1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/include/llvm/Support/Parallel.h
Reid Kleckner 98666b7f54 Add parallelTransformReduce and parallelForEachError
parallelTransformReduce is modelled on the C++17 pstl API of
std::transform_reduce, except our wrappers do not use execution policy
parameters.

parallelForEachError allows loops that contain potentially failing
operations to propagate errors out of the loop. This was one of the
major challenges I encountered while parallelizing PDB type merging in
LLD. Parallelizing a loop with parallelForEachError is not behavior
preserving: the loop will no longer stop on the first error, it will
continue working and report all errors it encounters in a list.

I plan to use this to propagate errors out of LLD's
coff::TpiSource::remapTpiWithGHashes, which currently stores errors an
error in the TpiSource object.

Differential Revision: https://reviews.llvm.org/D90639
2020-11-02 16:50:14 -08:00

308 lines
9.9 KiB
C++

//===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_PARALLEL_H
#define LLVM_SUPPORT_PARALLEL_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Threading.h"
#include <algorithm>
#include <condition_variable>
#include <functional>
#include <mutex>
namespace llvm {
namespace parallel {
// Strategy for the default executor used by the parallel routines provided by
// this file. It defaults to using all hardware threads and should be
// initialized before the first use of parallel routines.
extern ThreadPoolStrategy strategy;
namespace detail {
#if LLVM_ENABLE_THREADS
class Latch {
uint32_t Count;
mutable std::mutex Mutex;
mutable std::condition_variable Cond;
public:
explicit Latch(uint32_t Count = 0) : Count(Count) {}
~Latch() { sync(); }
void inc() {
std::lock_guard<std::mutex> lock(Mutex);
++Count;
}
void dec() {
std::lock_guard<std::mutex> lock(Mutex);
if (--Count == 0)
Cond.notify_all();
}
void sync() const {
std::unique_lock<std::mutex> lock(Mutex);
Cond.wait(lock, [&] { return Count == 0; });
}
};
class TaskGroup {
Latch L;
bool Parallel;
public:
TaskGroup();
~TaskGroup();
void spawn(std::function<void()> f);
void sync() const { L.sync(); }
};
const ptrdiff_t MinParallelSize = 1024;
/// Inclusive median.
template <class RandomAccessIterator, class Comparator>
RandomAccessIterator medianOf3(RandomAccessIterator Start,
RandomAccessIterator End,
const Comparator &Comp) {
RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
return Comp(*Start, *(End - 1))
? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
: End - 1)
: (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
: Start);
}
template <class RandomAccessIterator, class Comparator>
void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp, TaskGroup &TG, size_t Depth) {
// Do a sequential sort for small inputs.
if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
llvm::sort(Start, End, Comp);
return;
}
// Partition.
auto Pivot = medianOf3(Start, End, Comp);
// Move Pivot to End.
std::swap(*(End - 1), *Pivot);
Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
return Comp(V, *(End - 1));
});
// Move Pivot to middle of partition.
std::swap(*Pivot, *(End - 1));
// Recurse.
TG.spawn([=, &Comp, &TG] {
parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
});
parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
}
template <class RandomAccessIterator, class Comparator>
void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp) {
TaskGroup TG;
parallel_quick_sort(Start, End, Comp, TG,
llvm::Log2_64(std::distance(Start, End)) + 1);
}
// TaskGroup has a relatively high overhead, so we want to reduce
// the number of spawn() calls. We'll create up to 1024 tasks here.
// (Note that 1024 is an arbitrary number. This code probably needs
// improving to take the number of available cores into account.)
enum { MaxTasksPerGroup = 1024 };
template <class IterTy, class FuncTy>
void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
// Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
// overhead on large inputs.
ptrdiff_t TaskSize = std::distance(Begin, End) / MaxTasksPerGroup;
if (TaskSize == 0)
TaskSize = 1;
TaskGroup TG;
while (TaskSize < std::distance(Begin, End)) {
TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); });
Begin += TaskSize;
}
std::for_each(Begin, End, Fn);
}
template <class IndexTy, class FuncTy>
void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
// Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
// overhead on large inputs.
ptrdiff_t TaskSize = (End - Begin) / MaxTasksPerGroup;
if (TaskSize == 0)
TaskSize = 1;
TaskGroup TG;
IndexTy I = Begin;
for (; I + TaskSize < End; I += TaskSize) {
TG.spawn([=, &Fn] {
for (IndexTy J = I, E = I + TaskSize; J != E; ++J)
Fn(J);
});
}
for (IndexTy J = I; J < End; ++J)
Fn(J);
}
template <class IterTy, class ResultTy, class ReduceFuncTy,
class TransformFuncTy>
ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init,
ReduceFuncTy Reduce,
TransformFuncTy Transform) {
// Limit the number of tasks to MaxTasksPerGroup to limit job scheduling
// overhead on large inputs.
size_t NumInputs = std::distance(Begin, End);
if (NumInputs == 0)
return std::move(Init);
size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs);
std::vector<ResultTy> Results(NumTasks, Init);
{
// Each task processes either TaskSize or TaskSize+1 inputs. Any inputs
// remaining after dividing them equally amongst tasks are distributed as
// one extra input over the first tasks.
TaskGroup TG;
size_t TaskSize = NumInputs / NumTasks;
size_t RemainingInputs = NumInputs % NumTasks;
IterTy TBegin = Begin;
for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) {
IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0);
TG.spawn([=, &Transform, &Reduce, &Results] {
// Reduce the result of transformation eagerly within each task.
ResultTy R = Init;
for (IterTy It = TBegin; It != TEnd; ++It)
R = Reduce(R, Transform(*It));
Results[TaskId] = R;
});
TBegin = TEnd;
}
assert(TBegin == End);
}
// Do a final reduction. There are at most 1024 tasks, so this only adds
// constant single-threaded overhead for large inputs. Hopefully most
// reductions are cheaper than the transformation.
ResultTy FinalResult = std::move(Results.front());
for (ResultTy &PartialResult :
makeMutableArrayRef(Results.data() + 1, Results.size() - 1))
FinalResult = Reduce(FinalResult, std::move(PartialResult));
return std::move(FinalResult);
}
#endif
} // namespace detail
} // namespace parallel
template <class RandomAccessIterator,
class Comparator = std::less<
typename std::iterator_traits<RandomAccessIterator>::value_type>>
void parallelSort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp = Comparator()) {
#if LLVM_ENABLE_THREADS
if (parallel::strategy.ThreadsRequested != 1) {
parallel::detail::parallel_sort(Start, End, Comp);
return;
}
#endif
llvm::sort(Start, End, Comp);
}
template <class IterTy, class FuncTy>
void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) {
#if LLVM_ENABLE_THREADS
if (parallel::strategy.ThreadsRequested != 1) {
parallel::detail::parallel_for_each(Begin, End, Fn);
return;
}
#endif
std::for_each(Begin, End, Fn);
}
template <class FuncTy>
void parallelForEachN(size_t Begin, size_t End, FuncTy Fn) {
#if LLVM_ENABLE_THREADS
if (parallel::strategy.ThreadsRequested != 1) {
parallel::detail::parallel_for_each_n(Begin, End, Fn);
return;
}
#endif
for (size_t I = Begin; I != End; ++I)
Fn(I);
}
template <class IterTy, class ResultTy, class ReduceFuncTy,
class TransformFuncTy>
ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init,
ReduceFuncTy Reduce,
TransformFuncTy Transform) {
#if LLVM_ENABLE_THREADS
if (parallel::strategy.ThreadsRequested != 1) {
return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce,
Transform);
}
#endif
for (IterTy I = Begin; I != End; ++I)
Init = Reduce(std::move(Init), Transform(*I));
return std::move(Init);
}
// Range wrappers.
template <class RangeTy,
class Comparator = std::less<decltype(*std::begin(RangeTy()))>>
void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) {
parallelSort(std::begin(R), std::end(R), Comp);
}
template <class RangeTy, class FuncTy>
void parallelForEach(RangeTy &&R, FuncTy Fn) {
parallelForEach(std::begin(R), std::end(R), Fn);
}
template <class RangeTy, class ResultTy, class ReduceFuncTy,
class TransformFuncTy>
ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init,
ReduceFuncTy Reduce,
TransformFuncTy Transform) {
return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce,
Transform);
}
// Parallel for-each, but with error handling.
template <class RangeTy, class FuncTy>
Error parallelForEachError(RangeTy &&R, FuncTy Fn) {
// The transform_reduce algorithm requires that the initial value be copyable.
// Error objects are uncopyable. We only need to copy initial success values,
// so work around this mismatch via the C API. The C API represents success
// values with a null pointer. The joinErrors discards null values and joins
// multiple errors into an ErrorList.
return unwrap(parallelTransformReduce(
std::begin(R), std::end(R), wrap(Error::success()),
[](LLVMErrorRef Lhs, LLVMErrorRef Rhs) {
return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs)));
},
[&Fn](auto &&V) { return wrap(Fn(V)); }));
}
} // namespace llvm
#endif // LLVM_SUPPORT_PARALLEL_H