1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/tools/llvm-readobj/COFFDumper.cpp
Craig Topper 0e2ab5732c [C++] Use 'nullptr'. Tools edition.
llvm-svn: 207176
2014-04-25 04:24:47 +00:00

1223 lines
44 KiB
C++

//===-- COFFDumper.cpp - COFF-specific dumper -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements the COFF-specific dumper for llvm-readobj.
///
//===----------------------------------------------------------------------===//
#include "llvm-readobj.h"
#include "Error.h"
#include "ObjDumper.h"
#include "StreamWriter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/Win64EH.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include <algorithm>
#include <cstring>
#include <time.h>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::Win64EH;
namespace {
class COFFDumper : public ObjDumper {
public:
COFFDumper(const llvm::object::COFFObjectFile *Obj, StreamWriter& Writer)
: ObjDumper(Writer)
, Obj(Obj) {
cacheRelocations();
}
virtual void printFileHeaders() override;
virtual void printSections() override;
virtual void printRelocations() override;
virtual void printSymbols() override;
virtual void printDynamicSymbols() override;
virtual void printUnwindInfo() override;
private:
void printSymbol(const SymbolRef &Sym);
void printRelocation(const SectionRef &Section, const RelocationRef &Reloc);
void printDataDirectory(uint32_t Index, const std::string &FieldName);
void printX64UnwindInfo();
template <class PEHeader> void printPEHeader(const PEHeader *Hdr);
void printBaseOfDataField(const pe32_header *Hdr);
void printBaseOfDataField(const pe32plus_header *Hdr);
void printRuntimeFunction(
const RuntimeFunction& RTF,
uint64_t OffsetInSection,
const std::vector<RelocationRef> &Rels);
void printUnwindInfo(
const Win64EH::UnwindInfo& UI,
uint64_t OffsetInSection,
const std::vector<RelocationRef> &Rels);
void printUnwindCode(const Win64EH::UnwindInfo &UI, ArrayRef<UnwindCode> UCs);
void printCodeViewLineTables(const SectionRef &Section);
void cacheRelocations();
error_code getSectionContents(
const std::vector<RelocationRef> &Rels,
uint64_t Offset,
ArrayRef<uint8_t> &Contents,
uint64_t &Addr);
error_code getSection(
const std::vector<RelocationRef> &Rels,
uint64_t Offset,
const coff_section **Section,
uint64_t *AddrPtr);
typedef DenseMap<const coff_section*, std::vector<RelocationRef> > RelocMapTy;
const llvm::object::COFFObjectFile *Obj;
RelocMapTy RelocMap;
std::vector<RelocationRef> EmptyRelocs;
};
} // namespace
namespace llvm {
error_code createCOFFDumper(const object::ObjectFile *Obj, StreamWriter &Writer,
std::unique_ptr<ObjDumper> &Result) {
const COFFObjectFile *COFFObj = dyn_cast<COFFObjectFile>(Obj);
if (!COFFObj)
return readobj_error::unsupported_obj_file_format;
Result.reset(new COFFDumper(COFFObj, Writer));
return readobj_error::success;
}
} // namespace llvm
// Returns the name of the unwind code.
static StringRef getUnwindCodeTypeName(uint8_t Code) {
switch(Code) {
default: llvm_unreachable("Invalid unwind code");
case UOP_PushNonVol: return "PUSH_NONVOL";
case UOP_AllocLarge: return "ALLOC_LARGE";
case UOP_AllocSmall: return "ALLOC_SMALL";
case UOP_SetFPReg: return "SET_FPREG";
case UOP_SaveNonVol: return "SAVE_NONVOL";
case UOP_SaveNonVolBig: return "SAVE_NONVOL_FAR";
case UOP_SaveXMM128: return "SAVE_XMM128";
case UOP_SaveXMM128Big: return "SAVE_XMM128_FAR";
case UOP_PushMachFrame: return "PUSH_MACHFRAME";
}
}
// Returns the name of a referenced register.
static StringRef getUnwindRegisterName(uint8_t Reg) {
switch(Reg) {
default: llvm_unreachable("Invalid register");
case 0: return "RAX";
case 1: return "RCX";
case 2: return "RDX";
case 3: return "RBX";
case 4: return "RSP";
case 5: return "RBP";
case 6: return "RSI";
case 7: return "RDI";
case 8: return "R8";
case 9: return "R9";
case 10: return "R10";
case 11: return "R11";
case 12: return "R12";
case 13: return "R13";
case 14: return "R14";
case 15: return "R15";
}
}
// Calculates the number of array slots required for the unwind code.
static unsigned getNumUsedSlots(const UnwindCode &UnwindCode) {
switch (UnwindCode.getUnwindOp()) {
default: llvm_unreachable("Invalid unwind code");
case UOP_PushNonVol:
case UOP_AllocSmall:
case UOP_SetFPReg:
case UOP_PushMachFrame:
return 1;
case UOP_SaveNonVol:
case UOP_SaveXMM128:
return 2;
case UOP_SaveNonVolBig:
case UOP_SaveXMM128Big:
return 3;
case UOP_AllocLarge:
return (UnwindCode.getOpInfo() == 0) ? 2 : 3;
}
}
// Given a symbol sym this functions returns the address and section of it.
static error_code resolveSectionAndAddress(const COFFObjectFile *Obj,
const SymbolRef &Sym,
const coff_section *&ResolvedSection,
uint64_t &ResolvedAddr) {
if (error_code EC = Sym.getAddress(ResolvedAddr))
return EC;
section_iterator iter(Obj->section_begin());
if (error_code EC = Sym.getSection(iter))
return EC;
ResolvedSection = Obj->getCOFFSection(*iter);
return object_error::success;
}
// Given a vector of relocations for a section and an offset into this section
// the function returns the symbol used for the relocation at the offset.
static error_code resolveSymbol(const std::vector<RelocationRef> &Rels,
uint64_t Offset, SymbolRef &Sym) {
for (std::vector<RelocationRef>::const_iterator RelI = Rels.begin(),
RelE = Rels.end();
RelI != RelE; ++RelI) {
uint64_t Ofs;
if (error_code EC = RelI->getOffset(Ofs))
return EC;
if (Ofs == Offset) {
Sym = *RelI->getSymbol();
return readobj_error::success;
}
}
return readobj_error::unknown_symbol;
}
// Given a vector of relocations for a section and an offset into this section
// the function returns the name of the symbol used for the relocation at the
// offset.
static error_code resolveSymbolName(const std::vector<RelocationRef> &Rels,
uint64_t Offset, StringRef &Name) {
SymbolRef Sym;
if (error_code EC = resolveSymbol(Rels, Offset, Sym)) return EC;
if (error_code EC = Sym.getName(Name)) return EC;
return object_error::success;
}
static const EnumEntry<COFF::MachineTypes> ImageFileMachineType[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_UNKNOWN ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_AM33 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_AMD64 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_ARM ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_ARMNT ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_EBC ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_I386 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_IA64 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_M32R ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPS16 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPSFPU ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_MIPSFPU16),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_POWERPC ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_POWERPCFP),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_R4000 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH3 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH3DSP ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH4 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_SH5 ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_THUMB ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_MACHINE_WCEMIPSV2)
};
static const EnumEntry<COFF::Characteristics> ImageFileCharacteristics[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_RELOCS_STRIPPED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_EXECUTABLE_IMAGE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LINE_NUMS_STRIPPED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LOCAL_SYMS_STRIPPED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_AGGRESSIVE_WS_TRIM ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_LARGE_ADDRESS_AWARE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_BYTES_REVERSED_LO ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_32BIT_MACHINE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_DEBUG_STRIPPED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_NET_RUN_FROM_SWAP ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_SYSTEM ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_DLL ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_UP_SYSTEM_ONLY ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_FILE_BYTES_REVERSED_HI )
};
static const EnumEntry<COFF::WindowsSubsystem> PEWindowsSubsystem[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_UNKNOWN ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_NATIVE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_GUI ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_CUI ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_POSIX_CUI ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_WINDOWS_CE_GUI ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_APPLICATION ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_EFI_ROM ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SUBSYSTEM_XBOX ),
};
static const EnumEntry<COFF::DLLCharacteristics> PEDLLCharacteristics[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NX_COMPAT ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_SEH ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_NO_BIND ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE),
};
static const EnumEntry<COFF::SectionCharacteristics>
ImageSectionCharacteristics[] = {
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_TYPE_NO_PAD ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_CODE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_INITIALIZED_DATA ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_CNT_UNINITIALIZED_DATA),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_OTHER ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_INFO ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_REMOVE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_COMDAT ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_GPREL ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_PURGEABLE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_16BIT ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_LOCKED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_PRELOAD ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_1BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_2BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_4BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_8BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_16BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_32BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_64BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_128BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_256BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_512BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_1024BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_2048BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_4096BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_ALIGN_8192BYTES ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_LNK_NRELOC_OVFL ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_DISCARDABLE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_NOT_CACHED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_NOT_PAGED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_SHARED ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_EXECUTE ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_READ ),
LLVM_READOBJ_ENUM_ENT(COFF, IMAGE_SCN_MEM_WRITE )
};
static const EnumEntry<COFF::SymbolBaseType> ImageSymType[] = {
{ "Null" , COFF::IMAGE_SYM_TYPE_NULL },
{ "Void" , COFF::IMAGE_SYM_TYPE_VOID },
{ "Char" , COFF::IMAGE_SYM_TYPE_CHAR },
{ "Short" , COFF::IMAGE_SYM_TYPE_SHORT },
{ "Int" , COFF::IMAGE_SYM_TYPE_INT },
{ "Long" , COFF::IMAGE_SYM_TYPE_LONG },
{ "Float" , COFF::IMAGE_SYM_TYPE_FLOAT },
{ "Double", COFF::IMAGE_SYM_TYPE_DOUBLE },
{ "Struct", COFF::IMAGE_SYM_TYPE_STRUCT },
{ "Union" , COFF::IMAGE_SYM_TYPE_UNION },
{ "Enum" , COFF::IMAGE_SYM_TYPE_ENUM },
{ "MOE" , COFF::IMAGE_SYM_TYPE_MOE },
{ "Byte" , COFF::IMAGE_SYM_TYPE_BYTE },
{ "Word" , COFF::IMAGE_SYM_TYPE_WORD },
{ "UInt" , COFF::IMAGE_SYM_TYPE_UINT },
{ "DWord" , COFF::IMAGE_SYM_TYPE_DWORD }
};
static const EnumEntry<COFF::SymbolComplexType> ImageSymDType[] = {
{ "Null" , COFF::IMAGE_SYM_DTYPE_NULL },
{ "Pointer" , COFF::IMAGE_SYM_DTYPE_POINTER },
{ "Function", COFF::IMAGE_SYM_DTYPE_FUNCTION },
{ "Array" , COFF::IMAGE_SYM_DTYPE_ARRAY }
};
static const EnumEntry<COFF::SymbolStorageClass> ImageSymClass[] = {
{ "EndOfFunction" , COFF::IMAGE_SYM_CLASS_END_OF_FUNCTION },
{ "Null" , COFF::IMAGE_SYM_CLASS_NULL },
{ "Automatic" , COFF::IMAGE_SYM_CLASS_AUTOMATIC },
{ "External" , COFF::IMAGE_SYM_CLASS_EXTERNAL },
{ "Static" , COFF::IMAGE_SYM_CLASS_STATIC },
{ "Register" , COFF::IMAGE_SYM_CLASS_REGISTER },
{ "ExternalDef" , COFF::IMAGE_SYM_CLASS_EXTERNAL_DEF },
{ "Label" , COFF::IMAGE_SYM_CLASS_LABEL },
{ "UndefinedLabel" , COFF::IMAGE_SYM_CLASS_UNDEFINED_LABEL },
{ "MemberOfStruct" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_STRUCT },
{ "Argument" , COFF::IMAGE_SYM_CLASS_ARGUMENT },
{ "StructTag" , COFF::IMAGE_SYM_CLASS_STRUCT_TAG },
{ "MemberOfUnion" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_UNION },
{ "UnionTag" , COFF::IMAGE_SYM_CLASS_UNION_TAG },
{ "TypeDefinition" , COFF::IMAGE_SYM_CLASS_TYPE_DEFINITION },
{ "UndefinedStatic", COFF::IMAGE_SYM_CLASS_UNDEFINED_STATIC },
{ "EnumTag" , COFF::IMAGE_SYM_CLASS_ENUM_TAG },
{ "MemberOfEnum" , COFF::IMAGE_SYM_CLASS_MEMBER_OF_ENUM },
{ "RegisterParam" , COFF::IMAGE_SYM_CLASS_REGISTER_PARAM },
{ "BitField" , COFF::IMAGE_SYM_CLASS_BIT_FIELD },
{ "Block" , COFF::IMAGE_SYM_CLASS_BLOCK },
{ "Function" , COFF::IMAGE_SYM_CLASS_FUNCTION },
{ "EndOfStruct" , COFF::IMAGE_SYM_CLASS_END_OF_STRUCT },
{ "File" , COFF::IMAGE_SYM_CLASS_FILE },
{ "Section" , COFF::IMAGE_SYM_CLASS_SECTION },
{ "WeakExternal" , COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL },
{ "CLRToken" , COFF::IMAGE_SYM_CLASS_CLR_TOKEN }
};
static const EnumEntry<COFF::COMDATType> ImageCOMDATSelect[] = {
{ "NoDuplicates", COFF::IMAGE_COMDAT_SELECT_NODUPLICATES },
{ "Any" , COFF::IMAGE_COMDAT_SELECT_ANY },
{ "SameSize" , COFF::IMAGE_COMDAT_SELECT_SAME_SIZE },
{ "ExactMatch" , COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH },
{ "Associative" , COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE },
{ "Largest" , COFF::IMAGE_COMDAT_SELECT_LARGEST },
{ "Newest" , COFF::IMAGE_COMDAT_SELECT_NEWEST }
};
static const EnumEntry<COFF::WeakExternalCharacteristics>
WeakExternalCharacteristics[] = {
{ "NoLibrary", COFF::IMAGE_WEAK_EXTERN_SEARCH_NOLIBRARY },
{ "Library" , COFF::IMAGE_WEAK_EXTERN_SEARCH_LIBRARY },
{ "Alias" , COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS }
};
static const EnumEntry<unsigned> UnwindFlags[] = {
{ "ExceptionHandler", Win64EH::UNW_ExceptionHandler },
{ "TerminateHandler", Win64EH::UNW_TerminateHandler },
{ "ChainInfo" , Win64EH::UNW_ChainInfo }
};
static const EnumEntry<unsigned> UnwindOpInfo[] = {
{ "RAX", 0 },
{ "RCX", 1 },
{ "RDX", 2 },
{ "RBX", 3 },
{ "RSP", 4 },
{ "RBP", 5 },
{ "RSI", 6 },
{ "RDI", 7 },
{ "R8", 8 },
{ "R9", 9 },
{ "R10", 10 },
{ "R11", 11 },
{ "R12", 12 },
{ "R13", 13 },
{ "R14", 14 },
{ "R15", 15 }
};
static uint64_t getOffsetOfLSDA(const Win64EH::UnwindInfo& UI) {
return static_cast<const char*>(UI.getLanguageSpecificData())
- reinterpret_cast<const char*>(&UI);
}
static uint32_t getLargeSlotValue(ArrayRef<UnwindCode> UCs) {
if (UCs.size() < 3)
return 0;
return UCs[1].FrameOffset + (static_cast<uint32_t>(UCs[2].FrameOffset) << 16);
}
template<typename T>
static error_code getSymbolAuxData(const COFFObjectFile *Obj,
const coff_symbol *Symbol, const T* &Aux) {
ArrayRef<uint8_t> AuxData = Obj->getSymbolAuxData(Symbol);
Aux = reinterpret_cast<const T*>(AuxData.data());
return readobj_error::success;
}
static std::string formatSymbol(const std::vector<RelocationRef> &Rels,
uint64_t Offset, uint32_t Disp) {
std::string Buffer;
raw_string_ostream Str(Buffer);
StringRef Sym;
if (resolveSymbolName(Rels, Offset, Sym)) {
Str << format(" (0x%" PRIX64 ")", Offset);
return Str.str();
}
Str << Sym;
if (Disp > 0) {
Str << format(" +0x%X (0x%" PRIX64 ")", Disp, Offset);
} else {
Str << format(" (0x%" PRIX64 ")", Offset);
}
return Str.str();
}
// Given a vector of relocations for a section and an offset into this section
// the function resolves the symbol used for the relocation at the offset and
// returns the section content and the address inside the content pointed to
// by the symbol.
error_code COFFDumper::getSectionContents(
const std::vector<RelocationRef> &Rels, uint64_t Offset,
ArrayRef<uint8_t> &Contents, uint64_t &Addr) {
SymbolRef Sym;
const coff_section *Section;
if (error_code EC = resolveSymbol(Rels, Offset, Sym))
return EC;
if (error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr))
return EC;
if (error_code EC = Obj->getSectionContents(Section, Contents))
return EC;
return object_error::success;
}
error_code COFFDumper::getSection(
const std::vector<RelocationRef> &Rels, uint64_t Offset,
const coff_section **SectionPtr, uint64_t *AddrPtr) {
SymbolRef Sym;
if (error_code EC = resolveSymbol(Rels, Offset, Sym))
return EC;
const coff_section *Section;
uint64_t Addr;
if (error_code EC = resolveSectionAndAddress(Obj, Sym, Section, Addr))
return EC;
if (SectionPtr)
*SectionPtr = Section;
if (AddrPtr)
*AddrPtr = Addr;
return object_error::success;
}
void COFFDumper::cacheRelocations() {
for (const SectionRef &S : Obj->sections()) {
const coff_section *Section = Obj->getCOFFSection(S);
for (const RelocationRef &Reloc : S.relocations())
RelocMap[Section].push_back(Reloc);
// Sort relocations by address.
std::sort(RelocMap[Section].begin(), RelocMap[Section].end(),
relocAddressLess);
}
}
void COFFDumper::printDataDirectory(uint32_t Index, const std::string &FieldName) {
const data_directory *Data;
if (Obj->getDataDirectory(Index, Data))
return;
W.printHex(FieldName + "RVA", Data->RelativeVirtualAddress);
W.printHex(FieldName + "Size", Data->Size);
}
void COFFDumper::printFileHeaders() {
// Print COFF header
const coff_file_header *COFFHeader = nullptr;
if (error(Obj->getCOFFHeader(COFFHeader)))
return;
time_t TDS = COFFHeader->TimeDateStamp;
char FormattedTime[20] = { };
strftime(FormattedTime, 20, "%Y-%m-%d %H:%M:%S", gmtime(&TDS));
{
DictScope D(W, "ImageFileHeader");
W.printEnum ("Machine", COFFHeader->Machine,
makeArrayRef(ImageFileMachineType));
W.printNumber("SectionCount", COFFHeader->NumberOfSections);
W.printHex ("TimeDateStamp", FormattedTime, COFFHeader->TimeDateStamp);
W.printHex ("PointerToSymbolTable", COFFHeader->PointerToSymbolTable);
W.printNumber("SymbolCount", COFFHeader->NumberOfSymbols);
W.printNumber("OptionalHeaderSize", COFFHeader->SizeOfOptionalHeader);
W.printFlags ("Characteristics", COFFHeader->Characteristics,
makeArrayRef(ImageFileCharacteristics));
}
// Print PE header. This header does not exist if this is an object file and
// not an executable.
const pe32_header *PEHeader = nullptr;
if (error(Obj->getPE32Header(PEHeader)))
return;
if (PEHeader)
printPEHeader<pe32_header>(PEHeader);
const pe32plus_header *PEPlusHeader = nullptr;
if (error(Obj->getPE32PlusHeader(PEPlusHeader)))
return;
if (PEPlusHeader)
printPEHeader<pe32plus_header>(PEPlusHeader);
}
template <class PEHeader>
void COFFDumper::printPEHeader(const PEHeader *Hdr) {
DictScope D(W, "ImageOptionalHeader");
W.printNumber("MajorLinkerVersion", Hdr->MajorLinkerVersion);
W.printNumber("MinorLinkerVersion", Hdr->MinorLinkerVersion);
W.printNumber("SizeOfCode", Hdr->SizeOfCode);
W.printNumber("SizeOfInitializedData", Hdr->SizeOfInitializedData);
W.printNumber("SizeOfUninitializedData", Hdr->SizeOfUninitializedData);
W.printHex ("AddressOfEntryPoint", Hdr->AddressOfEntryPoint);
W.printHex ("BaseOfCode", Hdr->BaseOfCode);
printBaseOfDataField(Hdr);
W.printHex ("ImageBase", Hdr->ImageBase);
W.printNumber("SectionAlignment", Hdr->SectionAlignment);
W.printNumber("FileAlignment", Hdr->FileAlignment);
W.printNumber("MajorOperatingSystemVersion",
Hdr->MajorOperatingSystemVersion);
W.printNumber("MinorOperatingSystemVersion",
Hdr->MinorOperatingSystemVersion);
W.printNumber("MajorImageVersion", Hdr->MajorImageVersion);
W.printNumber("MinorImageVersion", Hdr->MinorImageVersion);
W.printNumber("MajorSubsystemVersion", Hdr->MajorSubsystemVersion);
W.printNumber("MinorSubsystemVersion", Hdr->MinorSubsystemVersion);
W.printNumber("SizeOfImage", Hdr->SizeOfImage);
W.printNumber("SizeOfHeaders", Hdr->SizeOfHeaders);
W.printEnum ("Subsystem", Hdr->Subsystem, makeArrayRef(PEWindowsSubsystem));
W.printFlags ("Subsystem", Hdr->DLLCharacteristics,
makeArrayRef(PEDLLCharacteristics));
W.printNumber("SizeOfStackReserve", Hdr->SizeOfStackReserve);
W.printNumber("SizeOfStackCommit", Hdr->SizeOfStackCommit);
W.printNumber("SizeOfHeapReserve", Hdr->SizeOfHeapReserve);
W.printNumber("SizeOfHeapCommit", Hdr->SizeOfHeapCommit);
W.printNumber("NumberOfRvaAndSize", Hdr->NumberOfRvaAndSize);
if (Hdr->NumberOfRvaAndSize > 0) {
DictScope D(W, "DataDirectory");
static const char * const directory[] = {
"ExportTable", "ImportTable", "ResourceTable", "ExceptionTable",
"CertificateTable", "BaseRelocationTable", "Debug", "Architecture",
"GlobalPtr", "TLSTable", "LoadConfigTable", "BoundImport", "IAT",
"DelayImportDescriptor", "CLRRuntimeHeader", "Reserved"
};
for (uint32_t i = 0; i < Hdr->NumberOfRvaAndSize; ++i) {
printDataDirectory(i, directory[i]);
}
}
}
void COFFDumper::printBaseOfDataField(const pe32_header *Hdr) {
W.printHex("BaseOfData", Hdr->BaseOfData);
}
void COFFDumper::printBaseOfDataField(const pe32plus_header *) {}
void COFFDumper::printCodeViewLineTables(const SectionRef &Section) {
StringRef Data;
if (error(Section.getContents(Data)))
return;
SmallVector<StringRef, 10> FunctionNames;
StringMap<StringRef> FunctionLineTables;
StringRef FileIndexToStringOffsetTable;
StringRef StringTable;
ListScope D(W, "CodeViewLineTables");
{
DataExtractor DE(Data, true, 4);
uint32_t Offset = 0,
Magic = DE.getU32(&Offset);
W.printHex("Magic", Magic);
if (Magic != COFF::DEBUG_SECTION_MAGIC) {
error(object_error::parse_failed);
return;
}
bool Finished = false;
while (DE.isValidOffset(Offset) && !Finished) {
// The section consists of a number of subsection in the following format:
// |Type|PayloadSize|Payload...|
uint32_t SubSectionType = DE.getU32(&Offset),
PayloadSize = DE.getU32(&Offset);
ListScope S(W, "Subsection");
W.printHex("Type", SubSectionType);
W.printHex("PayloadSize", PayloadSize);
if (PayloadSize > Data.size() - Offset) {
error(object_error::parse_failed);
return;
}
// Print the raw contents to simplify debugging if anything goes wrong
// afterwards.
StringRef Contents = Data.substr(Offset, PayloadSize);
W.printBinaryBlock("Contents", Contents);
switch (SubSectionType) {
case COFF::DEBUG_LINE_TABLE_SUBSECTION: {
// Holds a PC to file:line table. Some data to parse this subsection is
// stored in the other subsections, so just check sanity and store the
// pointers for deferred processing.
if (PayloadSize < 12) {
// There should be at least three words to store two function
// relocations and size of the code.
error(object_error::parse_failed);
return;
}
StringRef FunctionName;
if (error(resolveSymbolName(RelocMap[Obj->getCOFFSection(Section)],
Offset, FunctionName)))
return;
W.printString("FunctionName", FunctionName);
if (FunctionLineTables.count(FunctionName) != 0) {
// Saw debug info for this function already?
error(object_error::parse_failed);
return;
}
FunctionLineTables[FunctionName] = Contents;
FunctionNames.push_back(FunctionName);
break;
}
case COFF::DEBUG_STRING_TABLE_SUBSECTION:
if (PayloadSize == 0 || StringTable.data() != nullptr ||
Contents.back() != '\0') {
// Empty or duplicate or non-null-terminated subsection.
error(object_error::parse_failed);
return;
}
StringTable = Contents;
break;
case COFF::DEBUG_INDEX_SUBSECTION:
// Holds the translation table from file indices
// to offsets in the string table.
if (PayloadSize == 0 ||
FileIndexToStringOffsetTable.data() != nullptr) {
// Empty or duplicate subsection.
error(object_error::parse_failed);
return;
}
FileIndexToStringOffsetTable = Contents;
break;
}
Offset += PayloadSize;
// Align the reading pointer by 4.
Offset += (-Offset) % 4;
}
}
// Dump the line tables now that we've read all the subsections and know all
// the required information.
for (unsigned I = 0, E = FunctionNames.size(); I != E; ++I) {
StringRef Name = FunctionNames[I];
ListScope S(W, "FunctionLineTable");
W.printString("FunctionName", Name);
DataExtractor DE(FunctionLineTables[Name], true, 4);
uint32_t Offset = 8; // Skip relocations.
uint32_t FunctionSize = DE.getU32(&Offset);
W.printHex("CodeSize", FunctionSize);
while (DE.isValidOffset(Offset)) {
// For each range of lines with the same filename, we have a segment
// in the line table. The filename string is accessed using double
// indirection to the string table subsection using the index subsection.
uint32_t OffsetInIndex = DE.getU32(&Offset),
SegmentLength = DE.getU32(&Offset),
FullSegmentSize = DE.getU32(&Offset);
if (FullSegmentSize != 12 + 8 * SegmentLength) {
error(object_error::parse_failed);
return;
}
uint32_t FilenameOffset;
{
DataExtractor SDE(FileIndexToStringOffsetTable, true, 4);
uint32_t OffsetInSDE = OffsetInIndex;
if (!SDE.isValidOffset(OffsetInSDE)) {
error(object_error::parse_failed);
return;
}
FilenameOffset = SDE.getU32(&OffsetInSDE);
}
if (FilenameOffset == 0 || FilenameOffset + 1 >= StringTable.size() ||
StringTable.data()[FilenameOffset - 1] != '\0') {
// Each string in an F3 subsection should be preceded by a null
// character.
error(object_error::parse_failed);
return;
}
StringRef Filename(StringTable.data() + FilenameOffset);
ListScope S(W, "FilenameSegment");
W.printString("Filename", Filename);
for (unsigned J = 0; J != SegmentLength && DE.isValidOffset(Offset);
++J) {
// Then go the (PC, LineNumber) pairs. The line number is stored in the
// least significant 31 bits of the respective word in the table.
uint32_t PC = DE.getU32(&Offset),
LineNumber = DE.getU32(&Offset) & 0x7fffffff;
if (PC >= FunctionSize) {
error(object_error::parse_failed);
return;
}
char Buffer[32];
format("+0x%X", PC).snprint(Buffer, 32);
W.printNumber(Buffer, LineNumber);
}
}
}
}
void COFFDumper::printSections() {
ListScope SectionsD(W, "Sections");
int SectionNumber = 0;
for (const SectionRef &Sec : Obj->sections()) {
++SectionNumber;
const coff_section *Section = Obj->getCOFFSection(Sec);
StringRef Name;
if (error(Sec.getName(Name)))
Name = "";
DictScope D(W, "Section");
W.printNumber("Number", SectionNumber);
W.printBinary("Name", Name, Section->Name);
W.printHex ("VirtualSize", Section->VirtualSize);
W.printHex ("VirtualAddress", Section->VirtualAddress);
W.printNumber("RawDataSize", Section->SizeOfRawData);
W.printHex ("PointerToRawData", Section->PointerToRawData);
W.printHex ("PointerToRelocations", Section->PointerToRelocations);
W.printHex ("PointerToLineNumbers", Section->PointerToLinenumbers);
W.printNumber("RelocationCount", Section->NumberOfRelocations);
W.printNumber("LineNumberCount", Section->NumberOfLinenumbers);
W.printFlags ("Characteristics", Section->Characteristics,
makeArrayRef(ImageSectionCharacteristics),
COFF::SectionCharacteristics(0x00F00000));
if (opts::SectionRelocations) {
ListScope D(W, "Relocations");
for (const RelocationRef &Reloc : Sec.relocations())
printRelocation(Sec, Reloc);
}
if (opts::SectionSymbols) {
ListScope D(W, "Symbols");
for (const SymbolRef &Symbol : Obj->symbols()) {
bool Contained = false;
if (Sec.containsSymbol(Symbol, Contained) || !Contained)
continue;
printSymbol(Symbol);
}
}
if (Name == ".debug$S" && opts::CodeViewLineTables)
printCodeViewLineTables(Sec);
if (opts::SectionData) {
StringRef Data;
if (error(Sec.getContents(Data)))
break;
W.printBinaryBlock("SectionData", Data);
}
}
}
void COFFDumper::printRelocations() {
ListScope D(W, "Relocations");
int SectionNumber = 0;
for (const SectionRef &Section : Obj->sections()) {
++SectionNumber;
StringRef Name;
if (error(Section.getName(Name)))
continue;
bool PrintedGroup = false;
for (const RelocationRef &Reloc : Section.relocations()) {
if (!PrintedGroup) {
W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
W.indent();
PrintedGroup = true;
}
printRelocation(Section, Reloc);
}
if (PrintedGroup) {
W.unindent();
W.startLine() << "}\n";
}
}
}
void COFFDumper::printRelocation(const SectionRef &Section,
const RelocationRef &Reloc) {
uint64_t Offset;
uint64_t RelocType;
SmallString<32> RelocName;
StringRef SymbolName;
StringRef Contents;
if (error(Reloc.getOffset(Offset)))
return;
if (error(Reloc.getType(RelocType)))
return;
if (error(Reloc.getTypeName(RelocName)))
return;
symbol_iterator Symbol = Reloc.getSymbol();
if (error(Symbol->getName(SymbolName)))
return;
if (error(Section.getContents(Contents)))
return;
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Offset", Offset);
W.printNumber("Type", RelocName, RelocType);
W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
} else {
raw_ostream& OS = W.startLine();
OS << W.hex(Offset)
<< " " << RelocName
<< " " << (SymbolName.size() > 0 ? SymbolName : "-")
<< "\n";
}
}
void COFFDumper::printSymbols() {
ListScope Group(W, "Symbols");
for (const SymbolRef &Symbol : Obj->symbols())
printSymbol(Symbol);
}
void COFFDumper::printDynamicSymbols() { ListScope Group(W, "DynamicSymbols"); }
void COFFDumper::printSymbol(const SymbolRef &Sym) {
DictScope D(W, "Symbol");
const coff_symbol *Symbol = Obj->getCOFFSymbol(Sym);
const coff_section *Section;
if (error_code EC = Obj->getSection(Symbol->SectionNumber, Section)) {
W.startLine() << "Invalid section number: " << EC.message() << "\n";
W.flush();
return;
}
StringRef SymbolName;
if (Obj->getSymbolName(Symbol, SymbolName))
SymbolName = "";
StringRef SectionName = "";
if (Section)
Obj->getSectionName(Section, SectionName);
W.printString("Name", SymbolName);
W.printNumber("Value", Symbol->Value);
W.printNumber("Section", SectionName, Symbol->SectionNumber);
W.printEnum ("BaseType", Symbol->getBaseType(), makeArrayRef(ImageSymType));
W.printEnum ("ComplexType", Symbol->getComplexType(),
makeArrayRef(ImageSymDType));
W.printEnum ("StorageClass", Symbol->StorageClass,
makeArrayRef(ImageSymClass));
W.printNumber("AuxSymbolCount", Symbol->NumberOfAuxSymbols);
for (unsigned I = 0; I < Symbol->NumberOfAuxSymbols; ++I) {
if (Symbol->isFunctionDefinition()) {
const coff_aux_function_definition *Aux;
if (error(getSymbolAuxData(Obj, Symbol + I, Aux)))
break;
DictScope AS(W, "AuxFunctionDef");
W.printNumber("TagIndex", Aux->TagIndex);
W.printNumber("TotalSize", Aux->TotalSize);
W.printHex("PointerToLineNumber", Aux->PointerToLinenumber);
W.printHex("PointerToNextFunction", Aux->PointerToNextFunction);
W.printBinary("Unused", makeArrayRef(Aux->Unused));
} else if (Symbol->isWeakExternal()) {
const coff_aux_weak_external *Aux;
if (error(getSymbolAuxData(Obj, Symbol + I, Aux)))
break;
const coff_symbol *Linked;
StringRef LinkedName;
error_code EC;
if ((EC = Obj->getSymbol(Aux->TagIndex, Linked)) ||
(EC = Obj->getSymbolName(Linked, LinkedName))) {
LinkedName = "";
error(EC);
}
DictScope AS(W, "AuxWeakExternal");
W.printNumber("Linked", LinkedName, Aux->TagIndex);
W.printEnum ("Search", Aux->Characteristics,
makeArrayRef(WeakExternalCharacteristics));
W.printBinary("Unused", makeArrayRef(Aux->Unused));
} else if (Symbol->isFileRecord()) {
const coff_aux_file *Aux;
if (error(getSymbolAuxData(Obj, Symbol + I, Aux)))
break;
DictScope AS(W, "AuxFileRecord");
StringRef Name(Aux->FileName,
Symbol->NumberOfAuxSymbols * COFF::SymbolSize);
W.printString("FileName", Name.rtrim(StringRef("\0", 1)));
break;
} else if (Symbol->isSectionDefinition()) {
const coff_aux_section_definition *Aux;
if (error(getSymbolAuxData(Obj, Symbol + I, Aux)))
break;
DictScope AS(W, "AuxSectionDef");
W.printNumber("Length", Aux->Length);
W.printNumber("RelocationCount", Aux->NumberOfRelocations);
W.printNumber("LineNumberCount", Aux->NumberOfLinenumbers);
W.printHex("Checksum", Aux->CheckSum);
W.printNumber("Number", Aux->Number);
W.printEnum("Selection", Aux->Selection, makeArrayRef(ImageCOMDATSelect));
W.printBinary("Unused", makeArrayRef(Aux->Unused));
if (Section && Section->Characteristics & COFF::IMAGE_SCN_LNK_COMDAT
&& Aux->Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) {
const coff_section *Assoc;
StringRef AssocName;
error_code EC;
if ((EC = Obj->getSection(Aux->Number, Assoc)) ||
(EC = Obj->getSectionName(Assoc, AssocName))) {
AssocName = "";
error(EC);
}
W.printNumber("AssocSection", AssocName, Aux->Number);
}
} else if (Symbol->isCLRToken()) {
const coff_aux_clr_token *Aux;
if (error(getSymbolAuxData(Obj, Symbol + I, Aux)))
break;
const coff_symbol *ReferredSym;
StringRef ReferredName;
error_code EC;
if ((EC = Obj->getSymbol(Aux->SymbolTableIndex, ReferredSym)) ||
(EC = Obj->getSymbolName(ReferredSym, ReferredName))) {
ReferredName = "";
error(EC);
}
DictScope AS(W, "AuxCLRToken");
W.printNumber("AuxType", Aux->AuxType);
W.printNumber("Reserved", Aux->Reserved);
W.printNumber("SymbolTableIndex", ReferredName, Aux->SymbolTableIndex);
W.printBinary("Unused", makeArrayRef(Aux->Unused));
} else {
W.startLine() << "<unhandled auxiliary record>\n";
}
}
}
void COFFDumper::printUnwindInfo() {
const coff_file_header *Header;
if (error(Obj->getCOFFHeader(Header)))
return;
ListScope D(W, "UnwindInformation");
if (Header->Machine != COFF::IMAGE_FILE_MACHINE_AMD64) {
W.startLine() << "Unsupported image machine type "
"(currently only AMD64 is supported).\n";
return;
}
printX64UnwindInfo();
}
void COFFDumper::printX64UnwindInfo() {
for (const SectionRef &Section : Obj->sections()) {
StringRef Name;
if (error(Section.getName(Name)))
continue;
if (Name != ".pdata" && !Name.startswith(".pdata$"))
continue;
const coff_section *PData = Obj->getCOFFSection(Section);
ArrayRef<uint8_t> Contents;
if (error(Obj->getSectionContents(PData, Contents)) || Contents.empty())
continue;
ArrayRef<RuntimeFunction> RFs(
reinterpret_cast<const RuntimeFunction *>(Contents.data()),
Contents.size() / sizeof(RuntimeFunction));
for (const RuntimeFunction *I = RFs.begin(), *E = RFs.end(); I < E; ++I) {
const uint64_t OffsetInSection = std::distance(RFs.begin(), I)
* sizeof(RuntimeFunction);
printRuntimeFunction(*I, OffsetInSection, RelocMap[PData]);
}
}
}
void COFFDumper::printRuntimeFunction(
const RuntimeFunction& RTF,
uint64_t OffsetInSection,
const std::vector<RelocationRef> &Rels) {
DictScope D(W, "RuntimeFunction");
W.printString("StartAddress",
formatSymbol(Rels, OffsetInSection + 0, RTF.StartAddress));
W.printString("EndAddress",
formatSymbol(Rels, OffsetInSection + 4, RTF.EndAddress));
W.printString("UnwindInfoAddress",
formatSymbol(Rels, OffsetInSection + 8, RTF.UnwindInfoOffset));
const coff_section* XData = nullptr;
uint64_t UnwindInfoOffset = 0;
if (error(getSection(Rels, OffsetInSection + 8, &XData, &UnwindInfoOffset)))
return;
ArrayRef<uint8_t> XContents;
if (error(Obj->getSectionContents(XData, XContents)) || XContents.empty())
return;
UnwindInfoOffset += RTF.UnwindInfoOffset;
if (UnwindInfoOffset > XContents.size())
return;
const Win64EH::UnwindInfo *UI =
reinterpret_cast<const Win64EH::UnwindInfo *>(
XContents.data() + UnwindInfoOffset);
printUnwindInfo(*UI, UnwindInfoOffset, RelocMap[XData]);
}
void COFFDumper::printUnwindInfo(
const Win64EH::UnwindInfo& UI,
uint64_t OffsetInSection,
const std::vector<RelocationRef> &Rels) {
DictScope D(W, "UnwindInfo");
W.printNumber("Version", UI.getVersion());
W.printFlags("Flags", UI.getFlags(), makeArrayRef(UnwindFlags));
W.printNumber("PrologSize", UI.PrologSize);
if (UI.getFrameRegister() != 0) {
W.printEnum("FrameRegister", UI.getFrameRegister(),
makeArrayRef(UnwindOpInfo));
W.printHex("FrameOffset", UI.getFrameOffset());
} else {
W.printString("FrameRegister", StringRef("-"));
W.printString("FrameOffset", StringRef("-"));
}
W.printNumber("UnwindCodeCount", UI.NumCodes);
{
ListScope CodesD(W, "UnwindCodes");
ArrayRef<UnwindCode> UCs(&UI.UnwindCodes[0], UI.NumCodes);
for (const UnwindCode *I = UCs.begin(), *E = UCs.end(); I < E; ++I) {
unsigned UsedSlots = getNumUsedSlots(*I);
if (UsedSlots > UCs.size()) {
errs() << "Corrupt unwind data";
return;
}
printUnwindCode(UI, ArrayRef<UnwindCode>(I, E));
I += UsedSlots - 1;
}
}
uint64_t LSDAOffset = OffsetInSection + getOffsetOfLSDA(UI);
if (UI.getFlags() & (UNW_ExceptionHandler | UNW_TerminateHandler)) {
W.printString("Handler", formatSymbol(Rels, LSDAOffset,
UI.getLanguageSpecificHandlerOffset()));
} else if (UI.getFlags() & UNW_ChainInfo) {
const RuntimeFunction *Chained = UI.getChainedFunctionEntry();
if (Chained) {
DictScope D(W, "Chained");
W.printString("StartAddress", formatSymbol(Rels, LSDAOffset + 0,
Chained->StartAddress));
W.printString("EndAddress", formatSymbol(Rels, LSDAOffset + 4,
Chained->EndAddress));
W.printString("UnwindInfoAddress", formatSymbol(Rels, LSDAOffset + 8,
Chained->UnwindInfoOffset));
}
}
}
// Prints one unwind code. Because an unwind code can occupy up to 3 slots in
// the unwind codes array, this function requires that the correct number of
// slots is provided.
void COFFDumper::printUnwindCode(const Win64EH::UnwindInfo& UI,
ArrayRef<UnwindCode> UCs) {
assert(UCs.size() >= getNumUsedSlots(UCs[0]));
W.startLine() << format("0x%02X: ", unsigned(UCs[0].u.CodeOffset))
<< getUnwindCodeTypeName(UCs[0].getUnwindOp());
uint32_t AllocSize = 0;
switch (UCs[0].getUnwindOp()) {
case UOP_PushNonVol:
outs() << " reg=" << getUnwindRegisterName(UCs[0].getOpInfo());
break;
case UOP_AllocLarge:
if (UCs[0].getOpInfo() == 0) {
AllocSize = UCs[1].FrameOffset * 8;
} else {
AllocSize = getLargeSlotValue(UCs);
}
outs() << " size=" << AllocSize;
break;
case UOP_AllocSmall:
outs() << " size=" << ((UCs[0].getOpInfo() + 1) * 8);
break;
case UOP_SetFPReg:
if (UI.getFrameRegister() == 0) {
outs() << " reg=<invalid>";
} else {
outs() << " reg=" << getUnwindRegisterName(UI.getFrameRegister())
<< format(", offset=0x%X", UI.getFrameOffset() * 16);
}
break;
case UOP_SaveNonVol:
outs() << " reg=" << getUnwindRegisterName(UCs[0].getOpInfo())
<< format(", offset=0x%X", UCs[1].FrameOffset * 8);
break;
case UOP_SaveNonVolBig:
outs() << " reg=" << getUnwindRegisterName(UCs[0].getOpInfo())
<< format(", offset=0x%X", getLargeSlotValue(UCs));
break;
case UOP_SaveXMM128:
outs() << " reg=XMM" << static_cast<uint32_t>(UCs[0].getOpInfo())
<< format(", offset=0x%X", UCs[1].FrameOffset * 16);
break;
case UOP_SaveXMM128Big:
outs() << " reg=XMM" << static_cast<uint32_t>(UCs[0].getOpInfo())
<< format(", offset=0x%X", getLargeSlotValue(UCs));
break;
case UOP_PushMachFrame:
outs() << " errcode=" << (UCs[0].getOpInfo() == 0 ? "no" : "yes");
break;
}
outs() << "\n";
}