1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00
Quentin Colombet 970400db38 Reapply r263460: [SpillPlacement] Fix a quadratic behavior in spill placement.
Using Chandler's words from r265331:
This commit was greatly exacerbating PR17409 and effectively regressed
build time for lot of (very large) code when compiled with ASan or MSan.

PR17409 is fixed by r269249, so this is fine to reapply r263460.

Original commit message:
The bad behavior happens when we have a function with a long linear
chain of basic blocks, and have a live range spanning most of this
chain, but with very few uses.

Let say we have only 2 uses.

The Hopfield network is only seeded with two active blocks where the
uses are, and each iteration of the outer loop in
`RAGreedy::growRegion()` only adds two new nodes to the network due to
the completely linear shape of the CFG.  Meanwhile,
`SpillPlacer->iterate()` visits the whole set of discovered nodes, which
adds up to a quadratic algorithm.

This is an historical accident effect from r129188.

When the Hopfield network is expanding, most of the action is happening
on the frontier where new nodes are being added. The internal nodes in
the network are not likely to be flip-flopping much, or they will at
least settle down very quickly. This means that while
`SpillPlacer->iterate()` is recomputing all the nodes in the network, it
is probably only the two frontier nodes that are changing their output.

Instead of recomputing the whole network on each iteration, we can
maintain a SparseSet of nodes that need to be updated:

- `SpillPlacement::activate()` adds the node to the todo list.
- When a node changes value (i.e., `update()` returns true), its
  neighbors are added to the todo list.
- `SpillPlacement::iterate()` only updates the nodes in the list.

The result of Hopfield iterations is not necessarily exact. It should
converge to a local minimum, but there is no guarantee that it will find
a global minimum. It is possible that updating nodes in a different
order will cause us to switch to a different local minimum. In other
words, this is not NFC, but although I saw a few runtime improvements
and regressions when I benchmarked this change, those were side effects
and actually the performance change is in the noise as expected.

Huge thanks to Jakob Stoklund Olesen <stoklund@2pi.dk> for his
feedbacks, guidance and time for the review.

llvm-svn: 270149
2016-05-19 22:40:37 +00:00
2016-01-26 21:29:08 +00:00
2014-04-07 03:57:04 +00:00
2014-03-02 13:08:46 +00:00
2016-05-05 19:57:03 +00:00
2016-05-10 16:23:54 +00:00
2016-01-26 21:29:08 +00:00
2016-05-10 16:23:54 +00:00
2016-03-30 22:41:06 +00:00
2016-01-04 19:13:29 +00:00

Low Level Virtual Machine (LLVM)
================================

This directory and its subdirectories contain source code for LLVM,
a toolkit for the construction of highly optimized compilers,
optimizers, and runtime environments.

LLVM is open source software. You may freely distribute it under the terms of
the license agreement found in LICENSE.txt.

Please see the documentation provided in docs/ for further
assistance with LLVM, and in particular docs/GettingStarted.rst for getting
started with LLVM and docs/README.txt for an overview of LLVM's
documentation setup.

If you are writing a package for LLVM, see docs/Packaging.rst for our
suggestions.
Description
Languages
C++ 96.9%
C 1%
Python 1%
CMake 0.6%
OCaml 0.2%
Other 0.1%