mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
5eb53ddf94
Summary: The signed one is needed for implementation of `ConstantRange::smul_sat()`, unsigned is for completeness only. Reviewers: nikic, RKSimon, spatel Reviewed By: nikic Subscribers: hiraditya, dexonsmith, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D69993
2259 lines
73 KiB
C++
2259 lines
73 KiB
C++
//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements a class to represent arbitrary precision
|
|
/// integral constant values and operations on them.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_APINT_H
|
|
#define LLVM_ADT_APINT_H
|
|
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstring>
|
|
#include <string>
|
|
|
|
namespace llvm {
|
|
class FoldingSetNodeID;
|
|
class StringRef;
|
|
class hash_code;
|
|
class raw_ostream;
|
|
|
|
template <typename T> class SmallVectorImpl;
|
|
template <typename T> class ArrayRef;
|
|
template <typename T> class Optional;
|
|
|
|
class APInt;
|
|
|
|
inline APInt operator-(APInt);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// APInt Class
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Class for arbitrary precision integers.
|
|
///
|
|
/// APInt is a functional replacement for common case unsigned integer type like
|
|
/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
|
|
/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
|
|
/// than 64-bits of precision. APInt provides a variety of arithmetic operators
|
|
/// and methods to manipulate integer values of any bit-width. It supports both
|
|
/// the typical integer arithmetic and comparison operations as well as bitwise
|
|
/// manipulation.
|
|
///
|
|
/// The class has several invariants worth noting:
|
|
/// * All bit, byte, and word positions are zero-based.
|
|
/// * Once the bit width is set, it doesn't change except by the Truncate,
|
|
/// SignExtend, or ZeroExtend operations.
|
|
/// * All binary operators must be on APInt instances of the same bit width.
|
|
/// Attempting to use these operators on instances with different bit
|
|
/// widths will yield an assertion.
|
|
/// * The value is stored canonically as an unsigned value. For operations
|
|
/// where it makes a difference, there are both signed and unsigned variants
|
|
/// of the operation. For example, sdiv and udiv. However, because the bit
|
|
/// widths must be the same, operations such as Mul and Add produce the same
|
|
/// results regardless of whether the values are interpreted as signed or
|
|
/// not.
|
|
/// * In general, the class tries to follow the style of computation that LLVM
|
|
/// uses in its IR. This simplifies its use for LLVM.
|
|
///
|
|
class LLVM_NODISCARD APInt {
|
|
public:
|
|
typedef uint64_t WordType;
|
|
|
|
/// This enum is used to hold the constants we needed for APInt.
|
|
enum : unsigned {
|
|
/// Byte size of a word.
|
|
APINT_WORD_SIZE = sizeof(WordType),
|
|
/// Bits in a word.
|
|
APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
|
|
};
|
|
|
|
enum class Rounding {
|
|
DOWN,
|
|
TOWARD_ZERO,
|
|
UP,
|
|
};
|
|
|
|
static const WordType WORDTYPE_MAX = ~WordType(0);
|
|
|
|
private:
|
|
/// This union is used to store the integer value. When the
|
|
/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
|
|
union {
|
|
uint64_t VAL; ///< Used to store the <= 64 bits integer value.
|
|
uint64_t *pVal; ///< Used to store the >64 bits integer value.
|
|
} U;
|
|
|
|
unsigned BitWidth; ///< The number of bits in this APInt.
|
|
|
|
friend struct DenseMapAPIntKeyInfo;
|
|
|
|
friend class APSInt;
|
|
|
|
/// Fast internal constructor
|
|
///
|
|
/// This constructor is used only internally for speed of construction of
|
|
/// temporaries. It is unsafe for general use so it is not public.
|
|
APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
|
|
U.pVal = val;
|
|
}
|
|
|
|
/// Determine if this APInt just has one word to store value.
|
|
///
|
|
/// \returns true if the number of bits <= 64, false otherwise.
|
|
bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
|
|
|
|
/// Determine which word a bit is in.
|
|
///
|
|
/// \returns the word position for the specified bit position.
|
|
static unsigned whichWord(unsigned bitPosition) {
|
|
return bitPosition / APINT_BITS_PER_WORD;
|
|
}
|
|
|
|
/// Determine which bit in a word a bit is in.
|
|
///
|
|
/// \returns the bit position in a word for the specified bit position
|
|
/// in the APInt.
|
|
static unsigned whichBit(unsigned bitPosition) {
|
|
return bitPosition % APINT_BITS_PER_WORD;
|
|
}
|
|
|
|
/// Get a single bit mask.
|
|
///
|
|
/// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
|
|
/// This method generates and returns a uint64_t (word) mask for a single
|
|
/// bit at a specific bit position. This is used to mask the bit in the
|
|
/// corresponding word.
|
|
static uint64_t maskBit(unsigned bitPosition) {
|
|
return 1ULL << whichBit(bitPosition);
|
|
}
|
|
|
|
/// Clear unused high order bits
|
|
///
|
|
/// This method is used internally to clear the top "N" bits in the high order
|
|
/// word that are not used by the APInt. This is needed after the most
|
|
/// significant word is assigned a value to ensure that those bits are
|
|
/// zero'd out.
|
|
APInt &clearUnusedBits() {
|
|
// Compute how many bits are used in the final word
|
|
unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
|
|
|
|
// Mask out the high bits.
|
|
uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
|
|
if (isSingleWord())
|
|
U.VAL &= mask;
|
|
else
|
|
U.pVal[getNumWords() - 1] &= mask;
|
|
return *this;
|
|
}
|
|
|
|
/// Get the word corresponding to a bit position
|
|
/// \returns the corresponding word for the specified bit position.
|
|
uint64_t getWord(unsigned bitPosition) const {
|
|
return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
|
|
}
|
|
|
|
/// Utility method to change the bit width of this APInt to new bit width,
|
|
/// allocating and/or deallocating as necessary. There is no guarantee on the
|
|
/// value of any bits upon return. Caller should populate the bits after.
|
|
void reallocate(unsigned NewBitWidth);
|
|
|
|
/// Convert a char array into an APInt
|
|
///
|
|
/// \param radix 2, 8, 10, 16, or 36
|
|
/// Converts a string into a number. The string must be non-empty
|
|
/// and well-formed as a number of the given base. The bit-width
|
|
/// must be sufficient to hold the result.
|
|
///
|
|
/// This is used by the constructors that take string arguments.
|
|
///
|
|
/// StringRef::getAsInteger is superficially similar but (1) does
|
|
/// not assume that the string is well-formed and (2) grows the
|
|
/// result to hold the input.
|
|
void fromString(unsigned numBits, StringRef str, uint8_t radix);
|
|
|
|
/// An internal division function for dividing APInts.
|
|
///
|
|
/// This is used by the toString method to divide by the radix. It simply
|
|
/// provides a more convenient form of divide for internal use since KnuthDiv
|
|
/// has specific constraints on its inputs. If those constraints are not met
|
|
/// then it provides a simpler form of divide.
|
|
static void divide(const WordType *LHS, unsigned lhsWords,
|
|
const WordType *RHS, unsigned rhsWords, WordType *Quotient,
|
|
WordType *Remainder);
|
|
|
|
/// out-of-line slow case for inline constructor
|
|
void initSlowCase(uint64_t val, bool isSigned);
|
|
|
|
/// shared code between two array constructors
|
|
void initFromArray(ArrayRef<uint64_t> array);
|
|
|
|
/// out-of-line slow case for inline copy constructor
|
|
void initSlowCase(const APInt &that);
|
|
|
|
/// out-of-line slow case for shl
|
|
void shlSlowCase(unsigned ShiftAmt);
|
|
|
|
/// out-of-line slow case for lshr.
|
|
void lshrSlowCase(unsigned ShiftAmt);
|
|
|
|
/// out-of-line slow case for ashr.
|
|
void ashrSlowCase(unsigned ShiftAmt);
|
|
|
|
/// out-of-line slow case for operator=
|
|
void AssignSlowCase(const APInt &RHS);
|
|
|
|
/// out-of-line slow case for operator==
|
|
bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
|
|
|
|
/// out-of-line slow case for countLeadingZeros
|
|
unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
|
|
|
|
/// out-of-line slow case for countLeadingOnes.
|
|
unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
|
|
|
|
/// out-of-line slow case for countTrailingZeros.
|
|
unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
|
|
|
|
/// out-of-line slow case for countTrailingOnes
|
|
unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
|
|
|
|
/// out-of-line slow case for countPopulation
|
|
unsigned countPopulationSlowCase() const LLVM_READONLY;
|
|
|
|
/// out-of-line slow case for intersects.
|
|
bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
|
|
|
|
/// out-of-line slow case for isSubsetOf.
|
|
bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
|
|
|
|
/// out-of-line slow case for setBits.
|
|
void setBitsSlowCase(unsigned loBit, unsigned hiBit);
|
|
|
|
/// out-of-line slow case for flipAllBits.
|
|
void flipAllBitsSlowCase();
|
|
|
|
/// out-of-line slow case for operator&=.
|
|
void AndAssignSlowCase(const APInt& RHS);
|
|
|
|
/// out-of-line slow case for operator|=.
|
|
void OrAssignSlowCase(const APInt& RHS);
|
|
|
|
/// out-of-line slow case for operator^=.
|
|
void XorAssignSlowCase(const APInt& RHS);
|
|
|
|
/// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
|
|
/// to, or greater than RHS.
|
|
int compare(const APInt &RHS) const LLVM_READONLY;
|
|
|
|
/// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
|
|
/// to, or greater than RHS.
|
|
int compareSigned(const APInt &RHS) const LLVM_READONLY;
|
|
|
|
public:
|
|
/// \name Constructors
|
|
/// @{
|
|
|
|
/// Create a new APInt of numBits width, initialized as val.
|
|
///
|
|
/// If isSigned is true then val is treated as if it were a signed value
|
|
/// (i.e. as an int64_t) and the appropriate sign extension to the bit width
|
|
/// will be done. Otherwise, no sign extension occurs (high order bits beyond
|
|
/// the range of val are zero filled).
|
|
///
|
|
/// \param numBits the bit width of the constructed APInt
|
|
/// \param val the initial value of the APInt
|
|
/// \param isSigned how to treat signedness of val
|
|
APInt(unsigned numBits, uint64_t val, bool isSigned = false)
|
|
: BitWidth(numBits) {
|
|
assert(BitWidth && "bitwidth too small");
|
|
if (isSingleWord()) {
|
|
U.VAL = val;
|
|
clearUnusedBits();
|
|
} else {
|
|
initSlowCase(val, isSigned);
|
|
}
|
|
}
|
|
|
|
/// Construct an APInt of numBits width, initialized as bigVal[].
|
|
///
|
|
/// Note that bigVal.size() can be smaller or larger than the corresponding
|
|
/// bit width but any extraneous bits will be dropped.
|
|
///
|
|
/// \param numBits the bit width of the constructed APInt
|
|
/// \param bigVal a sequence of words to form the initial value of the APInt
|
|
APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
|
|
|
|
/// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
|
|
/// deprecated because this constructor is prone to ambiguity with the
|
|
/// APInt(unsigned, uint64_t, bool) constructor.
|
|
///
|
|
/// If this overload is ever deleted, care should be taken to prevent calls
|
|
/// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
|
|
/// constructor.
|
|
APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
|
|
|
|
/// Construct an APInt from a string representation.
|
|
///
|
|
/// This constructor interprets the string \p str in the given radix. The
|
|
/// interpretation stops when the first character that is not suitable for the
|
|
/// radix is encountered, or the end of the string. Acceptable radix values
|
|
/// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
|
|
/// string to require more bits than numBits.
|
|
///
|
|
/// \param numBits the bit width of the constructed APInt
|
|
/// \param str the string to be interpreted
|
|
/// \param radix the radix to use for the conversion
|
|
APInt(unsigned numBits, StringRef str, uint8_t radix);
|
|
|
|
/// Simply makes *this a copy of that.
|
|
/// Copy Constructor.
|
|
APInt(const APInt &that) : BitWidth(that.BitWidth) {
|
|
if (isSingleWord())
|
|
U.VAL = that.U.VAL;
|
|
else
|
|
initSlowCase(that);
|
|
}
|
|
|
|
/// Move Constructor.
|
|
APInt(APInt &&that) : BitWidth(that.BitWidth) {
|
|
memcpy(&U, &that.U, sizeof(U));
|
|
that.BitWidth = 0;
|
|
}
|
|
|
|
/// Destructor.
|
|
~APInt() {
|
|
if (needsCleanup())
|
|
delete[] U.pVal;
|
|
}
|
|
|
|
/// Default constructor that creates an uninteresting APInt
|
|
/// representing a 1-bit zero value.
|
|
///
|
|
/// This is useful for object deserialization (pair this with the static
|
|
/// method Read).
|
|
explicit APInt() : BitWidth(1) { U.VAL = 0; }
|
|
|
|
/// Returns whether this instance allocated memory.
|
|
bool needsCleanup() const { return !isSingleWord(); }
|
|
|
|
/// Used to insert APInt objects, or objects that contain APInt objects, into
|
|
/// FoldingSets.
|
|
void Profile(FoldingSetNodeID &id) const;
|
|
|
|
/// @}
|
|
/// \name Value Tests
|
|
/// @{
|
|
|
|
/// Determine sign of this APInt.
|
|
///
|
|
/// This tests the high bit of this APInt to determine if it is set.
|
|
///
|
|
/// \returns true if this APInt is negative, false otherwise
|
|
bool isNegative() const { return (*this)[BitWidth - 1]; }
|
|
|
|
/// Determine if this APInt Value is non-negative (>= 0)
|
|
///
|
|
/// This tests the high bit of the APInt to determine if it is unset.
|
|
bool isNonNegative() const { return !isNegative(); }
|
|
|
|
/// Determine if sign bit of this APInt is set.
|
|
///
|
|
/// This tests the high bit of this APInt to determine if it is set.
|
|
///
|
|
/// \returns true if this APInt has its sign bit set, false otherwise.
|
|
bool isSignBitSet() const { return (*this)[BitWidth-1]; }
|
|
|
|
/// Determine if sign bit of this APInt is clear.
|
|
///
|
|
/// This tests the high bit of this APInt to determine if it is clear.
|
|
///
|
|
/// \returns true if this APInt has its sign bit clear, false otherwise.
|
|
bool isSignBitClear() const { return !isSignBitSet(); }
|
|
|
|
/// Determine if this APInt Value is positive.
|
|
///
|
|
/// This tests if the value of this APInt is positive (> 0). Note
|
|
/// that 0 is not a positive value.
|
|
///
|
|
/// \returns true if this APInt is positive.
|
|
bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
|
|
|
|
/// Determine if all bits are set
|
|
///
|
|
/// This checks to see if the value has all bits of the APInt are set or not.
|
|
bool isAllOnesValue() const {
|
|
if (isSingleWord())
|
|
return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
|
|
return countTrailingOnesSlowCase() == BitWidth;
|
|
}
|
|
|
|
/// Determine if all bits are clear
|
|
///
|
|
/// This checks to see if the value has all bits of the APInt are clear or
|
|
/// not.
|
|
bool isNullValue() const { return !*this; }
|
|
|
|
/// Determine if this is a value of 1.
|
|
///
|
|
/// This checks to see if the value of this APInt is one.
|
|
bool isOneValue() const {
|
|
if (isSingleWord())
|
|
return U.VAL == 1;
|
|
return countLeadingZerosSlowCase() == BitWidth - 1;
|
|
}
|
|
|
|
/// Determine if this is the largest unsigned value.
|
|
///
|
|
/// This checks to see if the value of this APInt is the maximum unsigned
|
|
/// value for the APInt's bit width.
|
|
bool isMaxValue() const { return isAllOnesValue(); }
|
|
|
|
/// Determine if this is the largest signed value.
|
|
///
|
|
/// This checks to see if the value of this APInt is the maximum signed
|
|
/// value for the APInt's bit width.
|
|
bool isMaxSignedValue() const {
|
|
if (isSingleWord())
|
|
return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
|
|
return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
|
|
}
|
|
|
|
/// Determine if this is the smallest unsigned value.
|
|
///
|
|
/// This checks to see if the value of this APInt is the minimum unsigned
|
|
/// value for the APInt's bit width.
|
|
bool isMinValue() const { return isNullValue(); }
|
|
|
|
/// Determine if this is the smallest signed value.
|
|
///
|
|
/// This checks to see if the value of this APInt is the minimum signed
|
|
/// value for the APInt's bit width.
|
|
bool isMinSignedValue() const {
|
|
if (isSingleWord())
|
|
return U.VAL == (WordType(1) << (BitWidth - 1));
|
|
return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
|
|
}
|
|
|
|
/// Check if this APInt has an N-bits unsigned integer value.
|
|
bool isIntN(unsigned N) const {
|
|
assert(N && "N == 0 ???");
|
|
return getActiveBits() <= N;
|
|
}
|
|
|
|
/// Check if this APInt has an N-bits signed integer value.
|
|
bool isSignedIntN(unsigned N) const {
|
|
assert(N && "N == 0 ???");
|
|
return getMinSignedBits() <= N;
|
|
}
|
|
|
|
/// Check if this APInt's value is a power of two greater than zero.
|
|
///
|
|
/// \returns true if the argument APInt value is a power of two > 0.
|
|
bool isPowerOf2() const {
|
|
if (isSingleWord())
|
|
return isPowerOf2_64(U.VAL);
|
|
return countPopulationSlowCase() == 1;
|
|
}
|
|
|
|
/// Check if the APInt's value is returned by getSignMask.
|
|
///
|
|
/// \returns true if this is the value returned by getSignMask.
|
|
bool isSignMask() const { return isMinSignedValue(); }
|
|
|
|
/// Convert APInt to a boolean value.
|
|
///
|
|
/// This converts the APInt to a boolean value as a test against zero.
|
|
bool getBoolValue() const { return !!*this; }
|
|
|
|
/// If this value is smaller than the specified limit, return it, otherwise
|
|
/// return the limit value. This causes the value to saturate to the limit.
|
|
uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
|
|
return ugt(Limit) ? Limit : getZExtValue();
|
|
}
|
|
|
|
/// Check if the APInt consists of a repeated bit pattern.
|
|
///
|
|
/// e.g. 0x01010101 satisfies isSplat(8).
|
|
/// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
|
|
/// width without remainder.
|
|
bool isSplat(unsigned SplatSizeInBits) const;
|
|
|
|
/// \returns true if this APInt value is a sequence of \param numBits ones
|
|
/// starting at the least significant bit with the remainder zero.
|
|
bool isMask(unsigned numBits) const {
|
|
assert(numBits != 0 && "numBits must be non-zero");
|
|
assert(numBits <= BitWidth && "numBits out of range");
|
|
if (isSingleWord())
|
|
return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
|
|
unsigned Ones = countTrailingOnesSlowCase();
|
|
return (numBits == Ones) &&
|
|
((Ones + countLeadingZerosSlowCase()) == BitWidth);
|
|
}
|
|
|
|
/// \returns true if this APInt is a non-empty sequence of ones starting at
|
|
/// the least significant bit with the remainder zero.
|
|
/// Ex. isMask(0x0000FFFFU) == true.
|
|
bool isMask() const {
|
|
if (isSingleWord())
|
|
return isMask_64(U.VAL);
|
|
unsigned Ones = countTrailingOnesSlowCase();
|
|
return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
|
|
}
|
|
|
|
/// Return true if this APInt value contains a sequence of ones with
|
|
/// the remainder zero.
|
|
bool isShiftedMask() const {
|
|
if (isSingleWord())
|
|
return isShiftedMask_64(U.VAL);
|
|
unsigned Ones = countPopulationSlowCase();
|
|
unsigned LeadZ = countLeadingZerosSlowCase();
|
|
return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
|
|
}
|
|
|
|
/// @}
|
|
/// \name Value Generators
|
|
/// @{
|
|
|
|
/// Gets maximum unsigned value of APInt for specific bit width.
|
|
static APInt getMaxValue(unsigned numBits) {
|
|
return getAllOnesValue(numBits);
|
|
}
|
|
|
|
/// Gets maximum signed value of APInt for a specific bit width.
|
|
static APInt getSignedMaxValue(unsigned numBits) {
|
|
APInt API = getAllOnesValue(numBits);
|
|
API.clearBit(numBits - 1);
|
|
return API;
|
|
}
|
|
|
|
/// Gets minimum unsigned value of APInt for a specific bit width.
|
|
static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
|
|
|
|
/// Gets minimum signed value of APInt for a specific bit width.
|
|
static APInt getSignedMinValue(unsigned numBits) {
|
|
APInt API(numBits, 0);
|
|
API.setBit(numBits - 1);
|
|
return API;
|
|
}
|
|
|
|
/// Get the SignMask for a specific bit width.
|
|
///
|
|
/// This is just a wrapper function of getSignedMinValue(), and it helps code
|
|
/// readability when we want to get a SignMask.
|
|
static APInt getSignMask(unsigned BitWidth) {
|
|
return getSignedMinValue(BitWidth);
|
|
}
|
|
|
|
/// Get the all-ones value.
|
|
///
|
|
/// \returns the all-ones value for an APInt of the specified bit-width.
|
|
static APInt getAllOnesValue(unsigned numBits) {
|
|
return APInt(numBits, WORDTYPE_MAX, true);
|
|
}
|
|
|
|
/// Get the '0' value.
|
|
///
|
|
/// \returns the '0' value for an APInt of the specified bit-width.
|
|
static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
|
|
|
|
/// Compute an APInt containing numBits highbits from this APInt.
|
|
///
|
|
/// Get an APInt with the same BitWidth as this APInt, just zero mask
|
|
/// the low bits and right shift to the least significant bit.
|
|
///
|
|
/// \returns the high "numBits" bits of this APInt.
|
|
APInt getHiBits(unsigned numBits) const;
|
|
|
|
/// Compute an APInt containing numBits lowbits from this APInt.
|
|
///
|
|
/// Get an APInt with the same BitWidth as this APInt, just zero mask
|
|
/// the high bits.
|
|
///
|
|
/// \returns the low "numBits" bits of this APInt.
|
|
APInt getLoBits(unsigned numBits) const;
|
|
|
|
/// Return an APInt with exactly one bit set in the result.
|
|
static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
|
|
APInt Res(numBits, 0);
|
|
Res.setBit(BitNo);
|
|
return Res;
|
|
}
|
|
|
|
/// Get a value with a block of bits set.
|
|
///
|
|
/// Constructs an APInt value that has a contiguous range of bits set. The
|
|
/// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
|
|
/// bits will be zero. For example, with parameters(32, 0, 16) you would get
|
|
/// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
|
|
/// example, with parameters (32, 28, 4), you would get 0xF000000F.
|
|
///
|
|
/// \param numBits the intended bit width of the result
|
|
/// \param loBit the index of the lowest bit set.
|
|
/// \param hiBit the index of the highest bit set.
|
|
///
|
|
/// \returns An APInt value with the requested bits set.
|
|
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
|
|
APInt Res(numBits, 0);
|
|
Res.setBits(loBit, hiBit);
|
|
return Res;
|
|
}
|
|
|
|
/// Get a value with upper bits starting at loBit set.
|
|
///
|
|
/// Constructs an APInt value that has a contiguous range of bits set. The
|
|
/// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
|
|
/// bits will be zero. For example, with parameters(32, 12) you would get
|
|
/// 0xFFFFF000.
|
|
///
|
|
/// \param numBits the intended bit width of the result
|
|
/// \param loBit the index of the lowest bit to set.
|
|
///
|
|
/// \returns An APInt value with the requested bits set.
|
|
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
|
|
APInt Res(numBits, 0);
|
|
Res.setBitsFrom(loBit);
|
|
return Res;
|
|
}
|
|
|
|
/// Get a value with high bits set
|
|
///
|
|
/// Constructs an APInt value that has the top hiBitsSet bits set.
|
|
///
|
|
/// \param numBits the bitwidth of the result
|
|
/// \param hiBitsSet the number of high-order bits set in the result.
|
|
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
|
|
APInt Res(numBits, 0);
|
|
Res.setHighBits(hiBitsSet);
|
|
return Res;
|
|
}
|
|
|
|
/// Get a value with low bits set
|
|
///
|
|
/// Constructs an APInt value that has the bottom loBitsSet bits set.
|
|
///
|
|
/// \param numBits the bitwidth of the result
|
|
/// \param loBitsSet the number of low-order bits set in the result.
|
|
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
|
|
APInt Res(numBits, 0);
|
|
Res.setLowBits(loBitsSet);
|
|
return Res;
|
|
}
|
|
|
|
/// Return a value containing V broadcasted over NewLen bits.
|
|
static APInt getSplat(unsigned NewLen, const APInt &V);
|
|
|
|
/// Determine if two APInts have the same value, after zero-extending
|
|
/// one of them (if needed!) to ensure that the bit-widths match.
|
|
static bool isSameValue(const APInt &I1, const APInt &I2) {
|
|
if (I1.getBitWidth() == I2.getBitWidth())
|
|
return I1 == I2;
|
|
|
|
if (I1.getBitWidth() > I2.getBitWidth())
|
|
return I1 == I2.zext(I1.getBitWidth());
|
|
|
|
return I1.zext(I2.getBitWidth()) == I2;
|
|
}
|
|
|
|
/// Overload to compute a hash_code for an APInt value.
|
|
friend hash_code hash_value(const APInt &Arg);
|
|
|
|
/// This function returns a pointer to the internal storage of the APInt.
|
|
/// This is useful for writing out the APInt in binary form without any
|
|
/// conversions.
|
|
const uint64_t *getRawData() const {
|
|
if (isSingleWord())
|
|
return &U.VAL;
|
|
return &U.pVal[0];
|
|
}
|
|
|
|
/// @}
|
|
/// \name Unary Operators
|
|
/// @{
|
|
|
|
/// Postfix increment operator.
|
|
///
|
|
/// Increments *this by 1.
|
|
///
|
|
/// \returns a new APInt value representing the original value of *this.
|
|
const APInt operator++(int) {
|
|
APInt API(*this);
|
|
++(*this);
|
|
return API;
|
|
}
|
|
|
|
/// Prefix increment operator.
|
|
///
|
|
/// \returns *this incremented by one
|
|
APInt &operator++();
|
|
|
|
/// Postfix decrement operator.
|
|
///
|
|
/// Decrements *this by 1.
|
|
///
|
|
/// \returns a new APInt value representing the original value of *this.
|
|
const APInt operator--(int) {
|
|
APInt API(*this);
|
|
--(*this);
|
|
return API;
|
|
}
|
|
|
|
/// Prefix decrement operator.
|
|
///
|
|
/// \returns *this decremented by one.
|
|
APInt &operator--();
|
|
|
|
/// Logical negation operator.
|
|
///
|
|
/// Performs logical negation operation on this APInt.
|
|
///
|
|
/// \returns true if *this is zero, false otherwise.
|
|
bool operator!() const {
|
|
if (isSingleWord())
|
|
return U.VAL == 0;
|
|
return countLeadingZerosSlowCase() == BitWidth;
|
|
}
|
|
|
|
/// @}
|
|
/// \name Assignment Operators
|
|
/// @{
|
|
|
|
/// Copy assignment operator.
|
|
///
|
|
/// \returns *this after assignment of RHS.
|
|
APInt &operator=(const APInt &RHS) {
|
|
// If the bitwidths are the same, we can avoid mucking with memory
|
|
if (isSingleWord() && RHS.isSingleWord()) {
|
|
U.VAL = RHS.U.VAL;
|
|
BitWidth = RHS.BitWidth;
|
|
return clearUnusedBits();
|
|
}
|
|
|
|
AssignSlowCase(RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// Move assignment operator.
|
|
APInt &operator=(APInt &&that) {
|
|
#ifdef _MSC_VER
|
|
// The MSVC std::shuffle implementation still does self-assignment.
|
|
if (this == &that)
|
|
return *this;
|
|
#endif
|
|
assert(this != &that && "Self-move not supported");
|
|
if (!isSingleWord())
|
|
delete[] U.pVal;
|
|
|
|
// Use memcpy so that type based alias analysis sees both VAL and pVal
|
|
// as modified.
|
|
memcpy(&U, &that.U, sizeof(U));
|
|
|
|
BitWidth = that.BitWidth;
|
|
that.BitWidth = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/// Assignment operator.
|
|
///
|
|
/// The RHS value is assigned to *this. If the significant bits in RHS exceed
|
|
/// the bit width, the excess bits are truncated. If the bit width is larger
|
|
/// than 64, the value is zero filled in the unspecified high order bits.
|
|
///
|
|
/// \returns *this after assignment of RHS value.
|
|
APInt &operator=(uint64_t RHS) {
|
|
if (isSingleWord()) {
|
|
U.VAL = RHS;
|
|
clearUnusedBits();
|
|
} else {
|
|
U.pVal[0] = RHS;
|
|
memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Bitwise AND assignment operator.
|
|
///
|
|
/// Performs a bitwise AND operation on this APInt and RHS. The result is
|
|
/// assigned to *this.
|
|
///
|
|
/// \returns *this after ANDing with RHS.
|
|
APInt &operator&=(const APInt &RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
U.VAL &= RHS.U.VAL;
|
|
else
|
|
AndAssignSlowCase(RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// Bitwise AND assignment operator.
|
|
///
|
|
/// Performs a bitwise AND operation on this APInt and RHS. RHS is
|
|
/// logically zero-extended or truncated to match the bit-width of
|
|
/// the LHS.
|
|
APInt &operator&=(uint64_t RHS) {
|
|
if (isSingleWord()) {
|
|
U.VAL &= RHS;
|
|
return *this;
|
|
}
|
|
U.pVal[0] &= RHS;
|
|
memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
|
|
return *this;
|
|
}
|
|
|
|
/// Bitwise OR assignment operator.
|
|
///
|
|
/// Performs a bitwise OR operation on this APInt and RHS. The result is
|
|
/// assigned *this;
|
|
///
|
|
/// \returns *this after ORing with RHS.
|
|
APInt &operator|=(const APInt &RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
U.VAL |= RHS.U.VAL;
|
|
else
|
|
OrAssignSlowCase(RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// Bitwise OR assignment operator.
|
|
///
|
|
/// Performs a bitwise OR operation on this APInt and RHS. RHS is
|
|
/// logically zero-extended or truncated to match the bit-width of
|
|
/// the LHS.
|
|
APInt &operator|=(uint64_t RHS) {
|
|
if (isSingleWord()) {
|
|
U.VAL |= RHS;
|
|
clearUnusedBits();
|
|
} else {
|
|
U.pVal[0] |= RHS;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Bitwise XOR assignment operator.
|
|
///
|
|
/// Performs a bitwise XOR operation on this APInt and RHS. The result is
|
|
/// assigned to *this.
|
|
///
|
|
/// \returns *this after XORing with RHS.
|
|
APInt &operator^=(const APInt &RHS) {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
U.VAL ^= RHS.U.VAL;
|
|
else
|
|
XorAssignSlowCase(RHS);
|
|
return *this;
|
|
}
|
|
|
|
/// Bitwise XOR assignment operator.
|
|
///
|
|
/// Performs a bitwise XOR operation on this APInt and RHS. RHS is
|
|
/// logically zero-extended or truncated to match the bit-width of
|
|
/// the LHS.
|
|
APInt &operator^=(uint64_t RHS) {
|
|
if (isSingleWord()) {
|
|
U.VAL ^= RHS;
|
|
clearUnusedBits();
|
|
} else {
|
|
U.pVal[0] ^= RHS;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Multiplication assignment operator.
|
|
///
|
|
/// Multiplies this APInt by RHS and assigns the result to *this.
|
|
///
|
|
/// \returns *this
|
|
APInt &operator*=(const APInt &RHS);
|
|
APInt &operator*=(uint64_t RHS);
|
|
|
|
/// Addition assignment operator.
|
|
///
|
|
/// Adds RHS to *this and assigns the result to *this.
|
|
///
|
|
/// \returns *this
|
|
APInt &operator+=(const APInt &RHS);
|
|
APInt &operator+=(uint64_t RHS);
|
|
|
|
/// Subtraction assignment operator.
|
|
///
|
|
/// Subtracts RHS from *this and assigns the result to *this.
|
|
///
|
|
/// \returns *this
|
|
APInt &operator-=(const APInt &RHS);
|
|
APInt &operator-=(uint64_t RHS);
|
|
|
|
/// Left-shift assignment function.
|
|
///
|
|
/// Shifts *this left by shiftAmt and assigns the result to *this.
|
|
///
|
|
/// \returns *this after shifting left by ShiftAmt
|
|
APInt &operator<<=(unsigned ShiftAmt) {
|
|
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
|
|
if (isSingleWord()) {
|
|
if (ShiftAmt == BitWidth)
|
|
U.VAL = 0;
|
|
else
|
|
U.VAL <<= ShiftAmt;
|
|
return clearUnusedBits();
|
|
}
|
|
shlSlowCase(ShiftAmt);
|
|
return *this;
|
|
}
|
|
|
|
/// Left-shift assignment function.
|
|
///
|
|
/// Shifts *this left by shiftAmt and assigns the result to *this.
|
|
///
|
|
/// \returns *this after shifting left by ShiftAmt
|
|
APInt &operator<<=(const APInt &ShiftAmt);
|
|
|
|
/// @}
|
|
/// \name Binary Operators
|
|
/// @{
|
|
|
|
/// Multiplication operator.
|
|
///
|
|
/// Multiplies this APInt by RHS and returns the result.
|
|
APInt operator*(const APInt &RHS) const;
|
|
|
|
/// Left logical shift operator.
|
|
///
|
|
/// Shifts this APInt left by \p Bits and returns the result.
|
|
APInt operator<<(unsigned Bits) const { return shl(Bits); }
|
|
|
|
/// Left logical shift operator.
|
|
///
|
|
/// Shifts this APInt left by \p Bits and returns the result.
|
|
APInt operator<<(const APInt &Bits) const { return shl(Bits); }
|
|
|
|
/// Arithmetic right-shift function.
|
|
///
|
|
/// Arithmetic right-shift this APInt by shiftAmt.
|
|
APInt ashr(unsigned ShiftAmt) const {
|
|
APInt R(*this);
|
|
R.ashrInPlace(ShiftAmt);
|
|
return R;
|
|
}
|
|
|
|
/// Arithmetic right-shift this APInt by ShiftAmt in place.
|
|
void ashrInPlace(unsigned ShiftAmt) {
|
|
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
|
|
if (isSingleWord()) {
|
|
int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
|
|
if (ShiftAmt == BitWidth)
|
|
U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
|
|
else
|
|
U.VAL = SExtVAL >> ShiftAmt;
|
|
clearUnusedBits();
|
|
return;
|
|
}
|
|
ashrSlowCase(ShiftAmt);
|
|
}
|
|
|
|
/// Logical right-shift function.
|
|
///
|
|
/// Logical right-shift this APInt by shiftAmt.
|
|
APInt lshr(unsigned shiftAmt) const {
|
|
APInt R(*this);
|
|
R.lshrInPlace(shiftAmt);
|
|
return R;
|
|
}
|
|
|
|
/// Logical right-shift this APInt by ShiftAmt in place.
|
|
void lshrInPlace(unsigned ShiftAmt) {
|
|
assert(ShiftAmt <= BitWidth && "Invalid shift amount");
|
|
if (isSingleWord()) {
|
|
if (ShiftAmt == BitWidth)
|
|
U.VAL = 0;
|
|
else
|
|
U.VAL >>= ShiftAmt;
|
|
return;
|
|
}
|
|
lshrSlowCase(ShiftAmt);
|
|
}
|
|
|
|
/// Left-shift function.
|
|
///
|
|
/// Left-shift this APInt by shiftAmt.
|
|
APInt shl(unsigned shiftAmt) const {
|
|
APInt R(*this);
|
|
R <<= shiftAmt;
|
|
return R;
|
|
}
|
|
|
|
/// Rotate left by rotateAmt.
|
|
APInt rotl(unsigned rotateAmt) const;
|
|
|
|
/// Rotate right by rotateAmt.
|
|
APInt rotr(unsigned rotateAmt) const;
|
|
|
|
/// Arithmetic right-shift function.
|
|
///
|
|
/// Arithmetic right-shift this APInt by shiftAmt.
|
|
APInt ashr(const APInt &ShiftAmt) const {
|
|
APInt R(*this);
|
|
R.ashrInPlace(ShiftAmt);
|
|
return R;
|
|
}
|
|
|
|
/// Arithmetic right-shift this APInt by shiftAmt in place.
|
|
void ashrInPlace(const APInt &shiftAmt);
|
|
|
|
/// Logical right-shift function.
|
|
///
|
|
/// Logical right-shift this APInt by shiftAmt.
|
|
APInt lshr(const APInt &ShiftAmt) const {
|
|
APInt R(*this);
|
|
R.lshrInPlace(ShiftAmt);
|
|
return R;
|
|
}
|
|
|
|
/// Logical right-shift this APInt by ShiftAmt in place.
|
|
void lshrInPlace(const APInt &ShiftAmt);
|
|
|
|
/// Left-shift function.
|
|
///
|
|
/// Left-shift this APInt by shiftAmt.
|
|
APInt shl(const APInt &ShiftAmt) const {
|
|
APInt R(*this);
|
|
R <<= ShiftAmt;
|
|
return R;
|
|
}
|
|
|
|
/// Rotate left by rotateAmt.
|
|
APInt rotl(const APInt &rotateAmt) const;
|
|
|
|
/// Rotate right by rotateAmt.
|
|
APInt rotr(const APInt &rotateAmt) const;
|
|
|
|
/// Unsigned division operation.
|
|
///
|
|
/// Perform an unsigned divide operation on this APInt by RHS. Both this and
|
|
/// RHS are treated as unsigned quantities for purposes of this division.
|
|
///
|
|
/// \returns a new APInt value containing the division result, rounded towards
|
|
/// zero.
|
|
APInt udiv(const APInt &RHS) const;
|
|
APInt udiv(uint64_t RHS) const;
|
|
|
|
/// Signed division function for APInt.
|
|
///
|
|
/// Signed divide this APInt by APInt RHS.
|
|
///
|
|
/// The result is rounded towards zero.
|
|
APInt sdiv(const APInt &RHS) const;
|
|
APInt sdiv(int64_t RHS) const;
|
|
|
|
/// Unsigned remainder operation.
|
|
///
|
|
/// Perform an unsigned remainder operation on this APInt with RHS being the
|
|
/// divisor. Both this and RHS are treated as unsigned quantities for purposes
|
|
/// of this operation. Note that this is a true remainder operation and not a
|
|
/// modulo operation because the sign follows the sign of the dividend which
|
|
/// is *this.
|
|
///
|
|
/// \returns a new APInt value containing the remainder result
|
|
APInt urem(const APInt &RHS) const;
|
|
uint64_t urem(uint64_t RHS) const;
|
|
|
|
/// Function for signed remainder operation.
|
|
///
|
|
/// Signed remainder operation on APInt.
|
|
APInt srem(const APInt &RHS) const;
|
|
int64_t srem(int64_t RHS) const;
|
|
|
|
/// Dual division/remainder interface.
|
|
///
|
|
/// Sometimes it is convenient to divide two APInt values and obtain both the
|
|
/// quotient and remainder. This function does both operations in the same
|
|
/// computation making it a little more efficient. The pair of input arguments
|
|
/// may overlap with the pair of output arguments. It is safe to call
|
|
/// udivrem(X, Y, X, Y), for example.
|
|
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
|
|
APInt &Remainder);
|
|
static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
|
|
uint64_t &Remainder);
|
|
|
|
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
|
|
APInt &Remainder);
|
|
static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
|
|
int64_t &Remainder);
|
|
|
|
// Operations that return overflow indicators.
|
|
APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt usub_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt smul_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt umul_ov(const APInt &RHS, bool &Overflow) const;
|
|
APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
|
|
APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
|
|
|
|
// Operations that saturate
|
|
APInt sadd_sat(const APInt &RHS) const;
|
|
APInt uadd_sat(const APInt &RHS) const;
|
|
APInt ssub_sat(const APInt &RHS) const;
|
|
APInt usub_sat(const APInt &RHS) const;
|
|
APInt smul_sat(const APInt &RHS) const;
|
|
APInt umul_sat(const APInt &RHS) const;
|
|
APInt sshl_sat(const APInt &RHS) const;
|
|
APInt ushl_sat(const APInt &RHS) const;
|
|
|
|
/// Array-indexing support.
|
|
///
|
|
/// \returns the bit value at bitPosition
|
|
bool operator[](unsigned bitPosition) const {
|
|
assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
|
|
return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
|
|
}
|
|
|
|
/// @}
|
|
/// \name Comparison Operators
|
|
/// @{
|
|
|
|
/// Equality operator.
|
|
///
|
|
/// Compares this APInt with RHS for the validity of the equality
|
|
/// relationship.
|
|
bool operator==(const APInt &RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
|
|
if (isSingleWord())
|
|
return U.VAL == RHS.U.VAL;
|
|
return EqualSlowCase(RHS);
|
|
}
|
|
|
|
/// Equality operator.
|
|
///
|
|
/// Compares this APInt with a uint64_t for the validity of the equality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this == Val
|
|
bool operator==(uint64_t Val) const {
|
|
return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
|
|
}
|
|
|
|
/// Equality comparison.
|
|
///
|
|
/// Compares this APInt with RHS for the validity of the equality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this == Val
|
|
bool eq(const APInt &RHS) const { return (*this) == RHS; }
|
|
|
|
/// Inequality operator.
|
|
///
|
|
/// Compares this APInt with RHS for the validity of the inequality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this != Val
|
|
bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
|
|
|
|
/// Inequality operator.
|
|
///
|
|
/// Compares this APInt with a uint64_t for the validity of the inequality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this != Val
|
|
bool operator!=(uint64_t Val) const { return !((*this) == Val); }
|
|
|
|
/// Inequality comparison
|
|
///
|
|
/// Compares this APInt with RHS for the validity of the inequality
|
|
/// relationship.
|
|
///
|
|
/// \returns true if *this != Val
|
|
bool ne(const APInt &RHS) const { return !((*this) == RHS); }
|
|
|
|
/// Unsigned less than comparison
|
|
///
|
|
/// Regards both *this and RHS as unsigned quantities and compares them for
|
|
/// the validity of the less-than relationship.
|
|
///
|
|
/// \returns true if *this < RHS when both are considered unsigned.
|
|
bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
|
|
|
|
/// Unsigned less than comparison
|
|
///
|
|
/// Regards both *this as an unsigned quantity and compares it with RHS for
|
|
/// the validity of the less-than relationship.
|
|
///
|
|
/// \returns true if *this < RHS when considered unsigned.
|
|
bool ult(uint64_t RHS) const {
|
|
// Only need to check active bits if not a single word.
|
|
return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
|
|
}
|
|
|
|
/// Signed less than comparison
|
|
///
|
|
/// Regards both *this and RHS as signed quantities and compares them for
|
|
/// validity of the less-than relationship.
|
|
///
|
|
/// \returns true if *this < RHS when both are considered signed.
|
|
bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
|
|
|
|
/// Signed less than comparison
|
|
///
|
|
/// Regards both *this as a signed quantity and compares it with RHS for
|
|
/// the validity of the less-than relationship.
|
|
///
|
|
/// \returns true if *this < RHS when considered signed.
|
|
bool slt(int64_t RHS) const {
|
|
return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
|
|
: getSExtValue() < RHS;
|
|
}
|
|
|
|
/// Unsigned less or equal comparison
|
|
///
|
|
/// Regards both *this and RHS as unsigned quantities and compares them for
|
|
/// validity of the less-or-equal relationship.
|
|
///
|
|
/// \returns true if *this <= RHS when both are considered unsigned.
|
|
bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
|
|
|
|
/// Unsigned less or equal comparison
|
|
///
|
|
/// Regards both *this as an unsigned quantity and compares it with RHS for
|
|
/// the validity of the less-or-equal relationship.
|
|
///
|
|
/// \returns true if *this <= RHS when considered unsigned.
|
|
bool ule(uint64_t RHS) const { return !ugt(RHS); }
|
|
|
|
/// Signed less or equal comparison
|
|
///
|
|
/// Regards both *this and RHS as signed quantities and compares them for
|
|
/// validity of the less-or-equal relationship.
|
|
///
|
|
/// \returns true if *this <= RHS when both are considered signed.
|
|
bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
|
|
|
|
/// Signed less or equal comparison
|
|
///
|
|
/// Regards both *this as a signed quantity and compares it with RHS for the
|
|
/// validity of the less-or-equal relationship.
|
|
///
|
|
/// \returns true if *this <= RHS when considered signed.
|
|
bool sle(uint64_t RHS) const { return !sgt(RHS); }
|
|
|
|
/// Unsigned greater than comparison
|
|
///
|
|
/// Regards both *this and RHS as unsigned quantities and compares them for
|
|
/// the validity of the greater-than relationship.
|
|
///
|
|
/// \returns true if *this > RHS when both are considered unsigned.
|
|
bool ugt(const APInt &RHS) const { return !ule(RHS); }
|
|
|
|
/// Unsigned greater than comparison
|
|
///
|
|
/// Regards both *this as an unsigned quantity and compares it with RHS for
|
|
/// the validity of the greater-than relationship.
|
|
///
|
|
/// \returns true if *this > RHS when considered unsigned.
|
|
bool ugt(uint64_t RHS) const {
|
|
// Only need to check active bits if not a single word.
|
|
return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
|
|
}
|
|
|
|
/// Signed greater than comparison
|
|
///
|
|
/// Regards both *this and RHS as signed quantities and compares them for the
|
|
/// validity of the greater-than relationship.
|
|
///
|
|
/// \returns true if *this > RHS when both are considered signed.
|
|
bool sgt(const APInt &RHS) const { return !sle(RHS); }
|
|
|
|
/// Signed greater than comparison
|
|
///
|
|
/// Regards both *this as a signed quantity and compares it with RHS for
|
|
/// the validity of the greater-than relationship.
|
|
///
|
|
/// \returns true if *this > RHS when considered signed.
|
|
bool sgt(int64_t RHS) const {
|
|
return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
|
|
: getSExtValue() > RHS;
|
|
}
|
|
|
|
/// Unsigned greater or equal comparison
|
|
///
|
|
/// Regards both *this and RHS as unsigned quantities and compares them for
|
|
/// validity of the greater-or-equal relationship.
|
|
///
|
|
/// \returns true if *this >= RHS when both are considered unsigned.
|
|
bool uge(const APInt &RHS) const { return !ult(RHS); }
|
|
|
|
/// Unsigned greater or equal comparison
|
|
///
|
|
/// Regards both *this as an unsigned quantity and compares it with RHS for
|
|
/// the validity of the greater-or-equal relationship.
|
|
///
|
|
/// \returns true if *this >= RHS when considered unsigned.
|
|
bool uge(uint64_t RHS) const { return !ult(RHS); }
|
|
|
|
/// Signed greater or equal comparison
|
|
///
|
|
/// Regards both *this and RHS as signed quantities and compares them for
|
|
/// validity of the greater-or-equal relationship.
|
|
///
|
|
/// \returns true if *this >= RHS when both are considered signed.
|
|
bool sge(const APInt &RHS) const { return !slt(RHS); }
|
|
|
|
/// Signed greater or equal comparison
|
|
///
|
|
/// Regards both *this as a signed quantity and compares it with RHS for
|
|
/// the validity of the greater-or-equal relationship.
|
|
///
|
|
/// \returns true if *this >= RHS when considered signed.
|
|
bool sge(int64_t RHS) const { return !slt(RHS); }
|
|
|
|
/// This operation tests if there are any pairs of corresponding bits
|
|
/// between this APInt and RHS that are both set.
|
|
bool intersects(const APInt &RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
return (U.VAL & RHS.U.VAL) != 0;
|
|
return intersectsSlowCase(RHS);
|
|
}
|
|
|
|
/// This operation checks that all bits set in this APInt are also set in RHS.
|
|
bool isSubsetOf(const APInt &RHS) const {
|
|
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
|
|
if (isSingleWord())
|
|
return (U.VAL & ~RHS.U.VAL) == 0;
|
|
return isSubsetOfSlowCase(RHS);
|
|
}
|
|
|
|
/// @}
|
|
/// \name Resizing Operators
|
|
/// @{
|
|
|
|
/// Truncate to new width.
|
|
///
|
|
/// Truncate the APInt to a specified width. It is an error to specify a width
|
|
/// that is greater than or equal to the current width.
|
|
APInt trunc(unsigned width) const;
|
|
|
|
/// Truncate to new width with unsigned saturation.
|
|
///
|
|
/// If the APInt, treated as unsigned integer, can be losslessly truncated to
|
|
/// the new bitwidth, then return truncated APInt. Else, return max value.
|
|
APInt truncUSat(unsigned width) const;
|
|
|
|
/// Truncate to new width with signed saturation.
|
|
///
|
|
/// If this APInt, treated as signed integer, can be losslessly truncated to
|
|
/// the new bitwidth, then return truncated APInt. Else, return either
|
|
/// signed min value if the APInt was negative, or signed max value.
|
|
APInt truncSSat(unsigned width) const;
|
|
|
|
/// Sign extend to a new width.
|
|
///
|
|
/// This operation sign extends the APInt to a new width. If the high order
|
|
/// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
|
|
/// It is an error to specify a width that is less than or equal to the
|
|
/// current width.
|
|
APInt sext(unsigned width) const;
|
|
|
|
/// Zero extend to a new width.
|
|
///
|
|
/// This operation zero extends the APInt to a new width. The high order bits
|
|
/// are filled with 0 bits. It is an error to specify a width that is less
|
|
/// than or equal to the current width.
|
|
APInt zext(unsigned width) const;
|
|
|
|
/// Sign extend or truncate to width
|
|
///
|
|
/// Make this APInt have the bit width given by \p width. The value is sign
|
|
/// extended, truncated, or left alone to make it that width.
|
|
APInt sextOrTrunc(unsigned width) const;
|
|
|
|
/// Zero extend or truncate to width
|
|
///
|
|
/// Make this APInt have the bit width given by \p width. The value is zero
|
|
/// extended, truncated, or left alone to make it that width.
|
|
APInt zextOrTrunc(unsigned width) const;
|
|
|
|
/// Sign extend or truncate to width
|
|
///
|
|
/// Make this APInt have the bit width given by \p width. The value is sign
|
|
/// extended, or left alone to make it that width.
|
|
APInt sextOrSelf(unsigned width) const;
|
|
|
|
/// Zero extend or truncate to width
|
|
///
|
|
/// Make this APInt have the bit width given by \p width. The value is zero
|
|
/// extended, or left alone to make it that width.
|
|
APInt zextOrSelf(unsigned width) const;
|
|
|
|
/// @}
|
|
/// \name Bit Manipulation Operators
|
|
/// @{
|
|
|
|
/// Set every bit to 1.
|
|
void setAllBits() {
|
|
if (isSingleWord())
|
|
U.VAL = WORDTYPE_MAX;
|
|
else
|
|
// Set all the bits in all the words.
|
|
memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
|
|
// Clear the unused ones
|
|
clearUnusedBits();
|
|
}
|
|
|
|
/// Set a given bit to 1.
|
|
///
|
|
/// Set the given bit to 1 whose position is given as "bitPosition".
|
|
void setBit(unsigned BitPosition) {
|
|
assert(BitPosition < BitWidth && "BitPosition out of range");
|
|
WordType Mask = maskBit(BitPosition);
|
|
if (isSingleWord())
|
|
U.VAL |= Mask;
|
|
else
|
|
U.pVal[whichWord(BitPosition)] |= Mask;
|
|
}
|
|
|
|
/// Set the sign bit to 1.
|
|
void setSignBit() {
|
|
setBit(BitWidth - 1);
|
|
}
|
|
|
|
/// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
|
|
void setBits(unsigned loBit, unsigned hiBit) {
|
|
assert(hiBit <= BitWidth && "hiBit out of range");
|
|
assert(loBit <= BitWidth && "loBit out of range");
|
|
assert(loBit <= hiBit && "loBit greater than hiBit");
|
|
if (loBit == hiBit)
|
|
return;
|
|
if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
|
|
uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
|
|
mask <<= loBit;
|
|
if (isSingleWord())
|
|
U.VAL |= mask;
|
|
else
|
|
U.pVal[0] |= mask;
|
|
} else {
|
|
setBitsSlowCase(loBit, hiBit);
|
|
}
|
|
}
|
|
|
|
/// Set the top bits starting from loBit.
|
|
void setBitsFrom(unsigned loBit) {
|
|
return setBits(loBit, BitWidth);
|
|
}
|
|
|
|
/// Set the bottom loBits bits.
|
|
void setLowBits(unsigned loBits) {
|
|
return setBits(0, loBits);
|
|
}
|
|
|
|
/// Set the top hiBits bits.
|
|
void setHighBits(unsigned hiBits) {
|
|
return setBits(BitWidth - hiBits, BitWidth);
|
|
}
|
|
|
|
/// Set every bit to 0.
|
|
void clearAllBits() {
|
|
if (isSingleWord())
|
|
U.VAL = 0;
|
|
else
|
|
memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
|
|
}
|
|
|
|
/// Set a given bit to 0.
|
|
///
|
|
/// Set the given bit to 0 whose position is given as "bitPosition".
|
|
void clearBit(unsigned BitPosition) {
|
|
assert(BitPosition < BitWidth && "BitPosition out of range");
|
|
WordType Mask = ~maskBit(BitPosition);
|
|
if (isSingleWord())
|
|
U.VAL &= Mask;
|
|
else
|
|
U.pVal[whichWord(BitPosition)] &= Mask;
|
|
}
|
|
|
|
/// Set bottom loBits bits to 0.
|
|
void clearLowBits(unsigned loBits) {
|
|
assert(loBits <= BitWidth && "More bits than bitwidth");
|
|
APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
|
|
*this &= Keep;
|
|
}
|
|
|
|
/// Set the sign bit to 0.
|
|
void clearSignBit() {
|
|
clearBit(BitWidth - 1);
|
|
}
|
|
|
|
/// Toggle every bit to its opposite value.
|
|
void flipAllBits() {
|
|
if (isSingleWord()) {
|
|
U.VAL ^= WORDTYPE_MAX;
|
|
clearUnusedBits();
|
|
} else {
|
|
flipAllBitsSlowCase();
|
|
}
|
|
}
|
|
|
|
/// Toggles a given bit to its opposite value.
|
|
///
|
|
/// Toggle a given bit to its opposite value whose position is given
|
|
/// as "bitPosition".
|
|
void flipBit(unsigned bitPosition);
|
|
|
|
/// Negate this APInt in place.
|
|
void negate() {
|
|
flipAllBits();
|
|
++(*this);
|
|
}
|
|
|
|
/// Insert the bits from a smaller APInt starting at bitPosition.
|
|
void insertBits(const APInt &SubBits, unsigned bitPosition);
|
|
void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
|
|
|
|
/// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
|
|
APInt extractBits(unsigned numBits, unsigned bitPosition) const;
|
|
uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
|
|
|
|
/// @}
|
|
/// \name Value Characterization Functions
|
|
/// @{
|
|
|
|
/// Return the number of bits in the APInt.
|
|
unsigned getBitWidth() const { return BitWidth; }
|
|
|
|
/// Get the number of words.
|
|
///
|
|
/// Here one word's bitwidth equals to that of uint64_t.
|
|
///
|
|
/// \returns the number of words to hold the integer value of this APInt.
|
|
unsigned getNumWords() const { return getNumWords(BitWidth); }
|
|
|
|
/// Get the number of words.
|
|
///
|
|
/// *NOTE* Here one word's bitwidth equals to that of uint64_t.
|
|
///
|
|
/// \returns the number of words to hold the integer value with a given bit
|
|
/// width.
|
|
static unsigned getNumWords(unsigned BitWidth) {
|
|
return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
|
|
}
|
|
|
|
/// Compute the number of active bits in the value
|
|
///
|
|
/// This function returns the number of active bits which is defined as the
|
|
/// bit width minus the number of leading zeros. This is used in several
|
|
/// computations to see how "wide" the value is.
|
|
unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
|
|
|
|
/// Compute the number of active words in the value of this APInt.
|
|
///
|
|
/// This is used in conjunction with getActiveData to extract the raw value of
|
|
/// the APInt.
|
|
unsigned getActiveWords() const {
|
|
unsigned numActiveBits = getActiveBits();
|
|
return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
|
|
}
|
|
|
|
/// Get the minimum bit size for this signed APInt
|
|
///
|
|
/// Computes the minimum bit width for this APInt while considering it to be a
|
|
/// signed (and probably negative) value. If the value is not negative, this
|
|
/// function returns the same value as getActiveBits()+1. Otherwise, it
|
|
/// returns the smallest bit width that will retain the negative value. For
|
|
/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
|
|
/// for -1, this function will always return 1.
|
|
unsigned getMinSignedBits() const {
|
|
if (isNegative())
|
|
return BitWidth - countLeadingOnes() + 1;
|
|
return getActiveBits() + 1;
|
|
}
|
|
|
|
/// Get zero extended value
|
|
///
|
|
/// This method attempts to return the value of this APInt as a zero extended
|
|
/// uint64_t. The bitwidth must be <= 64 or the value must fit within a
|
|
/// uint64_t. Otherwise an assertion will result.
|
|
uint64_t getZExtValue() const {
|
|
if (isSingleWord())
|
|
return U.VAL;
|
|
assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
|
|
return U.pVal[0];
|
|
}
|
|
|
|
/// Get sign extended value
|
|
///
|
|
/// This method attempts to return the value of this APInt as a sign extended
|
|
/// int64_t. The bit width must be <= 64 or the value must fit within an
|
|
/// int64_t. Otherwise an assertion will result.
|
|
int64_t getSExtValue() const {
|
|
if (isSingleWord())
|
|
return SignExtend64(U.VAL, BitWidth);
|
|
assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
|
|
return int64_t(U.pVal[0]);
|
|
}
|
|
|
|
/// Get bits required for string value.
|
|
///
|
|
/// This method determines how many bits are required to hold the APInt
|
|
/// equivalent of the string given by \p str.
|
|
static unsigned getBitsNeeded(StringRef str, uint8_t radix);
|
|
|
|
/// The APInt version of the countLeadingZeros functions in
|
|
/// MathExtras.h.
|
|
///
|
|
/// It counts the number of zeros from the most significant bit to the first
|
|
/// one bit.
|
|
///
|
|
/// \returns BitWidth if the value is zero, otherwise returns the number of
|
|
/// zeros from the most significant bit to the first one bits.
|
|
unsigned countLeadingZeros() const {
|
|
if (isSingleWord()) {
|
|
unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
|
|
return llvm::countLeadingZeros(U.VAL) - unusedBits;
|
|
}
|
|
return countLeadingZerosSlowCase();
|
|
}
|
|
|
|
/// Count the number of leading one bits.
|
|
///
|
|
/// This function is an APInt version of the countLeadingOnes
|
|
/// functions in MathExtras.h. It counts the number of ones from the most
|
|
/// significant bit to the first zero bit.
|
|
///
|
|
/// \returns 0 if the high order bit is not set, otherwise returns the number
|
|
/// of 1 bits from the most significant to the least
|
|
unsigned countLeadingOnes() const {
|
|
if (isSingleWord())
|
|
return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
|
|
return countLeadingOnesSlowCase();
|
|
}
|
|
|
|
/// Computes the number of leading bits of this APInt that are equal to its
|
|
/// sign bit.
|
|
unsigned getNumSignBits() const {
|
|
return isNegative() ? countLeadingOnes() : countLeadingZeros();
|
|
}
|
|
|
|
/// Count the number of trailing zero bits.
|
|
///
|
|
/// This function is an APInt version of the countTrailingZeros
|
|
/// functions in MathExtras.h. It counts the number of zeros from the least
|
|
/// significant bit to the first set bit.
|
|
///
|
|
/// \returns BitWidth if the value is zero, otherwise returns the number of
|
|
/// zeros from the least significant bit to the first one bit.
|
|
unsigned countTrailingZeros() const {
|
|
if (isSingleWord())
|
|
return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
|
|
return countTrailingZerosSlowCase();
|
|
}
|
|
|
|
/// Count the number of trailing one bits.
|
|
///
|
|
/// This function is an APInt version of the countTrailingOnes
|
|
/// functions in MathExtras.h. It counts the number of ones from the least
|
|
/// significant bit to the first zero bit.
|
|
///
|
|
/// \returns BitWidth if the value is all ones, otherwise returns the number
|
|
/// of ones from the least significant bit to the first zero bit.
|
|
unsigned countTrailingOnes() const {
|
|
if (isSingleWord())
|
|
return llvm::countTrailingOnes(U.VAL);
|
|
return countTrailingOnesSlowCase();
|
|
}
|
|
|
|
/// Count the number of bits set.
|
|
///
|
|
/// This function is an APInt version of the countPopulation functions
|
|
/// in MathExtras.h. It counts the number of 1 bits in the APInt value.
|
|
///
|
|
/// \returns 0 if the value is zero, otherwise returns the number of set bits.
|
|
unsigned countPopulation() const {
|
|
if (isSingleWord())
|
|
return llvm::countPopulation(U.VAL);
|
|
return countPopulationSlowCase();
|
|
}
|
|
|
|
/// @}
|
|
/// \name Conversion Functions
|
|
/// @{
|
|
void print(raw_ostream &OS, bool isSigned) const;
|
|
|
|
/// Converts an APInt to a string and append it to Str. Str is commonly a
|
|
/// SmallString.
|
|
void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
|
|
bool formatAsCLiteral = false) const;
|
|
|
|
/// Considers the APInt to be unsigned and converts it into a string in the
|
|
/// radix given. The radix can be 2, 8, 10 16, or 36.
|
|
void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
|
|
toString(Str, Radix, false, false);
|
|
}
|
|
|
|
/// Considers the APInt to be signed and converts it into a string in the
|
|
/// radix given. The radix can be 2, 8, 10, 16, or 36.
|
|
void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
|
|
toString(Str, Radix, true, false);
|
|
}
|
|
|
|
/// Return the APInt as a std::string.
|
|
///
|
|
/// Note that this is an inefficient method. It is better to pass in a
|
|
/// SmallVector/SmallString to the methods above to avoid thrashing the heap
|
|
/// for the string.
|
|
std::string toString(unsigned Radix, bool Signed) const;
|
|
|
|
/// \returns a byte-swapped representation of this APInt Value.
|
|
APInt byteSwap() const;
|
|
|
|
/// \returns the value with the bit representation reversed of this APInt
|
|
/// Value.
|
|
APInt reverseBits() const;
|
|
|
|
/// Converts this APInt to a double value.
|
|
double roundToDouble(bool isSigned) const;
|
|
|
|
/// Converts this unsigned APInt to a double value.
|
|
double roundToDouble() const { return roundToDouble(false); }
|
|
|
|
/// Converts this signed APInt to a double value.
|
|
double signedRoundToDouble() const { return roundToDouble(true); }
|
|
|
|
/// Converts APInt bits to a double
|
|
///
|
|
/// The conversion does not do a translation from integer to double, it just
|
|
/// re-interprets the bits as a double. Note that it is valid to do this on
|
|
/// any bit width. Exactly 64 bits will be translated.
|
|
double bitsToDouble() const {
|
|
return BitsToDouble(getWord(0));
|
|
}
|
|
|
|
/// Converts APInt bits to a float
|
|
///
|
|
/// The conversion does not do a translation from integer to float, it just
|
|
/// re-interprets the bits as a float. Note that it is valid to do this on
|
|
/// any bit width. Exactly 32 bits will be translated.
|
|
float bitsToFloat() const {
|
|
return BitsToFloat(static_cast<uint32_t>(getWord(0)));
|
|
}
|
|
|
|
/// Converts a double to APInt bits.
|
|
///
|
|
/// The conversion does not do a translation from double to integer, it just
|
|
/// re-interprets the bits of the double.
|
|
static APInt doubleToBits(double V) {
|
|
return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
|
|
}
|
|
|
|
/// Converts a float to APInt bits.
|
|
///
|
|
/// The conversion does not do a translation from float to integer, it just
|
|
/// re-interprets the bits of the float.
|
|
static APInt floatToBits(float V) {
|
|
return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
|
|
}
|
|
|
|
/// @}
|
|
/// \name Mathematics Operations
|
|
/// @{
|
|
|
|
/// \returns the floor log base 2 of this APInt.
|
|
unsigned logBase2() const { return getActiveBits() - 1; }
|
|
|
|
/// \returns the ceil log base 2 of this APInt.
|
|
unsigned ceilLogBase2() const {
|
|
APInt temp(*this);
|
|
--temp;
|
|
return temp.getActiveBits();
|
|
}
|
|
|
|
/// \returns the nearest log base 2 of this APInt. Ties round up.
|
|
///
|
|
/// NOTE: When we have a BitWidth of 1, we define:
|
|
///
|
|
/// log2(0) = UINT32_MAX
|
|
/// log2(1) = 0
|
|
///
|
|
/// to get around any mathematical concerns resulting from
|
|
/// referencing 2 in a space where 2 does no exist.
|
|
unsigned nearestLogBase2() const {
|
|
// Special case when we have a bitwidth of 1. If VAL is 1, then we
|
|
// get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
|
|
// UINT32_MAX.
|
|
if (BitWidth == 1)
|
|
return U.VAL - 1;
|
|
|
|
// Handle the zero case.
|
|
if (isNullValue())
|
|
return UINT32_MAX;
|
|
|
|
// The non-zero case is handled by computing:
|
|
//
|
|
// nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
|
|
//
|
|
// where x[i] is referring to the value of the ith bit of x.
|
|
unsigned lg = logBase2();
|
|
return lg + unsigned((*this)[lg - 1]);
|
|
}
|
|
|
|
/// \returns the log base 2 of this APInt if its an exact power of two, -1
|
|
/// otherwise
|
|
int32_t exactLogBase2() const {
|
|
if (!isPowerOf2())
|
|
return -1;
|
|
return logBase2();
|
|
}
|
|
|
|
/// Compute the square root
|
|
APInt sqrt() const;
|
|
|
|
/// Get the absolute value;
|
|
///
|
|
/// If *this is < 0 then return -(*this), otherwise *this;
|
|
APInt abs() const {
|
|
if (isNegative())
|
|
return -(*this);
|
|
return *this;
|
|
}
|
|
|
|
/// \returns the multiplicative inverse for a given modulo.
|
|
APInt multiplicativeInverse(const APInt &modulo) const;
|
|
|
|
/// @}
|
|
/// \name Support for division by constant
|
|
/// @{
|
|
|
|
/// Calculate the magic number for signed division by a constant.
|
|
struct ms;
|
|
ms magic() const;
|
|
|
|
/// Calculate the magic number for unsigned division by a constant.
|
|
struct mu;
|
|
mu magicu(unsigned LeadingZeros = 0) const;
|
|
|
|
/// @}
|
|
/// \name Building-block Operations for APInt and APFloat
|
|
/// @{
|
|
|
|
// These building block operations operate on a representation of arbitrary
|
|
// precision, two's-complement, bignum integer values. They should be
|
|
// sufficient to implement APInt and APFloat bignum requirements. Inputs are
|
|
// generally a pointer to the base of an array of integer parts, representing
|
|
// an unsigned bignum, and a count of how many parts there are.
|
|
|
|
/// Sets the least significant part of a bignum to the input value, and zeroes
|
|
/// out higher parts.
|
|
static void tcSet(WordType *, WordType, unsigned);
|
|
|
|
/// Assign one bignum to another.
|
|
static void tcAssign(WordType *, const WordType *, unsigned);
|
|
|
|
/// Returns true if a bignum is zero, false otherwise.
|
|
static bool tcIsZero(const WordType *, unsigned);
|
|
|
|
/// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
|
|
static int tcExtractBit(const WordType *, unsigned bit);
|
|
|
|
/// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
|
|
/// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
|
|
/// significant bit of DST. All high bits above srcBITS in DST are
|
|
/// zero-filled.
|
|
static void tcExtract(WordType *, unsigned dstCount,
|
|
const WordType *, unsigned srcBits,
|
|
unsigned srcLSB);
|
|
|
|
/// Set the given bit of a bignum. Zero-based.
|
|
static void tcSetBit(WordType *, unsigned bit);
|
|
|
|
/// Clear the given bit of a bignum. Zero-based.
|
|
static void tcClearBit(WordType *, unsigned bit);
|
|
|
|
/// Returns the bit number of the least or most significant set bit of a
|
|
/// number. If the input number has no bits set -1U is returned.
|
|
static unsigned tcLSB(const WordType *, unsigned n);
|
|
static unsigned tcMSB(const WordType *parts, unsigned n);
|
|
|
|
/// Negate a bignum in-place.
|
|
static void tcNegate(WordType *, unsigned);
|
|
|
|
/// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
|
|
static WordType tcAdd(WordType *, const WordType *,
|
|
WordType carry, unsigned);
|
|
/// DST += RHS. Returns the carry flag.
|
|
static WordType tcAddPart(WordType *, WordType, unsigned);
|
|
|
|
/// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
|
|
static WordType tcSubtract(WordType *, const WordType *,
|
|
WordType carry, unsigned);
|
|
/// DST -= RHS. Returns the carry flag.
|
|
static WordType tcSubtractPart(WordType *, WordType, unsigned);
|
|
|
|
/// DST += SRC * MULTIPLIER + PART if add is true
|
|
/// DST = SRC * MULTIPLIER + PART if add is false
|
|
///
|
|
/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
|
|
/// start at the same point, i.e. DST == SRC.
|
|
///
|
|
/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
|
|
/// Otherwise DST is filled with the least significant DSTPARTS parts of the
|
|
/// result, and if all of the omitted higher parts were zero return zero,
|
|
/// otherwise overflow occurred and return one.
|
|
static int tcMultiplyPart(WordType *dst, const WordType *src,
|
|
WordType multiplier, WordType carry,
|
|
unsigned srcParts, unsigned dstParts,
|
|
bool add);
|
|
|
|
/// DST = LHS * RHS, where DST has the same width as the operands and is
|
|
/// filled with the least significant parts of the result. Returns one if
|
|
/// overflow occurred, otherwise zero. DST must be disjoint from both
|
|
/// operands.
|
|
static int tcMultiply(WordType *, const WordType *, const WordType *,
|
|
unsigned);
|
|
|
|
/// DST = LHS * RHS, where DST has width the sum of the widths of the
|
|
/// operands. No overflow occurs. DST must be disjoint from both operands.
|
|
static void tcFullMultiply(WordType *, const WordType *,
|
|
const WordType *, unsigned, unsigned);
|
|
|
|
/// If RHS is zero LHS and REMAINDER are left unchanged, return one.
|
|
/// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
|
|
/// REMAINDER to the remainder, return zero. i.e.
|
|
///
|
|
/// OLD_LHS = RHS * LHS + REMAINDER
|
|
///
|
|
/// SCRATCH is a bignum of the same size as the operands and result for use by
|
|
/// the routine; its contents need not be initialized and are destroyed. LHS,
|
|
/// REMAINDER and SCRATCH must be distinct.
|
|
static int tcDivide(WordType *lhs, const WordType *rhs,
|
|
WordType *remainder, WordType *scratch,
|
|
unsigned parts);
|
|
|
|
/// Shift a bignum left Count bits. Shifted in bits are zero. There are no
|
|
/// restrictions on Count.
|
|
static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
|
|
|
|
/// Shift a bignum right Count bits. Shifted in bits are zero. There are no
|
|
/// restrictions on Count.
|
|
static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
|
|
|
|
/// The obvious AND, OR and XOR and complement operations.
|
|
static void tcAnd(WordType *, const WordType *, unsigned);
|
|
static void tcOr(WordType *, const WordType *, unsigned);
|
|
static void tcXor(WordType *, const WordType *, unsigned);
|
|
static void tcComplement(WordType *, unsigned);
|
|
|
|
/// Comparison (unsigned) of two bignums.
|
|
static int tcCompare(const WordType *, const WordType *, unsigned);
|
|
|
|
/// Increment a bignum in-place. Return the carry flag.
|
|
static WordType tcIncrement(WordType *dst, unsigned parts) {
|
|
return tcAddPart(dst, 1, parts);
|
|
}
|
|
|
|
/// Decrement a bignum in-place. Return the borrow flag.
|
|
static WordType tcDecrement(WordType *dst, unsigned parts) {
|
|
return tcSubtractPart(dst, 1, parts);
|
|
}
|
|
|
|
/// Set the least significant BITS and clear the rest.
|
|
static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
|
|
|
|
/// debug method
|
|
void dump() const;
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// Magic data for optimising signed division by a constant.
|
|
struct APInt::ms {
|
|
APInt m; ///< magic number
|
|
unsigned s; ///< shift amount
|
|
};
|
|
|
|
/// Magic data for optimising unsigned division by a constant.
|
|
struct APInt::mu {
|
|
APInt m; ///< magic number
|
|
bool a; ///< add indicator
|
|
unsigned s; ///< shift amount
|
|
};
|
|
|
|
inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
|
|
|
|
inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
|
|
|
|
/// Unary bitwise complement operator.
|
|
///
|
|
/// \returns an APInt that is the bitwise complement of \p v.
|
|
inline APInt operator~(APInt v) {
|
|
v.flipAllBits();
|
|
return v;
|
|
}
|
|
|
|
inline APInt operator&(APInt a, const APInt &b) {
|
|
a &= b;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator&(const APInt &a, APInt &&b) {
|
|
b &= a;
|
|
return std::move(b);
|
|
}
|
|
|
|
inline APInt operator&(APInt a, uint64_t RHS) {
|
|
a &= RHS;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator&(uint64_t LHS, APInt b) {
|
|
b &= LHS;
|
|
return b;
|
|
}
|
|
|
|
inline APInt operator|(APInt a, const APInt &b) {
|
|
a |= b;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator|(const APInt &a, APInt &&b) {
|
|
b |= a;
|
|
return std::move(b);
|
|
}
|
|
|
|
inline APInt operator|(APInt a, uint64_t RHS) {
|
|
a |= RHS;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator|(uint64_t LHS, APInt b) {
|
|
b |= LHS;
|
|
return b;
|
|
}
|
|
|
|
inline APInt operator^(APInt a, const APInt &b) {
|
|
a ^= b;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator^(const APInt &a, APInt &&b) {
|
|
b ^= a;
|
|
return std::move(b);
|
|
}
|
|
|
|
inline APInt operator^(APInt a, uint64_t RHS) {
|
|
a ^= RHS;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator^(uint64_t LHS, APInt b) {
|
|
b ^= LHS;
|
|
return b;
|
|
}
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
|
|
I.print(OS, true);
|
|
return OS;
|
|
}
|
|
|
|
inline APInt operator-(APInt v) {
|
|
v.negate();
|
|
return v;
|
|
}
|
|
|
|
inline APInt operator+(APInt a, const APInt &b) {
|
|
a += b;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator+(const APInt &a, APInt &&b) {
|
|
b += a;
|
|
return std::move(b);
|
|
}
|
|
|
|
inline APInt operator+(APInt a, uint64_t RHS) {
|
|
a += RHS;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator+(uint64_t LHS, APInt b) {
|
|
b += LHS;
|
|
return b;
|
|
}
|
|
|
|
inline APInt operator-(APInt a, const APInt &b) {
|
|
a -= b;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator-(const APInt &a, APInt &&b) {
|
|
b.negate();
|
|
b += a;
|
|
return std::move(b);
|
|
}
|
|
|
|
inline APInt operator-(APInt a, uint64_t RHS) {
|
|
a -= RHS;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator-(uint64_t LHS, APInt b) {
|
|
b.negate();
|
|
b += LHS;
|
|
return b;
|
|
}
|
|
|
|
inline APInt operator*(APInt a, uint64_t RHS) {
|
|
a *= RHS;
|
|
return a;
|
|
}
|
|
|
|
inline APInt operator*(uint64_t LHS, APInt b) {
|
|
b *= LHS;
|
|
return b;
|
|
}
|
|
|
|
|
|
namespace APIntOps {
|
|
|
|
/// Determine the smaller of two APInts considered to be signed.
|
|
inline const APInt &smin(const APInt &A, const APInt &B) {
|
|
return A.slt(B) ? A : B;
|
|
}
|
|
|
|
/// Determine the larger of two APInts considered to be signed.
|
|
inline const APInt &smax(const APInt &A, const APInt &B) {
|
|
return A.sgt(B) ? A : B;
|
|
}
|
|
|
|
/// Determine the smaller of two APInts considered to be signed.
|
|
inline const APInt &umin(const APInt &A, const APInt &B) {
|
|
return A.ult(B) ? A : B;
|
|
}
|
|
|
|
/// Determine the larger of two APInts considered to be unsigned.
|
|
inline const APInt &umax(const APInt &A, const APInt &B) {
|
|
return A.ugt(B) ? A : B;
|
|
}
|
|
|
|
/// Compute GCD of two unsigned APInt values.
|
|
///
|
|
/// This function returns the greatest common divisor of the two APInt values
|
|
/// using Stein's algorithm.
|
|
///
|
|
/// \returns the greatest common divisor of A and B.
|
|
APInt GreatestCommonDivisor(APInt A, APInt B);
|
|
|
|
/// Converts the given APInt to a double value.
|
|
///
|
|
/// Treats the APInt as an unsigned value for conversion purposes.
|
|
inline double RoundAPIntToDouble(const APInt &APIVal) {
|
|
return APIVal.roundToDouble();
|
|
}
|
|
|
|
/// Converts the given APInt to a double value.
|
|
///
|
|
/// Treats the APInt as a signed value for conversion purposes.
|
|
inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
|
|
return APIVal.signedRoundToDouble();
|
|
}
|
|
|
|
/// Converts the given APInt to a float vlalue.
|
|
inline float RoundAPIntToFloat(const APInt &APIVal) {
|
|
return float(RoundAPIntToDouble(APIVal));
|
|
}
|
|
|
|
/// Converts the given APInt to a float value.
|
|
///
|
|
/// Treats the APInt as a signed value for conversion purposes.
|
|
inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
|
|
return float(APIVal.signedRoundToDouble());
|
|
}
|
|
|
|
/// Converts the given double value into a APInt.
|
|
///
|
|
/// This function convert a double value to an APInt value.
|
|
APInt RoundDoubleToAPInt(double Double, unsigned width);
|
|
|
|
/// Converts a float value into a APInt.
|
|
///
|
|
/// Converts a float value into an APInt value.
|
|
inline APInt RoundFloatToAPInt(float Float, unsigned width) {
|
|
return RoundDoubleToAPInt(double(Float), width);
|
|
}
|
|
|
|
/// Return A unsign-divided by B, rounded by the given rounding mode.
|
|
APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
|
|
|
|
/// Return A sign-divided by B, rounded by the given rounding mode.
|
|
APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
|
|
|
|
/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
|
|
/// (e.g. 32 for i32).
|
|
/// This function finds the smallest number n, such that
|
|
/// (a) n >= 0 and q(n) = 0, or
|
|
/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
|
|
/// integers, belong to two different intervals [Rk, Rk+R),
|
|
/// where R = 2^BW, and k is an integer.
|
|
/// The idea here is to find when q(n) "overflows" 2^BW, while at the
|
|
/// same time "allowing" subtraction. In unsigned modulo arithmetic a
|
|
/// subtraction (treated as addition of negated numbers) would always
|
|
/// count as an overflow, but here we want to allow values to decrease
|
|
/// and increase as long as they are within the same interval.
|
|
/// Specifically, adding of two negative numbers should not cause an
|
|
/// overflow (as long as the magnitude does not exceed the bit width).
|
|
/// On the other hand, given a positive number, adding a negative
|
|
/// number to it can give a negative result, which would cause the
|
|
/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
|
|
/// treated as a special case of an overflow.
|
|
///
|
|
/// This function returns None if after finding k that minimizes the
|
|
/// positive solution to q(n) = kR, both solutions are contained between
|
|
/// two consecutive integers.
|
|
///
|
|
/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
|
|
/// in arithmetic modulo 2^BW, and treating the values as signed) by the
|
|
/// virtue of *signed* overflow. This function will *not* find such an n,
|
|
/// however it may find a value of n satisfying the inequalities due to
|
|
/// an *unsigned* overflow (if the values are treated as unsigned).
|
|
/// To find a solution for a signed overflow, treat it as a problem of
|
|
/// finding an unsigned overflow with a range with of BW-1.
|
|
///
|
|
/// The returned value may have a different bit width from the input
|
|
/// coefficients.
|
|
Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
|
|
unsigned RangeWidth);
|
|
|
|
/// Compare two values, and if they are different, return the position of the
|
|
/// most significant bit that is different in the values.
|
|
Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
|
|
const APInt &B);
|
|
|
|
} // End of APIntOps namespace
|
|
|
|
// See friend declaration above. This additional declaration is required in
|
|
// order to compile LLVM with IBM xlC compiler.
|
|
hash_code hash_value(const APInt &Arg);
|
|
|
|
/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
|
|
/// with the integer held in IntVal.
|
|
void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
|
|
|
|
/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
|
|
/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
|
|
void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes);
|
|
|
|
} // namespace llvm
|
|
|
|
#endif
|