mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
1bbbcc7ad0
llvm-svn: 253020
417 lines
14 KiB
C++
417 lines
14 KiB
C++
//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass turns explicit null checks of the form
|
|
//
|
|
// test %r10, %r10
|
|
// je throw_npe
|
|
// movl (%r10), %esi
|
|
// ...
|
|
//
|
|
// to
|
|
//
|
|
// faulting_load_op("movl (%r10), %esi", throw_npe)
|
|
// ...
|
|
//
|
|
// With the help of a runtime that understands the .fault_maps section,
|
|
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
|
|
// a page fault.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<unsigned> PageSize("imp-null-check-page-size",
|
|
cl::desc("The page size of the target in "
|
|
"bytes"),
|
|
cl::init(4096));
|
|
|
|
#define DEBUG_TYPE "implicit-null-checks"
|
|
|
|
STATISTIC(NumImplicitNullChecks,
|
|
"Number of explicit null checks made implicit");
|
|
|
|
namespace {
|
|
|
|
class ImplicitNullChecks : public MachineFunctionPass {
|
|
/// Represents one null check that can be made implicit.
|
|
struct NullCheck {
|
|
// The memory operation the null check can be folded into.
|
|
MachineInstr *MemOperation;
|
|
|
|
// The instruction actually doing the null check (Ptr != 0).
|
|
MachineInstr *CheckOperation;
|
|
|
|
// The block the check resides in.
|
|
MachineBasicBlock *CheckBlock;
|
|
|
|
// The block branched to if the pointer is non-null.
|
|
MachineBasicBlock *NotNullSucc;
|
|
|
|
// The block branched to if the pointer is null.
|
|
MachineBasicBlock *NullSucc;
|
|
|
|
NullCheck()
|
|
: MemOperation(), CheckOperation(), CheckBlock(), NotNullSucc(),
|
|
NullSucc() {}
|
|
|
|
explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
|
|
MachineBasicBlock *checkBlock,
|
|
MachineBasicBlock *notNullSucc,
|
|
MachineBasicBlock *nullSucc)
|
|
: MemOperation(memOperation), CheckOperation(checkOperation),
|
|
CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc) {
|
|
}
|
|
};
|
|
|
|
const TargetInstrInfo *TII = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
MachineModuleInfo *MMI = nullptr;
|
|
|
|
bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
|
|
SmallVectorImpl<NullCheck> &NullCheckList);
|
|
MachineInstr *insertFaultingLoad(MachineInstr *LoadMI, MachineBasicBlock *MBB,
|
|
MCSymbol *HandlerLabel);
|
|
void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ImplicitNullChecks() : MachineFunctionPass(ID) {
|
|
initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
};
|
|
|
|
/// \brief Detect re-ordering hazards and dependencies.
|
|
///
|
|
/// This class keeps track of defs and uses, and can be queried if a given
|
|
/// machine instruction can be re-ordered from after the machine instructions
|
|
/// seen so far to before them.
|
|
class HazardDetector {
|
|
DenseSet<unsigned> RegDefs;
|
|
DenseSet<unsigned> RegUses;
|
|
const TargetRegisterInfo &TRI;
|
|
bool hasSeenClobber;
|
|
|
|
public:
|
|
explicit HazardDetector(const TargetRegisterInfo &TRI) :
|
|
TRI(TRI), hasSeenClobber(false) {}
|
|
|
|
/// \brief Make a note of \p MI for later queries to isSafeToHoist.
|
|
///
|
|
/// May clobber this HazardDetector instance. \see isClobbered.
|
|
void rememberInstruction(MachineInstr *MI);
|
|
|
|
/// \brief Return true if it is safe to hoist \p MI from after all the
|
|
/// instructions seen so far (via rememberInstruction) to before it.
|
|
bool isSafeToHoist(MachineInstr *MI);
|
|
|
|
/// \brief Return true if this instance of HazardDetector has been clobbered
|
|
/// (i.e. has no more useful information).
|
|
///
|
|
/// A HazardDetecter is clobbered when it sees a construct it cannot
|
|
/// understand, and it would have to return a conservative answer for all
|
|
/// future queries. Having a separate clobbered state lets the client code
|
|
/// bail early, without making queries about all of the future instructions
|
|
/// (which would have returned the most conservative answer anyway).
|
|
///
|
|
/// Calling rememberInstruction or isSafeToHoist on a clobbered HazardDetector
|
|
/// is an error.
|
|
bool isClobbered() { return hasSeenClobber; }
|
|
};
|
|
}
|
|
|
|
|
|
void HazardDetector::rememberInstruction(MachineInstr *MI) {
|
|
assert(!isClobbered() &&
|
|
"Don't add instructions to a clobbered hazard detector");
|
|
|
|
if (MI->mayStore() || MI->hasUnmodeledSideEffects()) {
|
|
hasSeenClobber = true;
|
|
return;
|
|
}
|
|
|
|
for (auto *MMO : MI->memoperands()) {
|
|
// Right now we don't want to worry about LLVM's memory model.
|
|
if (!MMO->isUnordered()) {
|
|
hasSeenClobber = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (auto &MO : MI->operands()) {
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
|
|
if (MO.isDef())
|
|
RegDefs.insert(MO.getReg());
|
|
else
|
|
RegUses.insert(MO.getReg());
|
|
}
|
|
}
|
|
|
|
bool HazardDetector::isSafeToHoist(MachineInstr *MI) {
|
|
assert(!isClobbered() && "isSafeToHoist cannot do anything useful!");
|
|
|
|
// Right now we don't want to worry about LLVM's memory model. This can be
|
|
// made more precise later.
|
|
for (auto *MMO : MI->memoperands())
|
|
if (!MMO->isUnordered())
|
|
return false;
|
|
|
|
for (auto &MO : MI->operands()) {
|
|
if (MO.isReg() && MO.getReg()) {
|
|
for (unsigned Reg : RegDefs)
|
|
if (TRI.regsOverlap(Reg, MO.getReg()))
|
|
return false; // We found a write-after-write or read-after-write
|
|
|
|
if (MO.isDef())
|
|
for (unsigned Reg : RegUses)
|
|
if (TRI.regsOverlap(Reg, MO.getReg()))
|
|
return false; // We found a write-after-read
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
TRI = MF.getRegInfo().getTargetRegisterInfo();
|
|
MMI = &MF.getMMI();
|
|
|
|
SmallVector<NullCheck, 16> NullCheckList;
|
|
|
|
for (auto &MBB : MF)
|
|
analyzeBlockForNullChecks(MBB, NullCheckList);
|
|
|
|
if (!NullCheckList.empty())
|
|
rewriteNullChecks(NullCheckList);
|
|
|
|
return !NullCheckList.empty();
|
|
}
|
|
|
|
/// Analyze MBB to check if its terminating branch can be turned into an
|
|
/// implicit null check. If yes, append a description of the said null check to
|
|
/// NullCheckList and return true, else return false.
|
|
bool ImplicitNullChecks::analyzeBlockForNullChecks(
|
|
MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
|
|
typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
|
|
|
|
MDNode *BranchMD = nullptr;
|
|
if (auto *BB = MBB.getBasicBlock())
|
|
BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
|
|
|
|
if (!BranchMD)
|
|
return false;
|
|
|
|
MachineBranchPredicate MBP;
|
|
|
|
if (TII->AnalyzeBranchPredicate(MBB, MBP, true))
|
|
return false;
|
|
|
|
// Is the predicate comparing an integer to zero?
|
|
if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
|
|
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
|
|
MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
|
|
return false;
|
|
|
|
// If we cannot erase the test instruction itself, then making the null check
|
|
// implicit does not buy us much.
|
|
if (!MBP.SingleUseCondition)
|
|
return false;
|
|
|
|
MachineBasicBlock *NotNullSucc, *NullSucc;
|
|
|
|
if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
|
|
NotNullSucc = MBP.TrueDest;
|
|
NullSucc = MBP.FalseDest;
|
|
} else {
|
|
NotNullSucc = MBP.FalseDest;
|
|
NullSucc = MBP.TrueDest;
|
|
}
|
|
|
|
// We handle the simplest case for now. We can potentially do better by using
|
|
// the machine dominator tree.
|
|
if (NotNullSucc->pred_size() != 1)
|
|
return false;
|
|
|
|
// Starting with a code fragment like:
|
|
//
|
|
// test %RAX, %RAX
|
|
// jne LblNotNull
|
|
//
|
|
// LblNull:
|
|
// callq throw_NullPointerException
|
|
//
|
|
// LblNotNull:
|
|
// Inst0
|
|
// Inst1
|
|
// ...
|
|
// Def = Load (%RAX + <offset>)
|
|
// ...
|
|
//
|
|
//
|
|
// we want to end up with
|
|
//
|
|
// Def = FaultingLoad (%RAX + <offset>), LblNull
|
|
// jmp LblNotNull ;; explicit or fallthrough
|
|
//
|
|
// LblNotNull:
|
|
// Inst0
|
|
// Inst1
|
|
// ...
|
|
//
|
|
// LblNull:
|
|
// callq throw_NullPointerException
|
|
//
|
|
//
|
|
// To see why this is legal, consider the two possibilities:
|
|
//
|
|
// 1. %RAX is null: since we constrain <offset> to be less than PageSize, the
|
|
// load instruction dereferences the null page, causing a segmentation
|
|
// fault.
|
|
//
|
|
// 2. %RAX is not null: in this case we know that the load cannot fault, as
|
|
// otherwise the load would've faulted in the original program too and the
|
|
// original program would've been undefined.
|
|
//
|
|
// This reasoning cannot be extended to justify hoisting through arbitrary
|
|
// control flow. For instance, in the example below (in pseudo-C)
|
|
//
|
|
// if (ptr == null) { throw_npe(); unreachable; }
|
|
// if (some_cond) { return 42; }
|
|
// v = ptr->field; // LD
|
|
// ...
|
|
//
|
|
// we cannot (without code duplication) use the load marked "LD" to null check
|
|
// ptr -- clause (2) above does not apply in this case. In the above program
|
|
// the safety of ptr->field can be dependent on some_cond; and, for instance,
|
|
// ptr could be some non-null invalid reference that never gets loaded from
|
|
// because some_cond is always true.
|
|
|
|
unsigned PointerReg = MBP.LHS.getReg();
|
|
|
|
HazardDetector HD(*TRI);
|
|
|
|
for (auto MII = NotNullSucc->begin(), MIE = NotNullSucc->end(); MII != MIE;
|
|
++MII) {
|
|
MachineInstr *MI = &*MII;
|
|
unsigned BaseReg, Offset;
|
|
if (TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
|
|
if (MI->mayLoad() && !MI->isPredicable() && BaseReg == PointerReg &&
|
|
Offset < PageSize && MI->getDesc().getNumDefs() <= 1 &&
|
|
HD.isSafeToHoist(MI)) {
|
|
NullCheckList.emplace_back(MI, MBP.ConditionDef, &MBB, NotNullSucc,
|
|
NullSucc);
|
|
return true;
|
|
}
|
|
|
|
HD.rememberInstruction(MI);
|
|
if (HD.isClobbered())
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Wrap a machine load instruction, LoadMI, into a FAULTING_LOAD_OP machine
|
|
/// instruction. The FAULTING_LOAD_OP instruction does the same load as LoadMI
|
|
/// (defining the same register), and branches to HandlerLabel if the load
|
|
/// faults. The FAULTING_LOAD_OP instruction is inserted at the end of MBB.
|
|
MachineInstr *ImplicitNullChecks::insertFaultingLoad(MachineInstr *LoadMI,
|
|
MachineBasicBlock *MBB,
|
|
MCSymbol *HandlerLabel) {
|
|
const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
|
|
// all targets.
|
|
|
|
DebugLoc DL;
|
|
unsigned NumDefs = LoadMI->getDesc().getNumDefs();
|
|
assert(NumDefs <= 1 && "other cases unhandled!");
|
|
|
|
unsigned DefReg = NoRegister;
|
|
if (NumDefs != 0) {
|
|
DefReg = LoadMI->defs().begin()->getReg();
|
|
assert(std::distance(LoadMI->defs().begin(), LoadMI->defs().end()) == 1 &&
|
|
"expected exactly one def!");
|
|
}
|
|
|
|
auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_LOAD_OP), DefReg)
|
|
.addSym(HandlerLabel)
|
|
.addImm(LoadMI->getOpcode());
|
|
|
|
for (auto &MO : LoadMI->uses())
|
|
MIB.addOperand(MO);
|
|
|
|
MIB.setMemRefs(LoadMI->memoperands_begin(), LoadMI->memoperands_end());
|
|
|
|
return MIB;
|
|
}
|
|
|
|
/// Rewrite the null checks in NullCheckList into implicit null checks.
|
|
void ImplicitNullChecks::rewriteNullChecks(
|
|
ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
|
|
DebugLoc DL;
|
|
|
|
for (auto &NC : NullCheckList) {
|
|
MCSymbol *HandlerLabel = MMI->getContext().createTempSymbol();
|
|
|
|
// Remove the conditional branch dependent on the null check.
|
|
unsigned BranchesRemoved = TII->RemoveBranch(*NC.CheckBlock);
|
|
(void)BranchesRemoved;
|
|
assert(BranchesRemoved > 0 && "expected at least one branch!");
|
|
|
|
// Insert a faulting load where the conditional branch was originally. We
|
|
// check earlier ensures that this bit of code motion is legal. We do not
|
|
// touch the successors list for any basic block since we haven't changed
|
|
// control flow, we've just made it implicit.
|
|
insertFaultingLoad(NC.MemOperation, NC.CheckBlock, HandlerLabel);
|
|
NC.MemOperation->eraseFromParent();
|
|
NC.CheckOperation->eraseFromParent();
|
|
|
|
// Insert an *unconditional* branch to not-null successor.
|
|
TII->InsertBranch(*NC.CheckBlock, NC.NotNullSucc, nullptr, /*Cond=*/None,
|
|
DL);
|
|
|
|
// Emit the HandlerLabel as an EH_LABEL.
|
|
BuildMI(*NC.NullSucc, NC.NullSucc->begin(), DL,
|
|
TII->get(TargetOpcode::EH_LABEL)).addSym(HandlerLabel);
|
|
|
|
NumImplicitNullChecks++;
|
|
}
|
|
}
|
|
|
|
char ImplicitNullChecks::ID = 0;
|
|
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
|
|
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, "implicit-null-checks",
|
|
"Implicit null checks", false, false)
|
|
INITIALIZE_PASS_END(ImplicitNullChecks, "implicit-null-checks",
|
|
"Implicit null checks", false, false)
|