodifiers, VCSrc_b32:$src0,
clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused,
src0_sel:$src0_sel);
let Asm32 = getAsm32<1, 1>.ret;
let Asm64 = getAsm64<1, 1, 0>.ret;
let AsmDPP = getAsmDPP<1, 1, 0>.ret;
let AsmSDWA = getAsmSDWA<1, 1, 0>.ret;
let HasExt = 0;
let HasDst = 0;
}
// Write out to vcc or arbitrary SGPR.
def VOP2b_I32_I1_I32_I32 : VOPProfile<[i32, i32, i32, untyped]> {
let Asm32 = "$vdst, vcc, $src0, $src1";
let Asm64 = "$vdst, $sdst, $src0, $src1";
let Outs32 = (outs DstRC:$vdst);
let Outs64 = (outs DstRC:$vdst, SReg_64:$sdst);
}
// Write out to vcc or arbitrary SGPR and read in from vcc or
// arbitrary SGPR.
def VOP2b_I32_I1_I32_I32_I1 : VOPProfile<[i32, i32, i32, i1]> {
// We use VCSrc_b32 to exclude literal constants, even though the
// encoding normally allows them since the implicit VCC use means
// using one would always violate the constant bus
// restriction. SGPRs are still allowed because it should
// technically be possible to use VCC again as src0.
let Src0RC32 = VCSrc_b32;
let Asm32 = "$vdst, vcc, $src0, $src1, vcc";
let Asm64 = "$vdst, $sdst, $src0, $src1, $src2";
let Outs32 = (outs DstRC:$vdst);
let Outs64 = (outs DstRC:$vdst, SReg_64:$sdst);
// Suppress src2 implied by type since the 32-bit encoding uses an
// implicit VCC use.
let Ins32 = (ins Src0RC32:$src0, Src1RC32:$src1);
}
// Read in from vcc or arbitrary SGPR
def VOP2e_I32_I32_I32_I1 : VOPProfile<[i32, i32, i32, i1]> {
let Src0RC32 = VCSrc_b32; // See comment in def VOP2b_I32_I1_I32_I32_I1 above.
let Asm32 = "$vdst, $src0, $src1, vcc";
let Asm64 = "$vdst, $src0, $src1, $src2";
let Outs32 = (outs DstRC:$vdst);
let Outs64 = (outs DstRC:$vdst);
// Suppress src2 implied by type since the 32-bit encoding uses an
// implicit VCC use.
let Ins32 = (ins Src0RC32:$src0, Src1RC32:$src1);
}
class VOP3b_Profile<ValueType vt> : VOPProfile<[vt, vt, vt, vt]> {
let Outs64 = (outs DstRC:$vdst, SReg_64:$sdst);
let Asm64 = "$vdst, $sdst, $src0_modifiers, $src1_modifiers, $src2_modifiers"#"$clamp"#"$omod";
}
def VOP3b_F32_I1_F32_F32_F32 : VOP3b_Profile<f32> {
// FIXME: Hack to stop printing _e64
let DstRC = RegisterOperand<VGPR_32>;
}
def VOP3b_F64_I1_F64_F64_F64 : VOP3b_Profile<f64> {
// FIXME: Hack to stop printing _e64
let DstRC = RegisterOperand<VReg_64>;
}
// VOPC instructions are a special case because for the 32-bit
// encoding, we want to display the implicit vcc write as if it were
// an explicit $dst.
class VOPC_Profile<ValueType vt0, ValueType vt1 = vt0> : VOPProfile <[i1, vt0, vt1, untyped]> {
let Asm32 = "vcc, $src0, $src1";
// The destination for 32-bit encoding is implicit.
let HasDst32 = 0;
let Outs64 = (outs DstRC:$sdst);
}
class VOPC_Class_Profile<ValueType vt> : VOPC_Profile<vt, i32> {
let Ins64 = (ins Src0Mod:$src0_modifiers, Src0RC64:$src0, Src1RC64:$src1);
let Asm64 = "$sdst, $src0_modifiers, $src1";
let InsSDWA = (ins Src0Mod:$src0_fmodifiers, Src0RC64:$src0,
Int32InputMods:$src1_imodifiers, Src1RC64:$src1,
clampmod:$clamp, src0_sel:$src0_sel, src1_sel:$src1_sel);
let AsmSDWA = " vcc, $src0_fmodifiers, $src1_imodifiers$clamp $src0_sel $src1_sel";
}
def VOPC_I1_F32_F32 : VOPC_Profile<f32>;
def VOPC_I1_F64_F64 : VOPC_Profile<f64>;
def VOPC_I1_I32_I32 : VOPC_Profile<i32>;
def VOPC_I1_I64_I64 : VOPC_Profile<i64>;
def VOPC_I1_F32_I32 : VOPC_Class_Profile<f32>;
def VOPC_I1_F64_I32 : VOPC_Class_Profile<f64>;
def VOP_I64_I64_I32 : VOPProfile <[i64, i64, i32, untyped]>;
def VOP_I64_I32_I64 : VOPProfile <[i64, i32, i64, untyped]>;
def VOP_I64_I64_I64 : VOPProfile <[i64, i64, i64, untyped]>;
def VOP_F32_F32_F32_F32 : VOPProfile <[f32, f32, f32, f32]>;
def VOP_MADAK : VOPProfile <[f32, f32, f32, f32]> {
field dag Ins32 = (ins VCSrc_f32:$src0, VGPR_32:$src1, f32kimm:$imm);
field string Asm32 = "$vdst, $src0, $src1, $imm";
field bit HasExt = 0;
}
def VOP_MADMK : VOPProfile <[f32, f32, f32, f32]> {
field dag Ins32 = (ins VCSrc_f32:$src0, f32kimm:$imm, VGPR_32:$src1);
field string Asm32 = "$vdst, $src0, $imm, $src1";
field bit HasExt = 0;
}
def VOP_MAC : VOPProfile <[f32, f32, f32, f32]> {
let Ins32 = (ins Src0RC32:$src0, Src1RC32:$src1, VGPR_32:$src2);
let Ins64 = getIns64<Src0RC64, Src1RC64, RegisterOperand<VGPR_32>, 3,
HasModifiers, Src0Mod, Src1Mod, Src2Mod>.ret;
let InsDPP = (ins FP32InputMods:$src0_modifiers, Src0RC32:$src0,
FP32InputMods:$src1_modifiers, Src1RC32:$src1,
VGPR_32:$src2, // stub argument
dpp_ctrl:$dpp_ctrl, row_mask:$row_mask,
bank_mask:$bank_mask, bound_ctrl:$bound_ctrl);
let InsSDWA = (ins FP32InputMods:$src0_fmodifiers, Src0RC32:$src0,
FP32InputMods:$src1_fmodifiers, Src1RC32:$src1,
VGPR_32:$src2, // stub argument
clampmod:$clamp, dst_sel:$dst_sel, dst_unused:$dst_unused,
src0_sel:$src0_sel, src1_sel:$src1_sel);
let Asm32 = getAsm32<1, 2, f32>.ret;
let Asm64 = getAsm64<1, 2, HasModifiers, f32>.ret;
let AsmDPP = getAsmDPP<1, 2, HasModifiers, f32>.ret;
let AsmSDWA = getAsmSDWA<1, 2, HasModifiers, f32>.ret;
}
def VOP_F64_F64_F64_F64 : VOPProfile <[f64, f64, f64, f64]>;
def VOP_I32_I32_I32_I32 : VOPProfile <[i32, i32, i32, i32]>;
def VOP_I64_I32_I32_I64 : VOPProfile <[i64, i32, i32, i64]>;
def VOP_I32_F32_I32_I32 : VOPProfile <[i32, f32, i32, i32]>;
def VOP_I64_I64_I32_I64 : VOPProfile <[i64, i64, i32, i64]>;
// This class is used only with VOPC instructions. Use $sdst for out operand
class SIInstAlias <string asm, Instruction inst, VOPProfile p,
string VariantName = ""> :
InstAlias <asm, (inst)>, PredicateControl {
field bit isCompare;
field bit isCommutable;
let ResultInst =
!if (p.HasDst32,
!if (!eq(p.NumSrcArgs, 0),
// 1 dst, 0 src
(inst p.DstRC:$sdst),
!if (!eq(p.NumSrcArgs, 1),
// 1 dst, 1 src
(inst p.DstRC:$sdst, p.Src0RC32:$src0),
!if (!eq(p.NumSrcArgs, 2),
// 1 dst, 2 src
(inst p.DstRC:$sdst, p.Src0RC32:$src0, p.Src1RC32:$src1),
// else - unreachable
(inst)))),
// else
!if (!eq(p.NumSrcArgs, 2),
// 0 dst, 2 src
(inst p.Src0RC32:$src0, p.Src1RC32:$src1),
!if (!eq(p.NumSrcArgs, 1),
// 0 dst, 1 src
(inst p.Src0RC32:$src1),
// else
// 0 dst, 0 src
(inst))));
let AsmVariantName = VariantName;
}
class SIInstAliasSI <string asm, string op_name, VOPProfile p, string VariantName = ""> :
SIInstAlias <asm, !cast<Instruction>(op_name#"_e32_si"), p, VariantName> {
let AssemblerPredicate = SIAssemblerPredicate;
}
class SIInstAliasVI <string asm, string op_name, VOPProfile p, string VariantName = ""> :
SIInstAlias <asm, !cast<Instruction>(op_name#"_e32_vi"), p, VariantName> {
let AssemblerPredicates = [isVI];
}
multiclass SIInstAliasBuilder <string asm, VOPProfile p, string VariantName = ""> {
def : SIInstAliasSI <asm, NAME, p, VariantName>;
def : SIInstAliasVI <asm, NAME, p, VariantName>;
}
class VOP <string opName> {
string OpName = opName;
}
class VOP2_REV <string revOp, bit isOrig> {
string RevOp = revOp;
bit IsOrig = isOrig;
}
class AtomicNoRet <string noRetOp, bit isRet> {
string NoRetOp = noRetOp;
bit IsRet = isRet;
}
class VOP1_Pseudo <dag outs, dag ins, list<dag> pattern, string opName> :
VOP1Common <outs, ins, "", pattern>,
VOP <opName>,
SIMCInstr <opName#"_e32", SIEncodingFamily.NONE>,
MnemonicAlias<opName#"_e32", opName> {
let isPseudo = 1;
let isCodeGenOnly = 1;
field bits<8> vdst;
field bits<9> src0;
}
class VOP1_Real_si <string opName, vop1 op, dag outs, dag ins, string asm> :
VOP1<op.SI, outs, ins, asm, []>,
SIMCInstr <opName#"_e32", SIEncodingFamily.SI> {
let AssemblerPredicate = SIAssemblerPredicate;
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
class VOP1_Real_vi <string opName, vop1 op, dag outs, dag ins, string asm> :
VOP1<op.VI, outs, ins, asm, []>,
SIMCInstr <opName#"_e32", SIEncodingFamily.VI> {
let AssemblerPredicates = [isVI];
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
multiclass VOP1_m <vop1 op, string opName, VOPProfile p, list<dag> pattern,
string asm = opName#p.Asm32> {
def "" : VOP1_Pseudo <p.Outs, p.Ins32, pattern, opName>;
def _si : VOP1_Real_si <opName, op, p.Outs, p.Ins32, asm>;
def _vi : VOP1_Real_vi <opName, op, p.Outs, p.Ins32, asm>;
}
class VOP1_DPP <vop1 op, string opName, VOPProfile p> :
VOP1_DPPe <op.VI>,
VOP_DPP <p.OutsDPP, p.InsDPP, opName#p.AsmDPP, [], p.HasModifiers> {
let AssemblerPredicates = !if(p.HasExt, [isVI], [DisableInst]);
let DecoderNamespace = "DPP";
let DisableDecoder = DisableVIDecoder;
let src0_modifiers = !if(p.HasModifiers, ?, 0);
let src1_modifiers = 0;
}
class SDWADisableFields <VOPProfile p> {
bits<8> src0 = !if(!eq(p.NumSrcArgs, 0), 0, ?);
bits<3> src0_sel = !if(!eq(p.NumSrcArgs, 0), 6, ?);
bits<2> src0_fmodifiers = !if(!eq(p.NumSrcArgs, 0),
0,
!if(p.HasModifiers, ?, 0));
bits<1> src0_imodifiers = !if(!eq(p.NumSrcArgs, 0),
0,
!if(p.HasModifiers, 0, ?));
bits<3> src1_sel = !if(!eq(p.NumSrcArgs, 0), 6,
!if(!eq(p.NumSrcArgs, 1), 6,
?));
bits<2> src1_fmodifiers = !if(!eq(p.NumSrcArgs, 0), 0,
!if(!eq(p.NumSrcArgs, 1), 0,
!if(p.HasModifiers, ?, 0)));
bits<1> src1_imodifiers = !if(!eq(p.NumSrcArgs, 0), 0,
!if(!eq(p.NumSrcArgs, 1), 0,
!if(p.HasModifiers, 0, ?)));
bits<3> dst_sel = !if(p.HasDst, ?, 6);
bits<2> dst_unused = !if(p.HasDst, ?, 2);
bits<1> clamp = !if(!eq(p.NumSrcArgs, 0), 0, ?);
}
class VOP1_SDWA <vop1 op, string opName, VOPProfile p> :
VOP1_SDWAe <op.VI>,
VOP_SDWA <p.OutsSDWA, p.InsSDWA, opName#p.AsmSDWA, [], p.HasModifiers>,
SDWADisableFields <p> {
let AsmMatchConverter = "cvtSdwaVOP1";
let AssemblerPredicates = !if(p.HasExt, [isVI], [DisableInst]);
let DecoderNamespace = "SDWA";
let DisableDecoder = DisableVIDecoder;
}
multiclass VOP1SI_m <vop1 op, string opName, VOPProfile p, list<dag> pattern,
string asm = opName#p.Asm32> {
def "" : VOP1_Pseudo <p.Outs, p.Ins32, pattern, opName>;
def _si : VOP1_Real_si <opName, op, p.Outs, p.Ins32, asm>;
}
class VOP2_Pseudo <dag outs, dag ins, list<dag> pattern, string opName> :
VOP2Common <outs, ins, "", pattern>,
VOP <opName>,
SIMCInstr<opName#"_e32", SIEncodingFamily.NONE>,
MnemonicAlias<opName#"_e32", opName> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
class VOP2_Real_si <string opName, vop2 op, dag outs, dag ins, string asm> :
VOP2 <op.SI, outs, ins, opName#asm, []>,
SIMCInstr <opName#"_e32", SIEncodingFamily.SI> {
let AssemblerPredicates = [isSICI];
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
class VOP2_Real_vi <string opName, vop2 op, dag outs, dag ins, string asm> :
VOP2 <op.VI, outs, ins, opName#asm, []>,
SIMCInstr <opName#"_e32", SIEncodingFamily.VI> {
let AssemblerPredicates = [isVI];
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
multiclass VOP2SI_m <vop2 op, string opName, VOPProfile p, list<dag> pattern,
string revOp> {
def "" : VOP2_Pseudo <p.Outs32, p.Ins32, pattern, opName>,
VOP2_REV<revOp#"_e32", !eq(revOp, opName)>;
def _si : VOP2_Real_si <opName, op, p.Outs32, p.Ins32, p.Asm32>;
}
multiclass VOP2_m <vop2 op, string opName, VOPProfile p, list <dag> pattern,
string revOp> {
def "" : VOP2_Pseudo <p.Outs32, p.Ins32, pattern, opName>,
VOP2_REV<revOp#"_e32", !eq(revOp, opName)>;
def _si : VOP2_Real_si <opName, op, p.Outs32, p.Ins32, p.Asm32>;
def _vi : VOP2_Real_vi <opName, op, p.Outs32, p.Ins32, p.Asm32>;
}
class VOP2_DPP <vop2 op, string opName, VOPProfile p> :
VOP2_DPPe <op.VI>,
VOP_DPP <p.OutsDPP, p.InsDPP, opName#p.AsmDPP, [], p.HasModifiers> {
let AssemblerPredicates = !if(p.HasExt, [isVI], [DisableInst]);
let DecoderNamespace = "DPP";
let DisableDecoder = DisableVIDecoder;
let src0_modifiers = !if(p.HasModifiers, ?, 0);
let src1_modifiers = !if(p.HasModifiers, ?, 0);
}
class VOP2_SDWA <vop2 op, string opName, VOPProfile p> :
VOP2_SDWAe <op.VI>,
VOP_SDWA <p.OutsSDWA, p.InsSDWA, opName#p.AsmSDWA, [], p.HasModifiers>,
SDWADisableFields <p> {
let AsmMatchConverter = "cvtSdwaVOP2";
let AssemblerPredicates = !if(p.HasExt, [isVI], [DisableInst]);
let DecoderNamespace = "SDWA";
let DisableDecoder = DisableVIDecoder;
}
class VOP3DisableFields <bit HasSrc1, bit HasSrc2, bit HasModifiers> {
bits<2> src0_modifiers = !if(HasModifiers, ?, 0);
bits<2> src1_modifiers = !if(HasModifiers, !if(HasSrc1, ?, 0), 0);
bits<2> src2_modifiers = !if(HasModifiers, !if(HasSrc2, ?, 0), 0);
bits<2> omod = !if(HasModifiers, ?, 0);
bits<1> clamp = !if(HasModifiers, ?, 0);
bits<9> src1 = !if(HasSrc1, ?, 0);
bits<9> src2 = !if(HasSrc2, ?, 0);
}
class VOP3DisableModFields <bit HasSrc0Mods,
bit HasSrc1Mods = 0,
bit HasSrc2Mods = 0,
bit HasOutputMods = 0> {
bits<2> src0_modifiers = !if(HasSrc0Mods, ?, 0);
bits<2> src1_modifiers = !if(HasSrc1Mods, ?, 0);
bits<2> src2_modifiers = !if(HasSrc2Mods, ?, 0);
bits<2> omod = !if(HasOutputMods, ?, 0);
bits<1> clamp = !if(HasOutputMods, ?, 0);
}
class VOP3_Pseudo <dag outs, dag ins, list<dag> pattern, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, "", pattern, HasMods, VOP3Only>,
VOP <opName>,
SIMCInstr<opName#"_e64", SIEncodingFamily.NONE>,
MnemonicAlias<opName#"_e64", opName> {
let isPseudo = 1;
let isCodeGenOnly = 1;
field bit vdst;
field bit src0;
}
class VOP3_Real_si <bits<9> op, dag outs, dag ins, string asm, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, asm, [], HasMods, VOP3Only>,
VOP3e <op>,
SIMCInstr<opName#"_e64", SIEncodingFamily.SI> {
let AssemblerPredicates = [isSICI];
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
class VOP3_Real_vi <bits<10> op, dag outs, dag ins, string asm, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, asm, [], HasMods, VOP3Only>,
VOP3e_vi <op>,
SIMCInstr <opName#"_e64", SIEncodingFamily.VI> {
let AssemblerPredicates = [isVI];
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
class VOP3_C_Real_si <bits<9> op, dag outs, dag ins, string asm, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, asm, [], HasMods, VOP3Only>,
VOP3ce <op>,
SIMCInstr<opName#"_e64", SIEncodingFamily.SI> {
let AssemblerPredicates = [isSICI];
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
class VOP3_C_Real_vi <bits<10> op, dag outs, dag ins, string asm, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, asm, [], HasMods, VOP3Only>,
VOP3ce_vi <op>,
SIMCInstr <opName#"_e64", SIEncodingFamily.VI> {
let AssemblerPredicates = [isVI];
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
class VOP3b_Real_si <bits<9> op, dag outs, dag ins, string asm, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, asm, [], HasMods, VOP3Only>,
VOP3be <op>,
SIMCInstr<opName#"_e64", SIEncodingFamily.SI> {
let AssemblerPredicates = [isSICI];
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
class VOP3b_Real_vi <bits<10> op, dag outs, dag ins, string asm, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, asm, [], HasMods, VOP3Only>,
VOP3be_vi <op>,
SIMCInstr <opName#"_e64", SIEncodingFamily.VI> {
let AssemblerPredicates = [isVI];
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
class VOP3e_Real_si <bits<9> op, dag outs, dag ins, string asm, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, asm, [], HasMods, VOP3Only>,
VOP3e <op>,
SIMCInstr<opName#"_e64", SIEncodingFamily.SI> {
let AssemblerPredicates = [isSICI];
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
class VOP3e_Real_vi <bits<10> op, dag outs, dag ins, string asm, string opName,
bit HasMods = 0, bit VOP3Only = 0> :
VOP3Common <outs, ins, asm, [], HasMods, VOP3Only>,
VOP3e_vi <op>,
SIMCInstr <opName#"_e64", SIEncodingFamily.VI> {
let AssemblerPredicates = [isVI];
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
multiclass VOP3_m <vop op, dag outs, dag ins, string asm, list<dag> pattern,
string opName, int NumSrcArgs, bit HasMods = 1, bit VOP3Only = 0> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName>;
def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName, HasMods, VOP3Only>,
VOP3DisableFields<!if(!eq(NumSrcArgs, 1), 0, 1),
!if(!eq(NumSrcArgs, 2), 0, 1),
HasMods>;
def _vi : VOP3_Real_vi <op.VI3, outs, ins, asm, opName, HasMods, VOP3Only>,
VOP3DisableFields<!if(!eq(NumSrcArgs, 1), 0, 1),
!if(!eq(NumSrcArgs, 2), 0, 1),
HasMods>;
}
multiclass VOP3_1_m <vop op, dag outs, dag ins, string asm,
list<dag> pattern, string opName, bit HasMods = 1> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName, HasMods>;
def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName, HasMods>,
VOP3DisableFields<0, 0, HasMods>;
def _vi : VOP3_Real_vi <op.VI3, outs, ins, asm, opName, HasMods>,
VOP3DisableFields<0, 0, HasMods>;
}
multiclass VOP3SI_1_m <vop op, dag outs, dag ins, string asm,
list<dag> pattern, string opName, bit HasMods = 1> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName, HasMods>;
def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName, HasMods>,
VOP3DisableFields<0, 0, HasMods>;
// No VI instruction. This class is for SI only.
}
multiclass VOP3_2_m <vop op, dag outs, dag ins, string asm,
list<dag> pattern, string opName, string revOp,
bit HasMods = 1> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName, HasMods>,
VOP2_REV<revOp#"_e64", !eq(revOp, opName)>;
def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName, HasMods>,
VOP3DisableFields<1, 0, HasMods>;
def _vi : VOP3_Real_vi <op.VI3, outs, ins, asm, opName, HasMods>,
VOP3DisableFields<1, 0, HasMods>;
}
multiclass VOP3SI_2_m <vop op, dag outs, dag ins, string asm,
list<dag> pattern, string opName, string revOp,
bit HasMods = 1> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName, HasMods>,
VOP2_REV<revOp#"_e64", !eq(revOp, opName)>;
def _si : VOP3_Real_si <op.SI3, outs, ins, asm, opName, HasMods>,
VOP3DisableFields<1, 0, HasMods>;
// No VI instruction. This class is for SI only.
}
// Two operand VOP3b instruction that may have a 3rd SGPR bool operand
// instead of an implicit VCC as in the VOP2b format.
multiclass VOP3b_2_3_m <vop op, dag outs, dag ins, string asm,
list<dag> pattern, string opName, string revOp,
bit HasMods = 1, bit useSrc2Input = 0, bit VOP3Only = 0> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName, HasMods, VOP3Only>;
def _si : VOP3b_Real_si <op.SI3, outs, ins, asm, opName, HasMods, VOP3Only>,
VOP3DisableFields<1, useSrc2Input, HasMods>;
def _vi : VOP3b_Real_vi <op.VI3, outs, ins, asm, opName, HasMods, VOP3Only>,
VOP3DisableFields<1, useSrc2Input, HasMods>;
}
// Same as VOP3b_2_3_m but no 2nd destination (sdst), e.g. v_cndmask_b32.
multiclass VOP3e_2_3_m <vop op, dag outs, dag ins, string asm,
list<dag> pattern, string opName, string revOp,
bit HasMods = 1, bit useSrc2Input = 0, bit VOP3Only = 0> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName, HasMods, VOP3Only>;
def _si : VOP3e_Real_si <op.SI3, outs, ins, asm, opName, HasMods, VOP3Only>,
VOP3DisableFields<1, useSrc2Input, HasMods>;
def _vi : VOP3e_Real_vi <op.VI3, outs, ins, asm, opName, HasMods, VOP3Only>,
VOP3DisableFields<1, useSrc2Input, HasMods>;
}
multiclass VOP3_C_m <vop op, dag outs, dag ins, string asm,
list<dag> pattern, string opName,
bit HasMods, bit defExec,
string revOp, list<SchedReadWrite> sched> {
def "" : VOP3_Pseudo <outs, ins, pattern, opName, HasMods>,
VOP2_REV<revOp#"_e64", !eq(revOp, opName)> {
let Defs = !if(defExec, [EXEC], []);
let SchedRW = sched;
}
def _si : VOP3_C_Real_si <op.SI3, outs, ins, asm, opName, HasMods>,
VOP3DisableFields<1, 0, HasMods> {
let Defs = !if(defExec, [EXEC], []);
let SchedRW = sched;
}
def _vi : VOP3_C_Real_vi <op.VI3, outs, ins, asm, opName, HasMods>,
VOP3DisableFields<1, 0, HasMods> {
let Defs = !if(defExec, [EXEC], []);
let SchedRW = sched;
}
}
// An instruction that is VOP2 on SI and VOP3 on VI, no modifiers.
multiclass VOP2SI_3VI_m <vop3 op, string opName, dag outs, dag ins,
string asm, list<dag> pattern = []> {
let isPseudo = 1, isCodeGenOnly = 1 in {
def "" : VOPAnyCommon <outs, ins, "", pattern>,
SIMCInstr<opName, SIEncodingFamily.NONE>;
}
def _si : VOP2 <op.SI3{5-0}, outs, ins, asm, []>,
SIMCInstr <opName, SIEncodingFamily.SI> {
let AssemblerPredicates = [isSICI];
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
def _vi : VOP3Common <outs, ins, asm, []>,
VOP3e_vi <op.VI3>,
VOP3DisableFields <1, 0, 0>,
SIMCInstr <opName, SIEncodingFamily.VI> {
let AssemblerPredicates = [isVI];
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
}
multiclass VOP1_Helper <vop1 op, string opName, VOPProfile p, list<dag> pat32,
list<dag> pat64> {
defm _e32 : VOP1_m <op, opName, p, pat32>;
defm _e64 : VOP3_1_m <op, p.Outs, p.Ins64, opName#p.Asm64, pat64, opName,
p.HasModifiers>;
def _dpp : VOP1_DPP <op, opName, p>;
def _sdwa : VOP1_SDWA <op, opName, p>;
}
multiclass VOP1Inst <vop1 op, string opName, VOPProfile P,
SDPatternOperator node = null_frag> : VOP1_Helper <
op, opName, P, [],
!if(P.HasModifiers,
[(set P.DstVT:$vdst, (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0,
i32:$src0_modifiers, i1:$clamp, i32:$omod))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0))])
>;
multiclass VOP1InstSI <vop1 op, string opName, VOPProfile P,
SDPatternOperator node = null_frag> {
defm _e32 : VOP1SI_m <op, opName, P, []>;
defm _e64 : VOP3SI_1_m <op, P.Outs, P.Ins64, opName#P.Asm64,
!if(P.HasModifiers,
[(set P.DstVT:$vdst, (node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0,
i32:$src0_modifiers, i1:$clamp, i32:$omod))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0))]),
opName, P.HasModifiers>;
}
multiclass VOP2_Helper <vop2 op, string opName, VOPProfile p, list<dag> pat32,
list<dag> pat64, string revOp> {
defm _e32 : VOP2_m <op, opName, p, pat32, revOp>;
defm _e64 : VOP3_2_m <op, p.Outs, p.Ins64, opName#p.Asm64, pat64, opName,
revOp, p.HasModifiers>;
def _dpp : VOP2_DPP <op, opName, p>;
def _sdwa : VOP2_SDWA <op, opName, p>;
}
multiclass VOP2Inst <vop2 op, string opName, VOPProfile P,
SDPatternOperator node = null_frag,
string revOp = opName> : VOP2_Helper <
op, opName, P, [],
!if(P.HasModifiers,
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0, P.Src1VT:$src1))]),
revOp
>;
multiclass VOP2InstSI <vop2 op, string opName, VOPProfile P,
SDPatternOperator node = null_frag,
string revOp = opName> {
defm _e32 : VOP2SI_m <op, opName, P, [], revOp>;
defm _e64 : VOP3SI_2_m <op, P.Outs, P.Ins64, opName#P.Asm64,
!if(P.HasModifiers,
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0, P.Src1VT:$src1))]),
opName, revOp, P.HasModifiers>;
}
multiclass VOP2e_Helper <vop2 op, string opName, VOPProfile p,
list<dag> pat32, list<dag> pat64,
string revOp, bit useSGPRInput> {
let SchedRW = [Write32Bit] in {
let Uses = !if(useSGPRInput, [VCC, EXEC], [EXEC]) in {
defm _e32 : VOP2_m <op, opName, p, pat32, revOp>;
}
defm _e64 : VOP3e_2_3_m <op, p.Outs64, p.Ins64, opName#p.Asm64, pat64,
opName, revOp, p.HasModifiers, useSGPRInput>;
}
}
multiclass VOP2eInst <vop2 op, string opName, VOPProfile P,
SDPatternOperator node = null_frag,
string revOp = opName> : VOP2e_Helper <
op, opName, P, [],
!if(P.HasModifiers,
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0, P.Src1VT:$src1))]),
revOp, !eq(P.NumSrcArgs, 3)
>;
multiclass VOP2b_Helper <vop2 op, string opName, VOPProfile p,
list<dag> pat32, list<dag> pat64,
string revOp, bit useSGPRInput> {
let SchedRW = [Write32Bit, WriteSALU] in {
let Uses = !if(useSGPRInput, [VCC, EXEC], [EXEC]), Defs = [VCC] in {
defm _e32 : VOP2_m <op, opName, p, pat32, revOp>;
}
defm _e64 : VOP3b_2_3_m <op, p.Outs64, p.Ins64, opName#p.Asm64, pat64,
opName, revOp, p.HasModifiers, useSGPRInput>;
}
}
multiclass VOP2bInst <vop2 op, string opName, VOPProfile P,
SDPatternOperator node = null_frag,
string revOp = opName> : VOP2b_Helper <
op, opName, P, [],
!if(P.HasModifiers,
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0, P.Src1VT:$src1))]),
revOp, !eq(P.NumSrcArgs, 3)
>;
// A VOP2 instruction that is VOP3-only on VI.
multiclass VOP2_VI3_Helper <vop23 op, string opName, VOPProfile p,
list<dag> pat32, list<dag> pat64, string revOp> {
defm _e32 : VOP2SI_m <op, opName, p, pat32, revOp>;
defm _e64 : VOP3_2_m <op, p.Outs, p.Ins64, opName#p.Asm64, pat64, opName,
revOp, p.HasModifiers>;
}
multiclass VOP2_VI3_Inst <vop23 op, string opName, VOPProfile P,
SDPatternOperator node = null_frag,
string revOp = opName>
: VOP2_VI3_Helper <
op, opName, P, [],
!if(P.HasModifiers,
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0, P.Src1VT:$src1))]),
revOp
>;
multiclass VOP2MADK <vop2 op, string opName, VOPProfile P, list<dag> pattern = []> {
def "" : VOP2_Pseudo <P.Outs, P.Ins32, pattern, opName>;
let isCodeGenOnly = 0 in {
def _si : VOP2Common <P.Outs, P.Ins32,
!strconcat(opName, P.Asm32), []>,
SIMCInstr <opName#"_e32", SIEncodingFamily.SI>,
VOP2_MADKe <op.SI> {
let AssemblerPredicates = [isSICI];
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
def _vi : VOP2Common <P.Outs, P.Ins32,
!strconcat(opName, P.Asm32), []>,
SIMCInstr <opName#"_e32", SIEncodingFamily.VI>,
VOP2_MADKe <op.VI> {
let AssemblerPredicates = [isVI];
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
} // End isCodeGenOnly = 0
}
class VOPC_Pseudo <dag ins, list<dag> pattern, string opName> :
VOPCCommon <ins, "", pattern>,
VOP <opName>,
SIMCInstr<opName#"_e32", SIEncodingFamily.NONE> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
class VOPC_SDWA <vopc op, string opName, bit DefExec, VOPProfile p> :
VOPC_SDWAe <op.VI>,
VOP_SDWA <p.OutsSDWA, p.InsSDWA, opName#p.AsmSDWA, [], p.HasModifiers>,
SDWADisableFields <p> {
let Defs = !if(DefExec, [VCC, EXEC], [VCC]);
let hasSideEffects = DefExec;
let AsmMatchConverter = "cvtSdwaVOPC";
let AssemblerPredicates = !if(p.HasExt, [isVI], [DisableInst]);
let DecoderNamespace = "SDWA";
let DisableDecoder = DisableVIDecoder;
}
multiclass VOPC_m <vopc op, dag ins, string op_asm, list<dag> pattern,
string opName, bit DefExec, VOPProfile p,
list<SchedReadWrite> sched,
string revOpName = "", string asm = opName#"_e32 "#op_asm,
string alias_asm = opName#" "#op_asm> {
def "" : VOPC_Pseudo <ins, pattern, opName>,
VOP2_REV<revOpName#"_e32", !eq(revOpName, opName)> {
let Defs = !if(DefExec, [VCC, EXEC], [VCC]);
let SchedRW = sched;
let isConvergent = DefExec;
}
let AssemblerPredicates = [isSICI] in {
def _si : VOPC<op.SI, ins, asm, []>,
SIMCInstr <opName#"_e32", SIEncodingFamily.SI> {
let Defs = !if(DefExec, [VCC, EXEC], [VCC]);
let isConvergent = DefExec;
let SchedRW = sched;
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
} // End AssemblerPredicates = [isSICI]
let AssemblerPredicates = [isVI] in {
def _vi : VOPC<op.VI, ins, asm, []>,
SIMCInstr <opName#"_e32", SIEncodingFamily.VI> {
let Defs = !if(DefExec, [VCC, EXEC], [VCC]);
let isConvergent = DefExec;
let SchedRW = sched;
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
} // End AssemblerPredicates = [isVI]
defm : SIInstAliasBuilder<alias_asm, p, AMDGPUAsmVariants.Default>;
}
multiclass VOPC_Helper <vopc op, string opName, list<dag> pat32,
list<dag> pat64, bit DefExec, string revOp,
VOPProfile p, list<SchedReadWrite> sched> {
defm _e32 : VOPC_m <op, p.Ins32, p.Asm32, pat32, opName, DefExec, p, sched,
revOp>;
defm _e64 : VOP3_C_m <op, (outs VOPDstS64:$sdst), p.Ins64, opName#p.Asm64, pat64,
opName, p.HasModifiers, DefExec, revOp, sched>;
def _sdwa : VOPC_SDWA <op, opName, DefExec, p>;
}
// Special case for class instructions which only have modifiers on
// the 1st source operand.
multiclass VOPC_Class_Helper <vopc op, string opName,
list<dag> pat64, bit DefExec, string revOp,
VOPProfile p, list<SchedReadWrite> sched> {
defm _e32 : VOPC_m <op, p.Ins32, p.Asm32, [], opName, DefExec, p, sched>;
defm _e64 : VOP3_C_m <op, (outs VOPDstS64:$sdst), p.Ins64, opName#p.Asm64, pat64,
opName, p.HasModifiers, DefExec, revOp, sched>,
VOP3DisableModFields<1, 0, 0>;
def _sdwa : VOPC_SDWA <op, opName, DefExec, p> {
let src1_fmodifiers = 0;
let src1_imodifiers = ?;
}
}
multiclass VOPCInst <vopc op, string opName,
VOPProfile P, PatLeaf cond = COND_NULL,
string revOp = opName,
bit DefExec = 0,
list<SchedReadWrite> sched = [Write32Bit]> :
VOPC_Helper <
op, opName, [],
!if(P.HasModifiers,
[(set i1:$sdst,
(setcc (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers)),
cond))],
[(set i1:$sdst, (setcc P.Src0VT:$src0, P.Src1VT:$src1, cond))]),
DefExec, revOp, P, sched
>;
multiclass VOPCClassInst <vopc op, string opName, VOPProfile P,
bit DefExec = 0,
list<SchedReadWrite> sched> : VOPC_Class_Helper <
op, opName,
[(set i1:$sdst,
(AMDGPUfp_class
(P.Src0VT (VOP3Mods0Clamp0OMod P.Src0VT:$src0, i32:$src0_modifiers)),
P.Src1VT:$src1))],
DefExec, opName, P, sched
>;
multiclass VOPC_F32 <vopc op, string opName, PatLeaf cond = COND_NULL, string revOp = opName> :
VOPCInst <op, opName, VOPC_I1_F32_F32, cond, revOp>;
multiclass VOPC_F64 <vopc op, string opName, PatLeaf cond = COND_NULL, string revOp = opName> :
VOPCInst <op, opName, VOPC_I1_F64_F64, cond, revOp, 0, [WriteDoubleAdd]>;
multiclass VOPC_I32 <vopc op, string opName, PatLeaf cond = COND_NULL, string revOp = opName> :
VOPCInst <op, opName, VOPC_I1_I32_I32, cond, revOp>;
multiclass VOPC_I64 <vopc op, string opName, PatLeaf cond = COND_NULL, string revOp = opName> :
VOPCInst <op, opName, VOPC_I1_I64_I64, cond, revOp, 0, [Write64Bit]>;
multiclass VOPCX <vopc op, string opName, VOPProfile P,
PatLeaf cond = COND_NULL,
list<SchedReadWrite> sched,
string revOp = "">
: VOPCInst <op, opName, P, cond, revOp, 1, sched>;
multiclass VOPCX_F32 <vopc op, string opName, string revOp = opName> :
VOPCX <op, opName, VOPC_I1_F32_F32, COND_NULL, [Write32Bit], revOp>;
multiclass VOPCX_F64 <vopc op, string opName, string revOp = opName> :
VOPCX <op, opName, VOPC_I1_F64_F64, COND_NULL, [WriteDoubleAdd], revOp>;
multiclass VOPCX_I32 <vopc op, string opName, string revOp = opName> :
VOPCX <op, opName, VOPC_I1_I32_I32, COND_NULL, [Write32Bit], revOp>;
multiclass VOPCX_I64 <vopc op, string opName, string revOp = opName> :
VOPCX <op, opName, VOPC_I1_I64_I64, COND_NULL, [Write64Bit], revOp>;
multiclass VOPC_CLASS_F32 <vopc op, string opName> :
VOPCClassInst <op, opName, VOPC_I1_F32_I32, 0, [Write32Bit]>;
multiclass VOPCX_CLASS_F32 <vopc op, string opName> :
VOPCClassInst <op, opName, VOPC_I1_F32_I32, 1, [Write32Bit]>;
multiclass VOPC_CLASS_F64 <vopc op, string opName> :
VOPCClassInst <op, opName, VOPC_I1_F64_I32, 0, [WriteDoubleAdd]>;
multiclass VOPCX_CLASS_F64 <vopc op, string opName> :
VOPCClassInst <op, opName, VOPC_I1_F64_I32, 1, [WriteDoubleAdd]>;
multiclass VOP3_Helper <vop3 op, string opName, dag outs, dag ins, string asm,
list<dag> pat, int NumSrcArgs, bit HasMods,
bit VOP3Only = 0> : VOP3_m <
op, outs, ins, opName#" "#asm, pat, opName, NumSrcArgs, HasMods, VOP3Only
>;
multiclass VOP3Inst <vop3 op, string opName, VOPProfile P,
SDPatternOperator node = null_frag, bit VOP3Only = 0> :
VOP3_Helper <
op, opName, (outs P.DstRC.RegClass:$vdst), P.Ins64, P.Asm64,
!if(!eq(P.NumSrcArgs, 3),
!if(P.HasModifiers,
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers)),
(P.Src2VT (VOP3Mods P.Src2VT:$src2, i32:$src2_modifiers))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0, P.Src1VT:$src1,
P.Src2VT:$src2))]),
!if(!eq(P.NumSrcArgs, 2),
!if(P.HasModifiers,
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0, P.Src1VT:$src1))])
/* P.NumSrcArgs == 1 */,
!if(P.HasModifiers,
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod))))],
[(set P.DstVT:$vdst, (node P.Src0VT:$src0))]))),
P.NumSrcArgs, P.HasModifiers, VOP3Only
>;
// Special case for v_div_fmas_{f32|f64}, since it seems to be the
// only VOP instruction that implicitly reads VCC.
multiclass VOP3_VCC_Inst <vop3 op, string opName,
VOPProfile P,
SDPatternOperator node = null_frag> : VOP3_Helper <
op, opName,
(outs P.DstRC.RegClass:$vdst),
P.Ins64,
"$vdst, $src0_modifiers, $src1_modifiers, $src2_modifiers"#"$clamp"#"$omod",
[(set P.DstVT:$vdst,
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers,
i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers)),
(P.Src2VT (VOP3Mods P.Src2VT:$src2, i32:$src2_modifiers)),
(i1 VCC)))],
3, 1
>;
multiclass VOP3bInst <vop op, string opName, VOPProfile P, list<dag> pattern = [], bit VOP3Only = 0> :
VOP3b_2_3_m <
op, P.Outs64, P.Ins64,
opName#" "#P.Asm64, pattern,
opName, "", 1, 1, VOP3Only
>;
class Vop3ModPat<Instruction Inst, VOPProfile P, SDPatternOperator node> : Pat<
(node (P.Src0VT (VOP3Mods0 P.Src0VT:$src0, i32:$src0_modifiers, i1:$clamp, i32:$omod)),
(P.Src1VT (VOP3Mods P.Src1VT:$src1, i32:$src1_modifiers)),
(P.Src2VT (VOP3Mods P.Src2VT:$src2, i32:$src2_modifiers))),
(Inst i32:$src0_modifiers, P.Src0VT:$src0,
i32:$src1_modifiers, P.Src1VT:$src1,
i32:$src2_modifiers, P.Src2VT:$src2,
i1:$clamp,
i32:$omod)>;
//===----------------------------------------------------------------------===//
// Interpolation opcodes
//===----------------------------------------------------------------------===//
class VINTRP_Pseudo <string opName, dag outs, dag ins, list<dag> pattern> :
VINTRPCommon <outs, ins, "", pattern>,
SIMCInstr<opName, SIEncodingFamily.NONE> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
class VINTRP_Real_si <bits <2> op, string opName, dag outs, dag ins,
string asm> :
VINTRPCommon <outs, ins, asm, []>,
VINTRPe <op>,
SIMCInstr<opName, SIEncodingFamily.SI> {
let AssemblerPredicate = SIAssemblerPredicate;
let DecoderNamespace = "SICI";
let DisableDecoder = DisableSIDecoder;
}
class VINTRP_Real_vi <bits <2> op, string opName, dag outs, dag ins,
string asm> :
VINTRPCommon <outs, ins, asm, []>,
VINTRPe_vi <op>,
SIMCInstr<opName, SIEncodingFamily.VI> {
let AssemblerPredicate = VIAssemblerPredicate;
let DecoderNamespace = "VI";
let DisableDecoder = DisableVIDecoder;
}
multiclass VINTRP_m <bits <2> op, dag outs, dag ins, string asm,
list<dag> pattern = []> {
def "" : VINTRP_Pseudo <NAME, outs, ins, pattern>;
def _si : VINTRP_Real_si <op, NAME, outs, ins, asm>;
def _vi : VINTRP_Real_vi <op, NAME, outs, ins, asm>;
}
//===----------------------------------------------------------------------===//
// MTBUF classes
//===----------------------------------------------------------------------===//
class MTBUF_Pseudo <string opName, dag outs, dag ins, list<dag> pattern> :
MTBUF <outs, ins, "", pattern>,
SIMCInstr<opName, SIEncodingFamily.NONE> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
class MTBUF_Real_si <bits<3> op, string opName, dag outs, dag ins,
string asm> :
MTBUF <outs, ins, asm, []>,
MTBUFe <op>,
SIMCInstr<opName, SIEncodingFamily.SI> {
let DecoderNamespace="SICI";
let DisableDecoder = DisableSIDecoder;
}
class MTBUF_Real_vi <bits<4> op, string opName, dag outs, dag ins, string asm> :
MTBUF <outs, ins, asm, []>,
MTBUFe_vi <op>,
SIMCInstr <opName, SIEncodingFamily.VI> {
let DecoderNamespace="VI";
let DisableDecoder = DisableVIDecoder;
}
multiclass MTBUF_m <bits<3> op, string opName, dag outs, dag ins, string asm,
list<dag> pattern> {
def "" : MTBUF_Pseudo <opName, outs, ins, pattern>;
def _si : MTBUF_Real_si <op, opName, outs, ins, asm>;
def _vi : MTBUF_Real_vi <{0, op{2}, op{1}, op{0}}, opName, outs, ins, asm>;
}
let mayStore = 1, mayLoad = 0 in {
multiclass MTBUF_Store_Helper <bits<3> op, string opName,
RegisterClass regClass> : MTBUF_m <
op, opName, (outs),
(ins regClass:$vdata, u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc,
i1imm:$addr64, i8imm:$dfmt, i8imm:$nfmt, VGPR_32:$vaddr,
SReg_128:$srsrc, i1imm:$slc, i1imm:$tfe, SCSrc_b32:$soffset),
opName#" $vdata, $offset, $offen, $idxen, $glc, $addr64, $dfmt,"
#" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset", []
>;
} // mayStore = 1, mayLoad = 0
let mayLoad = 1, mayStore = 0 in {
multiclass MTBUF_Load_Helper <bits<3> op, string opName,
RegisterClass regClass> : MTBUF_m <
op, opName, (outs regClass:$dst),
(ins u16imm:$offset, i1imm:$offen, i1imm:$idxen, i1imm:$glc, i1imm:$addr64,
i8imm:$dfmt, i8imm:$nfmt, VGPR_32:$vaddr, SReg_128:$srsrc,
i1imm:$slc, i1imm:$tfe, SCSrc_b32:$soffset),
opName#" $dst, $offset, $offen, $idxen, $glc, $addr64, $dfmt,"
#" $nfmt, $vaddr, $srsrc, $slc, $tfe, $soffset", []
>;
} // mayLoad = 1, mayStore = 0
//===----------------------------------------------------------------------===//
// MUBUF classes
//===----------------------------------------------------------------------===//
class mubuf <bits<7> si, bits<7> vi = si> {
field bits<7> SI = si;
field bits<7> VI = vi;
}
let isCodeGenOnly = 0 in {
class MUBUF_si <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
MUBUF <outs, ins, asm, pattern>, MUBUFe <op> {
let lds = 0;
}
} // End let isCodeGenOnly = 0
class MUBUF_vi <bits<7> op, dag outs, dag ins, string asm, list<dag> pattern> :
MUBUF <outs, ins, asm, pattern>, MUBUFe_vi <op> {
let lds = 0;
}
class MUBUFAddr64Table <bit is_addr64, string suffix = ""> {
bit IsAddr64 = is_addr64;
string OpName = NAME # suffix;
}
class MUBUF_Pseudo <string opName, dag outs, dag ins, list<dag> pattern> :
MUBUF <outs, ins, "", pattern>,
SIMCInstr<opName, SIEncodingFamily.NONE> {
let isPseudo = 1;
let isCodeGenOnly = 1;
// dummy fields, so that we can use let statements around multiclasses
bits<1> offen;
bits<1> idxen;
bits<8> vaddr;
bits<1> glc;
bits<1> slc;
bits<1> tfe;
bits<8> soffset;
}
class MUBUF_Real_si <mubuf op, string opName, dag outs, dag ins,
string asm> :
MUBUF <outs, ins, asm, []>,
MUBUFe <op.SI>,
SIMCInstr<opName, SIEncodingFamily.SI> {
let lds = 0;
let AssemblerPredicate = SIAssemblerPredicate;
let DecoderNamespace="SICI";
let DisableDecoder = DisableSIDecoder;
}
class MUBUF_Real_vi <mubuf op, string opName, dag outs, dag ins,
string asm> :
MUBUF <outs, ins, asm, []>,
MUBUFe_vi <op.VI>,
SIMCInstr<opName, SIEncodingFamily.VI> {
let lds = 0;
let AssemblerPredicate = VIAssemblerPredicate;
let DecoderNamespace="VI";
let DisableDecoder = DisableVIDecoder;
}
multiclass MUBUF_m <mubuf op, string opName, dag outs, dag ins, string asm,
list<dag> pattern> {
def "" : MUBUF_Pseudo <opName, outs, ins, pattern>,
MUBUFAddr64Table <0>;
let DisableWQM = 1 in {
def "_exact" : MUBUF_Pseudo <opName, outs, ins, []>;
}
let addr64 = 0, isCodeGenOnly = 0 in {
def _si : MUBUF_Real_si <op, opName, outs, ins, asm>;
}
def _vi : MUBUF_Real_vi <op, opName, outs, ins, asm>;
}
multiclass MUBUFAddr64_m <mubuf op, string opName, dag outs,
dag ins, string asm, list<dag> pattern> {
def "" : MUBUF_Pseudo <opName, outs, ins, pattern>,
MUBUFAddr64Table <1>;
let addr64 = 1, isCodeGenOnly = 0 in {
def _si : MUBUF_Real_si <op, opName, outs, ins, asm>;
}
// There is no VI version. If the pseudo is selected, it should be lowered
// for VI appropriately.
}
multiclass MUBUFAtomicOffset_m <mubuf op, string opName, dag outs, dag ins,
string asm, list<dag> pattern, bit is_return> {
def "" : MUBUF_Pseudo <opName, outs, ins, pattern>,
MUBUFAddr64Table <0, !if(is_return, "_RTN", "")>,
AtomicNoRet<NAME#"_OFFSET", is_return>;
let offen = 0, idxen = 0, tfe = 0, vaddr = 0 in {
let addr64 = 0 in {
def _si : MUBUF_Real_si <op, opName, outs, ins, asm>;
}
def _vi : MUBUF_Real_vi <op, opName, outs, ins, asm>;
}
}
multiclass MUBUFAtomicAddr64_m <mubuf op, string opName, dag outs, dag ins,
string asm, list<dag> pattern, bit is_return> {
def "" : MUBUF_Pseudo <opName, outs, ins, pattern>,
MUBUFAddr64Table <1, !if(is_return, "_RTN", "")>,
AtomicNoRet<NAME#"_ADDR64", is_return>;
let offen = 0, idxen = 0, addr64 = 1, tfe = 0 in {
def _si : MUBUF_Real_si <op, opName, outs, ins, asm>;
}
// There is no VI version. If the pseudo is selected, it should be lowered
// for VI appropriately.
}
multiclass MUBUFAtomicOther_m <mubuf op, string opName, dag outs, dag ins,
string asm, list<dag> pattern, bit is_return> {
def "" : MUBUF_Pseudo <opName, outs, ins, pattern>,
AtomicNoRet<opName, is_return>;
let tfe = 0 in {
let addr64 = 0 in {
def _si : MUBUF_Real_si <op, opName, outs, ins, asm>;
}
def _vi : MUBUF_Real_vi <op, opName, outs, ins, asm>;
}
}
multiclass MUBUF_Atomic <mubuf op, string name, RegisterClass rc,
ValueType vt, SDPatternOperator atomic> {
let mayStore = 1, mayLoad = 1, hasPostISelHook = 1, hasSideEffects = 1,
DisableWQM = 1 in {
// No return variants
let glc = 0, AsmMatchConverter = "cvtMubufAtomic" in {
defm _ADDR64 : MUBUFAtomicAddr64_m <
op, name#"_addr64", (outs),
(ins rc:$vdata, VReg_64:$vaddr, SReg_128:$srsrc,
SCSrc_b32:$soffset, offset:$offset, slc:$slc),
name#" $vdata, $vaddr, $srsrc, $soffset addr64$offset$slc", [], 0
>;
defm _OFFSET : MUBUFAtomicOffset_m <
op, name#"_offset", (outs),
(ins rc:$vdata, SReg_128:$srsrc, SCSrc_b32:$soffset, offset:$offset,
slc:$slc),
name#" $vdata, off, $srsrc, $soffset$offset$slc", [], 0
>;
let offen = 1, idxen = 0 in {
defm _OFFEN : MUBUFAtomicOther_m <
op, name#"_offen", (outs),
(ins rc:$vdata, VGPR_32:$vaddr, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, slc:$slc),
name#" $vdata, $vaddr, $srsrc, $soffset offen$offset$slc", [], 0
>;
}
let offen = 0, idxen = 1 in {
defm _IDXEN : MUBUFAtomicOther_m <
op, name#"_idxen", (outs),
(ins rc:$vdata, VGPR_32:$vaddr, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, slc:$slc),
name#" $vdata, $vaddr, $srsrc, $soffset idxen$offset$slc", [], 0
>;
}
let offen = 1, idxen = 1 in {
defm _BOTHEN : MUBUFAtomicOther_m <
op, name#"_bothen", (outs),
(ins rc:$vdata, VReg_64:$vaddr, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, slc:$slc),
name#" $vdata, $vaddr, $srsrc, $soffset idxen offen$offset$slc",
[], 0
>;
}
} // glc = 0
// Variant that return values
let glc = 1, Constraints = "$vdata = $vdata_in",
AsmMatchConverter = "cvtMubufAtomicReturn",
DisableEncoding = "$vdata_in" in {
defm _RTN_ADDR64 : MUBUFAtomicAddr64_m <
op, name#"_rtn_addr64", (outs rc:$vdata),
(ins rc:$vdata_in, VReg_64:$vaddr, SReg_128:$srsrc,
SCSrc_b32:$soffset, offset:$offset, slc:$slc),
name#" $vdata, $vaddr, $srsrc, $soffset addr64$offset glc$slc",
[(set vt:$vdata,
(atomic (MUBUFAddr64Atomic v4i32:$srsrc, i64:$vaddr, i32:$soffset,
i16:$offset, i1:$slc), vt:$vdata_in))], 1
>;
defm _RTN_OFFSET : MUBUFAtomicOffset_m <
op, name#"_rtn_offset", (outs rc:$vdata),
(ins rc:$vdata_in, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, slc:$slc),
name#" $vdata, off, $srsrc, $soffset$offset glc$slc",
[(set vt:$vdata,
(atomic (MUBUFOffsetAtomic v4i32:$srsrc, i32:$soffset, i16:$offset,
i1:$slc), vt:$vdata_in))], 1
>;
let offen = 1, idxen = 0 in {
defm _RTN_OFFEN : MUBUFAtomicOther_m <
op, name#"_rtn_offen", (outs rc:$vdata),
(ins rc:$vdata_in, VGPR_32:$vaddr, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, slc:$slc),
name#" $vdata, $vaddr, $srsrc, $soffset offen$offset glc$slc",
[], 1
>;
}
let offen = 0, idxen = 1 in {
defm _RTN_IDXEN : MUBUFAtomicOther_m <
op, name#"_rtn_idxen", (outs rc:$vdata),
(ins rc:$vdata_in, VGPR_32:$vaddr, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, slc:$slc),
name#" $vdata, $vaddr, $srsrc, $soffset idxen$offset glc$slc",
[], 1
>;
}
let offen = 1, idxen = 1 in {
defm _RTN_BOTHEN : MUBUFAtomicOther_m <
op, name#"_rtn_bothen", (outs rc:$vdata),
(ins rc:$vdata_in, VReg_64:$vaddr, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, slc:$slc),
name#" $vdata, $vaddr, $srsrc, $soffset idxen offen$offset glc$slc",
[], 1
>;
}
} // glc = 1
} // mayStore = 1, mayLoad = 1, hasPostISelHook = 1
}
// FIXME: tfe can't be an operand because it requires a separate
// opcode because it needs an N+1 register class dest register.
multiclass MUBUF_Load_Helper <mubuf op, string name, RegisterClass regClass,
ValueType load_vt = i32,
SDPatternOperator ld = null_frag> {
let mayLoad = 1, mayStore = 0 in {
let offen = 0, idxen = 0, vaddr = 0 in {
defm _OFFSET : MUBUF_m <op, name#"_offset", (outs regClass:$vdata),
(ins SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, glc:$glc, slc:$slc, tfe:$tfe),
name#" $vdata, off, $srsrc, $soffset$offset$glc$slc$tfe",
[(set load_vt:$vdata, (ld (MUBUFOffset v4i32:$srsrc,
i32:$soffset, i16:$offset,
i1:$glc, i1:$slc, i1:$tfe)))]>;
}
let offen = 1, idxen = 0 in {
defm _OFFEN : MUBUF_m <op, name#"_offen", (outs regClass:$vdata),
(ins VGPR_32:$vaddr, SReg_128:$srsrc,
SCSrc_b32:$soffset, offset:$offset, glc:$glc, slc:$slc,
tfe:$tfe),
name#" $vdata, $vaddr, $srsrc, $soffset offen$offset$glc$slc$tfe", []>;
}
let offen = 0, idxen = 1 in {
defm _IDXEN : MUBUF_m <op, name#"_idxen", (outs regClass:$vdata),
(ins VGPR_32:$vaddr, SReg_128:$srsrc,
SCSrc_b32:$soffset, offset:$offset, glc:$glc,
slc:$slc, tfe:$tfe),
name#" $vdata, $vaddr, $srsrc, $soffset idxen$offset$glc$slc$tfe", []>;
}
let offen = 1, idxen = 1 in {
defm _BOTHEN : MUBUF_m <op, name#"_bothen", (outs regClass:$vdata),
(ins VReg_64:$vaddr, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, glc:$glc, slc:$slc, tfe:$tfe),
name#" $vdata, $vaddr, $srsrc, $soffset idxen offen$offset$glc$slc$tfe", []>;
}
let offen = 0, idxen = 0 in {
defm _ADDR64 : MUBUFAddr64_m <op, name#"_addr64", (outs regClass:$vdata),
(ins VReg_64:$vaddr, SReg_128:$srsrc,
SCSrc_b32:$soffset, offset:$offset,
glc:$glc, slc:$slc, tfe:$tfe),
name#" $vdata, $vaddr, $srsrc, $soffset addr64$offset$glc$slc$tfe",
[(set load_vt:$vdata, (ld (MUBUFAddr64 v4i32:$srsrc,
i64:$vaddr, i32:$soffset,
i16:$offset, i1:$glc, i1:$slc,
i1:$tfe)))]>;
}
}
}
multiclass MUBUF_Store_Helper <mubuf op, string name, RegisterClass vdataClass,
ValueType store_vt = i32, SDPatternOperator st = null_frag> {
let mayLoad = 0, mayStore = 1 in {
let offen = 0, idxen = 0, vaddr = 0 in {
defm _OFFSET : MUBUF_m <op, name#"_offset",(outs),
(ins vdataClass:$vdata, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, glc:$glc, slc:$slc, tfe:$tfe),
name#" $vdata, off, $srsrc, $soffset$offset$glc$slc$tfe",
[(st store_vt:$vdata, (MUBUFOffset v4i32:$srsrc, i32:$soffset,
i16:$offset, i1:$glc, i1:$slc, i1:$tfe))]>;
} // offen = 0, idxen = 0, vaddr = 0
let offen = 1, idxen = 0 in {
defm _OFFEN : MUBUF_m <op, name#"_offen", (outs),
(ins vdataClass:$vdata, VGPR_32:$vaddr, SReg_128:$srsrc,
SCSrc_b32:$soffset, offset:$offset, glc:$glc,
slc:$slc, tfe:$tfe),
name#" $vdata, $vaddr, $srsrc, $soffset offen"#
"$offset$glc$slc$tfe", []>;
} // end offen = 1, idxen = 0
let offen = 0, idxen = 1 in {
defm _IDXEN : MUBUF_m <op, name#"_idxen", (outs),
(ins vdataClass:$vdata, VGPR_32:$vaddr, SReg_128:$srsrc,
SCSrc_b32:$soffset, offset:$offset, glc:$glc,
slc:$slc, tfe:$tfe),
name#" $vdata, $vaddr, $srsrc, $soffset idxen$offset$glc$slc$tfe", []>;
}
let offen = 1, idxen = 1 in {
defm _BOTHEN : MUBUF_m <op, name#"_bothen", (outs),
(ins vdataClass:$vdata, VReg_64:$vaddr, SReg_128:$srsrc, SCSrc_b32:$soffset,
offset:$offset, glc:$glc, slc:$slc, tfe:$tfe),
name#" $vdata, $vaddr, $srsrc, $soffset idxen offen$offset$glc$slc$tfe", []>;
}
let offen = 0, idxen = 0 in {
defm _ADDR64 : MUBUFAddr64_m <op, name#"_addr64", (outs),
(ins vdataClass:$vdata, VReg_64:$vaddr, SReg_128:$srsrc,
SCSrc_b32:$soffset,
offset:$offset, glc:$glc, slc:$slc,
tfe:$tfe),
name#" $vdata, $vaddr, $srsrc, $soffset addr64"#
"$offset$glc$slc$tfe",
[(st store_vt:$vdata,
(MUBUFAddr64 v4i32:$srsrc, i64:$vaddr,
i32:$soffset, i16:$offset,
i1:$glc, i1:$slc, i1:$tfe))]>;
}
} // End mayLoad = 0, mayStore = 1
}
// For cache invalidation instructions.
multiclass MUBUF_Invalidate <mubuf op, string opName, SDPatternOperator node> {
let hasSideEffects = 1, mayStore = 1, AsmMatchConverter = "" in {
def "" : MUBUF_Pseudo <opName, (outs), (ins), [(node)]>;
// Set everything to 0.
let offset = 0, offen = 0, idxen = 0, glc = 0, vaddr = 0,
vdata = 0, srsrc = 0, slc = 0, tfe = 0, soffset = 0 in {
let addr64 = 0 in {
def _si : MUBUF_Real_si <op, opName, (outs), (ins), opName>;
}
def _vi : MUBUF_Real_vi <op, opName, (outs), (ins), opName>;
}
} // End hasSideEffects = 1, mayStore = 1, AsmMatchConverter = ""
}
//===----------------------------------------------------------------------===//
// Vector instruction mappings
//===----------------------------------------------------------------------===//
// Maps an opcode in e32 form to its e64 equivalent
def getVOPe64 : InstrMapping {
let FilterClass = "VOP";
let RowFields = ["OpName"];
let ColFields = ["Size"];
let KeyCol = ["4"];
let ValueCols = [["8"]];
}
// Maps an opcode in e64 form to its e32 equivalent
def getVOPe32 : InstrMapping {
let FilterClass = "VOP";
let RowFields = ["OpName"];
let ColFields = ["Size"];
let KeyCol = ["8"];
let ValueCols = [["4"]];
}
def getMaskedMIMGOp : InstrMapping {
let FilterClass = "MIMG_Mask";
let RowFields = ["Op"];
let ColFields = ["Channels"];
let KeyCol = ["4"];
let ValueCols = [["1"], ["2"], ["3"] ];
}
// Maps an commuted opcode to its original version
def getCommuteOrig : InstrMapping {
let FilterClass = "VOP2_REV";
let RowFields = ["RevOp"];
let ColFields = ["IsOrig"];
let KeyCol = ["0"];
let ValueCols = [["1"]];
}
// Maps an original opcode to its commuted version
def getCommuteRev : InstrMapping {
let FilterClass = "VOP2_REV";
let RowFields = ["RevOp"];
let ColFields = ["IsOrig"];
let KeyCol = ["1"];
let ValueCols = [["0"]];
}
def getCommuteCmpOrig : InstrMapping {
let FilterClass = "VOP2_REV";
let RowFields = ["RevOp"];
let ColFields = ["IsOrig"];
let KeyCol = ["0"];
let ValueCols = [["1"]];
}
// Maps an original opcode to its commuted version
def getCommuteCmpRev : InstrMapping {
let FilterClass = "VOP2_REV";
let RowFields = ["RevOp"];
let ColFields = ["IsOrig"];
let KeyCol = ["1"];
let ValueCols = [["0"]];
}
def getMCOpcodeGen : InstrMapping {
let FilterClass = "SIMCInstr";
let RowFields = ["PseudoInstr"];
let ColFields = ["Subtarget"];
let KeyCol = [!cast<string>(SIEncodingFamily.NONE)];
let ValueCols = [[!cast<string>(SIEncodingFamily.SI)],
[!cast<string>(SIEncodingFamily.VI)]];
}
def getAddr64Inst : InstrMapping {
let FilterClass = "MUBUFAddr64Table";
let RowFields = ["OpName"];
let ColFields = ["IsAddr64"];
let KeyCol = ["0"];
let ValueCols = [["1"]];
}
// Maps an atomic opcode to its version with a return value.
def getAtomicRetOp : InstrMapping {
let FilterClass = "AtomicNoRet";
let RowFields = ["NoRetOp"];
let ColFields = ["IsRet"];
let KeyCol = ["0"];
let ValueCols = [["1"]];
}
// Maps an atomic opcode to its returnless version.
def getAtomicNoRetOp : InstrMapping {
let FilterClass = "AtomicNoRet";
let RowFields = ["NoRetOp"];
let ColFields = ["IsRet"];
let KeyCol = ["1"];
let ValueCols = [["0"]];
}
include "SIInstructions.td"
include "CIInstructions.td"
include "VIInstructions.td"
include "DSInstructions.td"
include "MIMGInstructions.td"