1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/unittests/Analysis/LazyCallGraphTest.cpp
Chandler Carruth 90f7376682 [PM] Teach the CGSCC's CG update utility to more carefully invalidate
analyses when we're about to break apart an SCC.

We can't wait until after breaking apart the SCC to invalidate things:
1) Which SCC do we then invalidate? All of them?
2) Even if we invalidate all of them, a newly created SCC may not have
   a proxy that will convey the invalidation to functions!

Previously we only invalidated one of the SCCs and too late. This led to
stale analyses remaining in the cache. And because the caching strategy
actually works, they would get used and chaos would ensue.

Doing invalidation early is somewhat pessimizing though if we *know*
that the SCC structure won't change. So it turns out that the design to
make the mutation API force the caller to know the *kind* of mutation in
advance was indeed 100% correct and we didn't do enough of it. So this
change also splits two cases of switching a call edge to a ref edge into
two separate APIs so that callers can clearly test for this and take the
easy path without invalidating when appropriate. This is particularly
important in this case as we expect most inlines to be between functions
in separate SCCs and so the common case is that we don't have to so
aggressively invalidate analyses.

The LCG API change in turn needed some basic cleanups and better testing
in its unittest. No interesting functionality changed there other than
more coverage of the returned sequence of SCCs.

While this seems like an obvious improvement over the current state, I'd
like to revisit the core concept of invalidating within the CG-update
layer at all. I'm wondering if we would be better served forcing the
callers to handle the invalidation beforehand in the cases that they
can handle it. An interesting example is when we want to teach the
inliner to *update and preserve* analyses. But we can cross that bridge
when we get there.

With this patch, the new pass manager an build all of the LLVM test
suite at -O3 and everything passes. =D I haven't bootstrapped yet and
I'm sure there are still plenty of bugs, but this gives a nice baseline
so I'm going to increasingly focus on fleshing out the missing
functionality, especially the bits that are just turned off right now in
order to let us establish this baseline.

llvm-svn: 290664
2016-12-28 10:34:50 +00:00

2138 lines
79 KiB
C++

//===- LazyCallGraphTest.cpp - Unit tests for the lazy CG analysis --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
#include <memory>
using namespace llvm;
namespace {
std::unique_ptr<Module> parseAssembly(LLVMContext &Context,
const char *Assembly) {
SMDiagnostic Error;
std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
std::string ErrMsg;
raw_string_ostream OS(ErrMsg);
Error.print("", OS);
// A failure here means that the test itself is buggy.
if (!M)
report_fatal_error(OS.str().c_str());
return M;
}
/*
IR forming a call graph with a diamond of triangle-shaped SCCs:
d1
/ \
d3--d2
/ \
b1 c1
/ \ / \
b3--b2 c3--c2
\ /
a1
/ \
a3--a2
All call edges go up between SCCs, and clockwise around the SCC.
*/
static const char DiamondOfTriangles[] =
"define void @a1() {\n"
"entry:\n"
" call void @a2()\n"
" call void @b2()\n"
" call void @c3()\n"
" ret void\n"
"}\n"
"define void @a2() {\n"
"entry:\n"
" call void @a3()\n"
" ret void\n"
"}\n"
"define void @a3() {\n"
"entry:\n"
" call void @a1()\n"
" ret void\n"
"}\n"
"define void @b1() {\n"
"entry:\n"
" call void @b2()\n"
" call void @d3()\n"
" ret void\n"
"}\n"
"define void @b2() {\n"
"entry:\n"
" call void @b3()\n"
" ret void\n"
"}\n"
"define void @b3() {\n"
"entry:\n"
" call void @b1()\n"
" ret void\n"
"}\n"
"define void @c1() {\n"
"entry:\n"
" call void @c2()\n"
" call void @d2()\n"
" ret void\n"
"}\n"
"define void @c2() {\n"
"entry:\n"
" call void @c3()\n"
" ret void\n"
"}\n"
"define void @c3() {\n"
"entry:\n"
" call void @c1()\n"
" ret void\n"
"}\n"
"define void @d1() {\n"
"entry:\n"
" call void @d2()\n"
" ret void\n"
"}\n"
"define void @d2() {\n"
"entry:\n"
" call void @d3()\n"
" ret void\n"
"}\n"
"define void @d3() {\n"
"entry:\n"
" call void @d1()\n"
" ret void\n"
"}\n";
/*
IR forming a reference graph with a diamond of triangle-shaped RefSCCs
d1
/ \
d3--d2
/ \
b1 c1
/ \ / \
b3--b2 c3--c2
\ /
a1
/ \
a3--a2
All call edges go up between RefSCCs, and clockwise around the RefSCC.
*/
static const char DiamondOfTrianglesRefGraph[] =
"define void @a1() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @a2, void ()** %a\n"
" store void ()* @b2, void ()** %a\n"
" store void ()* @c3, void ()** %a\n"
" ret void\n"
"}\n"
"define void @a2() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @a3, void ()** %a\n"
" ret void\n"
"}\n"
"define void @a3() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @a1, void ()** %a\n"
" ret void\n"
"}\n"
"define void @b1() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @b2, void ()** %a\n"
" store void ()* @d3, void ()** %a\n"
" ret void\n"
"}\n"
"define void @b2() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @b3, void ()** %a\n"
" ret void\n"
"}\n"
"define void @b3() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @b1, void ()** %a\n"
" ret void\n"
"}\n"
"define void @c1() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @c2, void ()** %a\n"
" store void ()* @d2, void ()** %a\n"
" ret void\n"
"}\n"
"define void @c2() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @c3, void ()** %a\n"
" ret void\n"
"}\n"
"define void @c3() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @c1, void ()** %a\n"
" ret void\n"
"}\n"
"define void @d1() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @d2, void ()** %a\n"
" ret void\n"
"}\n"
"define void @d2() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @d3, void ()** %a\n"
" ret void\n"
"}\n"
"define void @d3() {\n"
"entry:\n"
" %a = alloca void ()*\n"
" store void ()* @d1, void ()** %a\n"
" ret void\n"
"}\n";
TEST(LazyCallGraphTest, BasicGraphFormation) {
LLVMContext Context;
std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
LazyCallGraph CG(*M);
// The order of the entry nodes should be stable w.r.t. the source order of
// the IR, and everything in our module is an entry node, so just directly
// build variables for each node.
auto I = CG.begin();
LazyCallGraph::Node &A1 = (I++)->getNode(CG);
EXPECT_EQ("a1", A1.getFunction().getName());
LazyCallGraph::Node &A2 = (I++)->getNode(CG);
EXPECT_EQ("a2", A2.getFunction().getName());
LazyCallGraph::Node &A3 = (I++)->getNode(CG);
EXPECT_EQ("a3", A3.getFunction().getName());
LazyCallGraph::Node &B1 = (I++)->getNode(CG);
EXPECT_EQ("b1", B1.getFunction().getName());
LazyCallGraph::Node &B2 = (I++)->getNode(CG);
EXPECT_EQ("b2", B2.getFunction().getName());
LazyCallGraph::Node &B3 = (I++)->getNode(CG);
EXPECT_EQ("b3", B3.getFunction().getName());
LazyCallGraph::Node &C1 = (I++)->getNode(CG);
EXPECT_EQ("c1", C1.getFunction().getName());
LazyCallGraph::Node &C2 = (I++)->getNode(CG);
EXPECT_EQ("c2", C2.getFunction().getName());
LazyCallGraph::Node &C3 = (I++)->getNode(CG);
EXPECT_EQ("c3", C3.getFunction().getName());
LazyCallGraph::Node &D1 = (I++)->getNode(CG);
EXPECT_EQ("d1", D1.getFunction().getName());
LazyCallGraph::Node &D2 = (I++)->getNode(CG);
EXPECT_EQ("d2", D2.getFunction().getName());
LazyCallGraph::Node &D3 = (I++)->getNode(CG);
EXPECT_EQ("d3", D3.getFunction().getName());
EXPECT_EQ(CG.end(), I);
// Build vectors and sort them for the rest of the assertions to make them
// independent of order.
std::vector<std::string> Nodes;
for (LazyCallGraph::Edge &E : A1)
Nodes.push_back(E.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ("a2", Nodes[0]);
EXPECT_EQ("b2", Nodes[1]);
EXPECT_EQ("c3", Nodes[2]);
Nodes.clear();
EXPECT_EQ(A2.end(), std::next(A2.begin()));
EXPECT_EQ("a3", A2.begin()->getFunction().getName());
EXPECT_EQ(A3.end(), std::next(A3.begin()));
EXPECT_EQ("a1", A3.begin()->getFunction().getName());
for (LazyCallGraph::Edge &E : B1)
Nodes.push_back(E.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ("b2", Nodes[0]);
EXPECT_EQ("d3", Nodes[1]);
Nodes.clear();
EXPECT_EQ(B2.end(), std::next(B2.begin()));
EXPECT_EQ("b3", B2.begin()->getFunction().getName());
EXPECT_EQ(B3.end(), std::next(B3.begin()));
EXPECT_EQ("b1", B3.begin()->getFunction().getName());
for (LazyCallGraph::Edge &E : C1)
Nodes.push_back(E.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ("c2", Nodes[0]);
EXPECT_EQ("d2", Nodes[1]);
Nodes.clear();
EXPECT_EQ(C2.end(), std::next(C2.begin()));
EXPECT_EQ("c3", C2.begin()->getFunction().getName());
EXPECT_EQ(C3.end(), std::next(C3.begin()));
EXPECT_EQ("c1", C3.begin()->getFunction().getName());
EXPECT_EQ(D1.end(), std::next(D1.begin()));
EXPECT_EQ("d2", D1.begin()->getFunction().getName());
EXPECT_EQ(D2.end(), std::next(D2.begin()));
EXPECT_EQ("d3", D2.begin()->getFunction().getName());
EXPECT_EQ(D3.end(), std::next(D3.begin()));
EXPECT_EQ("d1", D3.begin()->getFunction().getName());
// Now lets look at the RefSCCs and SCCs.
auto J = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &D = *J++;
ASSERT_EQ(1, D.size());
for (LazyCallGraph::Node &N : *D.begin())
Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("d1", Nodes[0]);
EXPECT_EQ("d2", Nodes[1]);
EXPECT_EQ("d3", Nodes[2]);
Nodes.clear();
EXPECT_FALSE(D.isParentOf(D));
EXPECT_FALSE(D.isChildOf(D));
EXPECT_FALSE(D.isAncestorOf(D));
EXPECT_FALSE(D.isDescendantOf(D));
EXPECT_EQ(&D, &*CG.postorder_ref_scc_begin());
LazyCallGraph::RefSCC &C = *J++;
ASSERT_EQ(1, C.size());
for (LazyCallGraph::Node &N : *C.begin())
Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("c1", Nodes[0]);
EXPECT_EQ("c2", Nodes[1]);
EXPECT_EQ("c3", Nodes[2]);
Nodes.clear();
EXPECT_TRUE(C.isParentOf(D));
EXPECT_FALSE(C.isChildOf(D));
EXPECT_TRUE(C.isAncestorOf(D));
EXPECT_FALSE(C.isDescendantOf(D));
EXPECT_EQ(&C, &*std::next(CG.postorder_ref_scc_begin()));
LazyCallGraph::RefSCC &B = *J++;
ASSERT_EQ(1, B.size());
for (LazyCallGraph::Node &N : *B.begin())
Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("b1", Nodes[0]);
EXPECT_EQ("b2", Nodes[1]);
EXPECT_EQ("b3", Nodes[2]);
Nodes.clear();
EXPECT_TRUE(B.isParentOf(D));
EXPECT_FALSE(B.isChildOf(D));
EXPECT_TRUE(B.isAncestorOf(D));
EXPECT_FALSE(B.isDescendantOf(D));
EXPECT_FALSE(B.isAncestorOf(C));
EXPECT_FALSE(C.isAncestorOf(B));
EXPECT_EQ(&B, &*std::next(CG.postorder_ref_scc_begin(), 2));
LazyCallGraph::RefSCC &A = *J++;
ASSERT_EQ(1, A.size());
for (LazyCallGraph::Node &N : *A.begin())
Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("a1", Nodes[0]);
EXPECT_EQ("a2", Nodes[1]);
EXPECT_EQ("a3", Nodes[2]);
Nodes.clear();
EXPECT_TRUE(A.isParentOf(B));
EXPECT_TRUE(A.isParentOf(C));
EXPECT_FALSE(A.isParentOf(D));
EXPECT_TRUE(A.isAncestorOf(B));
EXPECT_TRUE(A.isAncestorOf(C));
EXPECT_TRUE(A.isAncestorOf(D));
EXPECT_EQ(&A, &*std::next(CG.postorder_ref_scc_begin(), 3));
EXPECT_EQ(CG.postorder_ref_scc_end(), J);
EXPECT_EQ(J, std::next(CG.postorder_ref_scc_begin(), 4));
}
static Function &lookupFunction(Module &M, StringRef Name) {
for (Function &F : M)
if (F.getName() == Name)
return F;
report_fatal_error("Couldn't find function!");
}
TEST(LazyCallGraphTest, BasicGraphMutation) {
LLVMContext Context;
std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" call void @b()\n"
" call void @c()\n"
" ret void\n"
"}\n"
"define void @b() {\n"
"entry:\n"
" ret void\n"
"}\n"
"define void @c() {\n"
"entry:\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
LazyCallGraph::Node &A = CG.get(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = CG.get(lookupFunction(*M, "b"));
EXPECT_EQ(2, std::distance(A.begin(), A.end()));
EXPECT_EQ(0, std::distance(B.begin(), B.end()));
CG.insertEdge(B, lookupFunction(*M, "c"), LazyCallGraph::Edge::Call);
EXPECT_EQ(1, std::distance(B.begin(), B.end()));
LazyCallGraph::Node &C = B.begin()->getNode(CG);
EXPECT_EQ(0, std::distance(C.begin(), C.end()));
CG.insertEdge(C, B.getFunction(), LazyCallGraph::Edge::Call);
EXPECT_EQ(1, std::distance(C.begin(), C.end()));
EXPECT_EQ(&B, C.begin()->getNode());
CG.insertEdge(C, C.getFunction(), LazyCallGraph::Edge::Call);
EXPECT_EQ(2, std::distance(C.begin(), C.end()));
EXPECT_EQ(&B, C.begin()->getNode());
EXPECT_EQ(&C, std::next(C.begin())->getNode());
CG.removeEdge(C, B.getFunction());
EXPECT_EQ(1, std::distance(C.begin(), C.end()));
EXPECT_EQ(&C, C.begin()->getNode());
CG.removeEdge(C, C.getFunction());
EXPECT_EQ(0, std::distance(C.begin(), C.end()));
CG.removeEdge(B, C.getFunction());
EXPECT_EQ(0, std::distance(B.begin(), B.end()));
}
TEST(LazyCallGraphTest, InnerSCCFormation) {
LLVMContext Context;
std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
LazyCallGraph CG(*M);
// Now mutate the graph to connect every node into a single RefSCC to ensure
// that our inner SCC formation handles the rest.
CG.insertEdge(lookupFunction(*M, "d1"), lookupFunction(*M, "a1"),
LazyCallGraph::Edge::Ref);
// Build vectors and sort them for the rest of the assertions to make them
// independent of order.
std::vector<std::string> Nodes;
// We should build a single RefSCC for the entire graph.
auto I = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &RC = *I++;
EXPECT_EQ(CG.postorder_ref_scc_end(), I);
// Now walk the four SCCs which should be in post-order.
auto J = RC.begin();
LazyCallGraph::SCC &D = *J++;
for (LazyCallGraph::Node &N : D)
Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("d1", Nodes[0]);
EXPECT_EQ("d2", Nodes[1]);
EXPECT_EQ("d3", Nodes[2]);
Nodes.clear();
LazyCallGraph::SCC &B = *J++;
for (LazyCallGraph::Node &N : B)
Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("b1", Nodes[0]);
EXPECT_EQ("b2", Nodes[1]);
EXPECT_EQ("b3", Nodes[2]);
Nodes.clear();
LazyCallGraph::SCC &C = *J++;
for (LazyCallGraph::Node &N : C)
Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("c1", Nodes[0]);
EXPECT_EQ("c2", Nodes[1]);
EXPECT_EQ("c3", Nodes[2]);
Nodes.clear();
LazyCallGraph::SCC &A = *J++;
for (LazyCallGraph::Node &N : A)
Nodes.push_back(N.getFunction().getName());
std::sort(Nodes.begin(), Nodes.end());
EXPECT_EQ(3u, Nodes.size());
EXPECT_EQ("a1", Nodes[0]);
EXPECT_EQ("a2", Nodes[1]);
EXPECT_EQ("a3", Nodes[2]);
Nodes.clear();
EXPECT_EQ(RC.end(), J);
}
TEST(LazyCallGraphTest, MultiArmSCC) {
LLVMContext Context;
// Two interlocking cycles. The really useful thing about this SCC is that it
// will require Tarjan's DFS to backtrack and finish processing all of the
// children of each node in the SCC. Since this involves call edges, both
// Tarjan implementations will have to successfully navigate the structure.
std::unique_ptr<Module> M = parseAssembly(Context, "define void @f1() {\n"
"entry:\n"
" call void @f2()\n"
" call void @f4()\n"
" ret void\n"
"}\n"
"define void @f2() {\n"
"entry:\n"
" call void @f3()\n"
" ret void\n"
"}\n"
"define void @f3() {\n"
"entry:\n"
" call void @f1()\n"
" ret void\n"
"}\n"
"define void @f4() {\n"
"entry:\n"
" call void @f5()\n"
" ret void\n"
"}\n"
"define void @f5() {\n"
"entry:\n"
" call void @f1()\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
auto I = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &RC = *I++;
EXPECT_EQ(CG.postorder_ref_scc_end(), I);
LazyCallGraph::Node &N1 = *CG.lookup(lookupFunction(*M, "f1"));
LazyCallGraph::Node &N2 = *CG.lookup(lookupFunction(*M, "f2"));
LazyCallGraph::Node &N3 = *CG.lookup(lookupFunction(*M, "f3"));
LazyCallGraph::Node &N4 = *CG.lookup(lookupFunction(*M, "f4"));
LazyCallGraph::Node &N5 = *CG.lookup(lookupFunction(*M, "f4"));
EXPECT_EQ(&RC, CG.lookupRefSCC(N1));
EXPECT_EQ(&RC, CG.lookupRefSCC(N2));
EXPECT_EQ(&RC, CG.lookupRefSCC(N3));
EXPECT_EQ(&RC, CG.lookupRefSCC(N4));
EXPECT_EQ(&RC, CG.lookupRefSCC(N5));
ASSERT_EQ(1, RC.size());
LazyCallGraph::SCC &C = *RC.begin();
EXPECT_EQ(&C, CG.lookupSCC(N1));
EXPECT_EQ(&C, CG.lookupSCC(N2));
EXPECT_EQ(&C, CG.lookupSCC(N3));
EXPECT_EQ(&C, CG.lookupSCC(N4));
EXPECT_EQ(&C, CG.lookupSCC(N5));
}
TEST(LazyCallGraphTest, OutgoingEdgeMutation) {
LLVMContext Context;
std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" call void @b()\n"
" call void @c()\n"
" ret void\n"
"}\n"
"define void @b() {\n"
"entry:\n"
" call void @d()\n"
" ret void\n"
"}\n"
"define void @c() {\n"
"entry:\n"
" call void @d()\n"
" ret void\n"
"}\n"
"define void @d() {\n"
"entry:\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
dbgs() << "Formed RefSCC: " << RC << "\n";
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A);
LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B);
LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C);
LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D);
EXPECT_TRUE(ARC.isParentOf(BRC));
EXPECT_TRUE(AC.isParentOf(BC));
EXPECT_TRUE(ARC.isParentOf(CRC));
EXPECT_TRUE(AC.isParentOf(CC));
EXPECT_FALSE(ARC.isParentOf(DRC));
EXPECT_FALSE(AC.isParentOf(DC));
EXPECT_TRUE(ARC.isAncestorOf(DRC));
EXPECT_TRUE(AC.isAncestorOf(DC));
EXPECT_FALSE(DRC.isChildOf(ARC));
EXPECT_FALSE(DC.isChildOf(AC));
EXPECT_TRUE(DRC.isDescendantOf(ARC));
EXPECT_TRUE(DC.isDescendantOf(AC));
EXPECT_TRUE(DRC.isChildOf(BRC));
EXPECT_TRUE(DC.isChildOf(BC));
EXPECT_TRUE(DRC.isChildOf(CRC));
EXPECT_TRUE(DC.isChildOf(CC));
EXPECT_EQ(2, std::distance(A.begin(), A.end()));
ARC.insertOutgoingEdge(A, D, LazyCallGraph::Edge::Call);
EXPECT_EQ(3, std::distance(A.begin(), A.end()));
const LazyCallGraph::Edge &NewE = A[D];
EXPECT_TRUE(NewE);
EXPECT_TRUE(NewE.isCall());
EXPECT_EQ(&D, NewE.getNode());
// Only the parent and child tests sholud have changed. The rest of the graph
// remains the same.
EXPECT_TRUE(ARC.isParentOf(DRC));
EXPECT_TRUE(AC.isParentOf(DC));
EXPECT_TRUE(ARC.isAncestorOf(DRC));
EXPECT_TRUE(AC.isAncestorOf(DC));
EXPECT_TRUE(DRC.isChildOf(ARC));
EXPECT_TRUE(DC.isChildOf(AC));
EXPECT_TRUE(DRC.isDescendantOf(ARC));
EXPECT_TRUE(DC.isDescendantOf(AC));
EXPECT_EQ(&AC, CG.lookupSCC(A));
EXPECT_EQ(&BC, CG.lookupSCC(B));
EXPECT_EQ(&CC, CG.lookupSCC(C));
EXPECT_EQ(&DC, CG.lookupSCC(D));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
ARC.switchOutgoingEdgeToRef(A, D);
EXPECT_FALSE(NewE.isCall());
// Verify the reference graph remains the same but the SCC graph is updated.
EXPECT_TRUE(ARC.isParentOf(DRC));
EXPECT_FALSE(AC.isParentOf(DC));
EXPECT_TRUE(ARC.isAncestorOf(DRC));
EXPECT_TRUE(AC.isAncestorOf(DC));
EXPECT_TRUE(DRC.isChildOf(ARC));
EXPECT_FALSE(DC.isChildOf(AC));
EXPECT_TRUE(DRC.isDescendantOf(ARC));
EXPECT_TRUE(DC.isDescendantOf(AC));
EXPECT_EQ(&AC, CG.lookupSCC(A));
EXPECT_EQ(&BC, CG.lookupSCC(B));
EXPECT_EQ(&CC, CG.lookupSCC(C));
EXPECT_EQ(&DC, CG.lookupSCC(D));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
ARC.switchOutgoingEdgeToCall(A, D);
EXPECT_TRUE(NewE.isCall());
// Verify the reference graph remains the same but the SCC graph is updated.
EXPECT_TRUE(ARC.isParentOf(DRC));
EXPECT_TRUE(AC.isParentOf(DC));
EXPECT_TRUE(ARC.isAncestorOf(DRC));
EXPECT_TRUE(AC.isAncestorOf(DC));
EXPECT_TRUE(DRC.isChildOf(ARC));
EXPECT_TRUE(DC.isChildOf(AC));
EXPECT_TRUE(DRC.isDescendantOf(ARC));
EXPECT_TRUE(DC.isDescendantOf(AC));
EXPECT_EQ(&AC, CG.lookupSCC(A));
EXPECT_EQ(&BC, CG.lookupSCC(B));
EXPECT_EQ(&CC, CG.lookupSCC(C));
EXPECT_EQ(&DC, CG.lookupSCC(D));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
ARC.removeOutgoingEdge(A, D);
EXPECT_EQ(2, std::distance(A.begin(), A.end()));
// Now the parent and child tests fail again but the rest remains the same.
EXPECT_FALSE(ARC.isParentOf(DRC));
EXPECT_FALSE(AC.isParentOf(DC));
EXPECT_TRUE(ARC.isAncestorOf(DRC));
EXPECT_TRUE(AC.isAncestorOf(DC));
EXPECT_FALSE(DRC.isChildOf(ARC));
EXPECT_FALSE(DC.isChildOf(AC));
EXPECT_TRUE(DRC.isDescendantOf(ARC));
EXPECT_TRUE(DC.isDescendantOf(AC));
EXPECT_EQ(&AC, CG.lookupSCC(A));
EXPECT_EQ(&BC, CG.lookupSCC(B));
EXPECT_EQ(&CC, CG.lookupSCC(C));
EXPECT_EQ(&DC, CG.lookupSCC(D));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C));
EXPECT_EQ(&DRC, CG.lookupRefSCC(D));
}
TEST(LazyCallGraphTest, IncomingEdgeInsertion) {
LLVMContext Context;
// We want to ensure we can add edges even across complex diamond graphs, so
// we use the diamond of triangles graph defined above. The ascii diagram is
// repeated here for easy reference.
//
// d1 |
// / \ |
// d3--d2 |
// / \ |
// b1 c1 |
// / \ / \ |
// b3--b2 c3--c2 |
// \ / |
// a1 |
// / \ |
// a3--a2 |
//
std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
dbgs() << "Formed RefSCC: " << RC << "\n";
LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3"));
LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1);
LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1);
LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1);
LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1);
ASSERT_EQ(&ARC, CG.lookupRefSCC(A2));
ASSERT_EQ(&ARC, CG.lookupRefSCC(A3));
ASSERT_EQ(&BRC, CG.lookupRefSCC(B2));
ASSERT_EQ(&BRC, CG.lookupRefSCC(B3));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
// Add an edge to make the graph:
//
// d1 |
// / \ |
// d3--d2---. |
// / \ | |
// b1 c1 | |
// / \ / \ / |
// b3--b2 c3--c2 |
// \ / |
// a1 |
// / \ |
// a3--a2 |
auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
// Make sure we connected the nodes.
for (LazyCallGraph::Edge E : D2) {
if (E.getNode() == &D3)
continue;
EXPECT_EQ(&C2, E.getNode());
}
// And marked the D ref-SCC as no longer valid.
EXPECT_EQ(1u, MergedRCs.size());
EXPECT_EQ(&DRC, MergedRCs[0]);
// Make sure we have the correct nodes in the SCC sets.
EXPECT_EQ(&ARC, CG.lookupRefSCC(A1));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A2));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A3));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B1));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B2));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B3));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
// And that ancestry tests have been updated.
EXPECT_TRUE(ARC.isParentOf(CRC));
EXPECT_TRUE(BRC.isParentOf(CRC));
// And verify the post-order walk reflects the updated structure.
auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
ASSERT_NE(I, E);
EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I;
ASSERT_NE(++I, E);
EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I;
ASSERT_NE(++I, E);
EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
EXPECT_EQ(++I, E);
}
TEST(LazyCallGraphTest, IncomingEdgeInsertionMidTraversal) {
LLVMContext Context;
// This is the same fundamental test as the previous, but we perform it
// having only partially walked the RefSCCs of the graph.
std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
LazyCallGraph CG(*M);
// Walk the RefSCCs until we find the one containing 'c1'.
auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
ASSERT_NE(I, E);
LazyCallGraph::RefSCC &DRC = *I;
ASSERT_NE(&DRC, nullptr);
++I;
ASSERT_NE(I, E);
LazyCallGraph::RefSCC &CRC = *I;
ASSERT_NE(&CRC, nullptr);
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a1")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a2")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a3")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b1")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b2")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b3")));
LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C1));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D1));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
// Make sure we connected the nodes.
for (LazyCallGraph::Edge E : D2) {
if (E.getNode() == &D3)
continue;
EXPECT_EQ(&C2, E.getNode());
}
// And marked the D ref-SCC as no longer valid.
EXPECT_EQ(1u, MergedRCs.size());
EXPECT_EQ(&DRC, MergedRCs[0]);
// Make sure we have the correct nodes in the RefSCCs.
EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
// Verify that the post-order walk reflects the updated but still incomplete
// structure.
auto J = CG.postorder_ref_scc_begin();
EXPECT_NE(J, E);
EXPECT_EQ(&CRC, &*J) << "Actual RefSCC: " << *J;
EXPECT_EQ(I, J);
// Check that we can form the last two RefSCCs now, and even that we can do
// it with alternating iterators.
++J;
EXPECT_NE(J, E);
LazyCallGraph::RefSCC &BRC = *J;
EXPECT_NE(&BRC, nullptr);
EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b1"))));
EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b2"))));
EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b3"))));
EXPECT_TRUE(BRC.isParentOf(CRC));
++I;
EXPECT_EQ(J, I);
EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I;
// Increment I this time to form the new RefSCC, flopping back to the first
// iterator.
++I;
EXPECT_NE(I, E);
LazyCallGraph::RefSCC &ARC = *I;
EXPECT_NE(&ARC, nullptr);
EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a1"))));
EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a2"))));
EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a3"))));
EXPECT_TRUE(ARC.isParentOf(CRC));
++J;
EXPECT_EQ(I, J);
EXPECT_EQ(&ARC, &*J) << "Actual RefSCC: " << *J;
++I;
EXPECT_EQ(E, I);
++J;
EXPECT_EQ(E, J);
}
TEST(LazyCallGraphTest, IncomingEdgeInsertionRefGraph) {
LLVMContext Context;
// Another variation of the above test but with all the edges switched to
// references rather than calls.
std::unique_ptr<Module> M =
parseAssembly(Context, DiamondOfTrianglesRefGraph);
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
dbgs() << "Formed RefSCC: " << RC << "\n";
LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3"));
LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1);
LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1);
LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1);
LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1);
ASSERT_EQ(&ARC, CG.lookupRefSCC(A2));
ASSERT_EQ(&ARC, CG.lookupRefSCC(A3));
ASSERT_EQ(&BRC, CG.lookupRefSCC(B2));
ASSERT_EQ(&BRC, CG.lookupRefSCC(B3));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
// Add an edge to make the graph:
//
// d1 |
// / \ |
// d3--d2---. |
// / \ | |
// b1 c1 | |
// / \ / \ / |
// b3--b2 c3--c2 |
// \ / |
// a1 |
// / \ |
// a3--a2 |
auto MergedRCs = CRC.insertIncomingRefEdge(D2, C2);
// Make sure we connected the nodes.
for (LazyCallGraph::Edge E : D2) {
if (E.getNode() == &D3)
continue;
EXPECT_EQ(&C2, E.getNode());
}
// And marked the D ref-SCC as no longer valid.
EXPECT_EQ(1u, MergedRCs.size());
EXPECT_EQ(&DRC, MergedRCs[0]);
// Make sure we have the correct nodes in the SCC sets.
EXPECT_EQ(&ARC, CG.lookupRefSCC(A1));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A2));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A3));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B1));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B2));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B3));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D1));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D2));
EXPECT_EQ(&CRC, CG.lookupRefSCC(D3));
// And that ancestry tests have been updated.
EXPECT_TRUE(ARC.isParentOf(CRC));
EXPECT_TRUE(BRC.isParentOf(CRC));
// And verify the post-order walk reflects the updated structure.
auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
ASSERT_NE(I, E);
EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I;
ASSERT_NE(++I, E);
EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I;
ASSERT_NE(++I, E);
EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
EXPECT_EQ(++I, E);
}
TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeCallCycle) {
LLVMContext Context;
std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" call void @b()\n"
" ret void\n"
"}\n"
"define void @b() {\n"
"entry:\n"
" call void @c()\n"
" ret void\n"
"}\n"
"define void @c() {\n"
"entry:\n"
" call void @d()\n"
" ret void\n"
"}\n"
"define void @d() {\n"
"entry:\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
dbgs() << "Formed RefSCC: " << RC << "\n";
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A);
LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B);
LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C);
LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D);
// Connect the top to the bottom forming a large RefSCC made up mostly of calls.
auto MergedRCs = ARC.insertIncomingRefEdge(D, A);
// Make sure we connected the nodes.
EXPECT_NE(D.begin(), D.end());
EXPECT_EQ(&A, D.begin()->getNode());
// Check that we have the dead RCs, but ignore the order.
EXPECT_EQ(3u, MergedRCs.size());
EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end());
EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end());
EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end());
// Make sure the nodes point to the right place now.
EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
EXPECT_EQ(&ARC, CG.lookupRefSCC(B));
EXPECT_EQ(&ARC, CG.lookupRefSCC(C));
EXPECT_EQ(&ARC, CG.lookupRefSCC(D));
// Check that the SCCs are in postorder.
EXPECT_EQ(4, ARC.size());
EXPECT_EQ(&DC, &ARC[0]);
EXPECT_EQ(&CC, &ARC[1]);
EXPECT_EQ(&BC, &ARC[2]);
EXPECT_EQ(&AC, &ARC[3]);
// And verify the post-order walk reflects the updated structure.
auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
ASSERT_NE(I, E);
EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
EXPECT_EQ(++I, E);
}
TEST(LazyCallGraphTest, IncomingEdgeInsertionLargeRefCycle) {
LLVMContext Context;
std::unique_ptr<Module> M =
parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" %p = alloca void ()*\n"
" store void ()* @b, void ()** %p\n"
" ret void\n"
"}\n"
"define void @b() {\n"
"entry:\n"
" %p = alloca void ()*\n"
" store void ()* @c, void ()** %p\n"
" ret void\n"
"}\n"
"define void @c() {\n"
"entry:\n"
" %p = alloca void ()*\n"
" store void ()* @d, void ()** %p\n"
" ret void\n"
"}\n"
"define void @d() {\n"
"entry:\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
dbgs() << "Formed RefSCC: " << RC << "\n";
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A);
LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B);
LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C);
LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D);
// Connect the top to the bottom forming a large RefSCC made up just of
// references.
auto MergedRCs = ARC.insertIncomingRefEdge(D, A);
// Make sure we connected the nodes.
EXPECT_NE(D.begin(), D.end());
EXPECT_EQ(&A, D.begin()->getNode());
// Check that we have the dead RCs, but ignore the order.
EXPECT_EQ(3u, MergedRCs.size());
EXPECT_NE(find(MergedRCs, &BRC), MergedRCs.end());
EXPECT_NE(find(MergedRCs, &CRC), MergedRCs.end());
EXPECT_NE(find(MergedRCs, &DRC), MergedRCs.end());
// Make sure the nodes point to the right place now.
EXPECT_EQ(&ARC, CG.lookupRefSCC(A));
EXPECT_EQ(&ARC, CG.lookupRefSCC(B));
EXPECT_EQ(&ARC, CG.lookupRefSCC(C));
EXPECT_EQ(&ARC, CG.lookupRefSCC(D));
// And verify the post-order walk reflects the updated structure.
auto I = CG.postorder_ref_scc_begin(), End = CG.postorder_ref_scc_end();
ASSERT_NE(I, End);
EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
EXPECT_EQ(++I, End);
}
TEST(LazyCallGraphTest, InlineAndDeleteFunction) {
LLVMContext Context;
// We want to ensure we can delete nodes from relatively complex graphs and
// so use the diamond of triangles graph defined above.
//
// The ascii diagram is repeated here for easy reference.
//
// d1 |
// / \ |
// d3--d2 |
// / \ |
// b1 c1 |
// / \ / \ |
// b3--b2 c3--c2 |
// \ / |
// a1 |
// / \ |
// a3--a2 |
//
std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
for (LazyCallGraph::RefSCC &RC : CG.postorder_ref_sccs())
dbgs() << "Formed RefSCC: " << RC << "\n";
LazyCallGraph::Node &A1 = *CG.lookup(lookupFunction(*M, "a1"));
LazyCallGraph::Node &A2 = *CG.lookup(lookupFunction(*M, "a2"));
LazyCallGraph::Node &A3 = *CG.lookup(lookupFunction(*M, "a3"));
LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
LazyCallGraph::RefSCC &ARC = *CG.lookupRefSCC(A1);
LazyCallGraph::RefSCC &BRC = *CG.lookupRefSCC(B1);
LazyCallGraph::RefSCC &CRC = *CG.lookupRefSCC(C1);
LazyCallGraph::RefSCC &DRC = *CG.lookupRefSCC(D1);
ASSERT_EQ(&ARC, CG.lookupRefSCC(A2));
ASSERT_EQ(&ARC, CG.lookupRefSCC(A3));
ASSERT_EQ(&BRC, CG.lookupRefSCC(B2));
ASSERT_EQ(&BRC, CG.lookupRefSCC(B3));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
// Delete d2 from the graph, as if it had been inlined.
//
// d1 |
// / / |
// d3--. |
// / \ |
// b1 c1 |
// / \ / \ |
// b3--b2 c3--c2 |
// \ / |
// a1 |
// / \ |
// a3--a2 |
Function &D2F = D2.getFunction();
CallInst *C1Call = nullptr, *D1Call = nullptr;
for (User *U : D2F.users()) {
CallInst *CI = dyn_cast<CallInst>(U);
ASSERT_TRUE(CI) << "Expected a call: " << *U;
if (CI->getParent()->getParent() == &C1.getFunction()) {
ASSERT_EQ(nullptr, C1Call) << "Found too many C1 calls: " << *CI;
C1Call = CI;
} else if (CI->getParent()->getParent() == &D1.getFunction()) {
ASSERT_EQ(nullptr, D1Call) << "Found too many D1 calls: " << *CI;
D1Call = CI;
} else {
FAIL() << "Found an unexpected call instruction: " << *CI;
}
}
ASSERT_NE(C1Call, nullptr);
ASSERT_NE(D1Call, nullptr);
ASSERT_EQ(&D2F, C1Call->getCalledFunction());
ASSERT_EQ(&D2F, D1Call->getCalledFunction());
C1Call->setCalledFunction(&D3.getFunction());
D1Call->setCalledFunction(&D3.getFunction());
ASSERT_EQ(0u, D2F.getNumUses());
// Insert new edges first.
CRC.insertTrivialCallEdge(C1, D3);
DRC.insertTrivialCallEdge(D1, D3);
// Then remove the old ones.
LazyCallGraph::SCC &DC = *CG.lookupSCC(D2);
auto NewCs = DRC.switchInternalEdgeToRef(D1, D2);
EXPECT_EQ(&DC, CG.lookupSCC(D2));
EXPECT_EQ(NewCs.end(), std::next(NewCs.begin()));
LazyCallGraph::SCC &NewDC = *NewCs.begin();
EXPECT_EQ(&NewDC, CG.lookupSCC(D1));
EXPECT_EQ(&NewDC, CG.lookupSCC(D3));
auto NewRCs = DRC.removeInternalRefEdge(D1, D2);
EXPECT_EQ(&DRC, CG.lookupRefSCC(D2));
EXPECT_EQ(NewRCs.end(), std::next(NewRCs.begin()));
LazyCallGraph::RefSCC &NewDRC = **NewRCs.begin();
EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1));
EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3));
EXPECT_FALSE(NewDRC.isParentOf(DRC));
EXPECT_TRUE(CRC.isParentOf(DRC));
EXPECT_TRUE(CRC.isParentOf(NewDRC));
EXPECT_TRUE(DRC.isParentOf(NewDRC));
CRC.removeOutgoingEdge(C1, D2);
EXPECT_FALSE(CRC.isParentOf(DRC));
EXPECT_TRUE(CRC.isParentOf(NewDRC));
EXPECT_TRUE(DRC.isParentOf(NewDRC));
// Now that we've updated the call graph, D2 is dead, so remove it.
CG.removeDeadFunction(D2F);
// Check that the graph still looks the same.
EXPECT_EQ(&ARC, CG.lookupRefSCC(A1));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A2));
EXPECT_EQ(&ARC, CG.lookupRefSCC(A3));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B1));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B2));
EXPECT_EQ(&BRC, CG.lookupRefSCC(B3));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1));
EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3));
EXPECT_TRUE(CRC.isParentOf(NewDRC));
// Verify the post-order walk hasn't changed.
auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
ASSERT_NE(I, E);
EXPECT_EQ(&NewDRC, &*I) << "Actual RefSCC: " << *I;
ASSERT_NE(++I, E);
EXPECT_EQ(&CRC, &*I) << "Actual RefSCC: " << *I;
ASSERT_NE(++I, E);
EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I;
ASSERT_NE(++I, E);
EXPECT_EQ(&ARC, &*I) << "Actual RefSCC: " << *I;
EXPECT_EQ(++I, E);
}
TEST(LazyCallGraphTest, InlineAndDeleteFunctionMidTraversal) {
LLVMContext Context;
// This is the same fundamental test as the previous, but we perform it
// having only partially walked the RefSCCs of the graph.
//
// The ascii diagram is repeated here for easy reference.
//
// d1 |
// / \ |
// d3--d2 |
// / \ |
// b1 c1 |
// / \ / \ |
// b3--b2 c3--c2 |
// \ / |
// a1 |
// / \ |
// a3--a2 |
//
std::unique_ptr<Module> M = parseAssembly(Context, DiamondOfTriangles);
LazyCallGraph CG(*M);
// Walk the RefSCCs until we find the one containing 'c1'.
auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
ASSERT_NE(I, E);
LazyCallGraph::RefSCC &DRC = *I;
ASSERT_NE(&DRC, nullptr);
++I;
ASSERT_NE(I, E);
LazyCallGraph::RefSCC &CRC = *I;
ASSERT_NE(&CRC, nullptr);
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a1")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a2")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "a3")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b1")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b2")));
ASSERT_EQ(nullptr, CG.lookup(lookupFunction(*M, "b3")));
LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
LazyCallGraph::Node &D1 = *CG.lookup(lookupFunction(*M, "d1"));
LazyCallGraph::Node &D2 = *CG.lookup(lookupFunction(*M, "d2"));
LazyCallGraph::Node &D3 = *CG.lookup(lookupFunction(*M, "d3"));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C1));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C2));
ASSERT_EQ(&CRC, CG.lookupRefSCC(C3));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D1));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D2));
ASSERT_EQ(&DRC, CG.lookupRefSCC(D3));
ASSERT_EQ(1, std::distance(D2.begin(), D2.end()));
// Delete d2 from the graph, as if it had been inlined.
//
// d1 |
// / / |
// d3--. |
// / \ |
// b1 c1 |
// / \ / \ |
// b3--b2 c3--c2 |
// \ / |
// a1 |
// / \ |
// a3--a2 |
Function &D2F = D2.getFunction();
CallInst *C1Call = nullptr, *D1Call = nullptr;
for (User *U : D2F.users()) {
CallInst *CI = dyn_cast<CallInst>(U);
ASSERT_TRUE(CI) << "Expected a call: " << *U;
if (CI->getParent()->getParent() == &C1.getFunction()) {
ASSERT_EQ(nullptr, C1Call) << "Found too many C1 calls: " << *CI;
C1Call = CI;
} else if (CI->getParent()->getParent() == &D1.getFunction()) {
ASSERT_EQ(nullptr, D1Call) << "Found too many D1 calls: " << *CI;
D1Call = CI;
} else {
FAIL() << "Found an unexpected call instruction: " << *CI;
}
}
ASSERT_NE(C1Call, nullptr);
ASSERT_NE(D1Call, nullptr);
ASSERT_EQ(&D2F, C1Call->getCalledFunction());
ASSERT_EQ(&D2F, D1Call->getCalledFunction());
C1Call->setCalledFunction(&D3.getFunction());
D1Call->setCalledFunction(&D3.getFunction());
ASSERT_EQ(0u, D2F.getNumUses());
// Insert new edges first.
CRC.insertTrivialCallEdge(C1, D3);
DRC.insertTrivialCallEdge(D1, D3);
// Then remove the old ones.
LazyCallGraph::SCC &DC = *CG.lookupSCC(D2);
auto NewCs = DRC.switchInternalEdgeToRef(D1, D2);
EXPECT_EQ(&DC, CG.lookupSCC(D2));
EXPECT_EQ(NewCs.end(), std::next(NewCs.begin()));
LazyCallGraph::SCC &NewDC = *NewCs.begin();
EXPECT_EQ(&NewDC, CG.lookupSCC(D1));
EXPECT_EQ(&NewDC, CG.lookupSCC(D3));
auto NewRCs = DRC.removeInternalRefEdge(D1, D2);
EXPECT_EQ(&DRC, CG.lookupRefSCC(D2));
EXPECT_EQ(NewRCs.end(), std::next(NewRCs.begin()));
LazyCallGraph::RefSCC &NewDRC = **NewRCs.begin();
EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1));
EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3));
EXPECT_FALSE(NewDRC.isParentOf(DRC));
EXPECT_TRUE(CRC.isParentOf(DRC));
EXPECT_TRUE(CRC.isParentOf(NewDRC));
EXPECT_TRUE(DRC.isParentOf(NewDRC));
CRC.removeOutgoingEdge(C1, D2);
EXPECT_FALSE(CRC.isParentOf(DRC));
EXPECT_TRUE(CRC.isParentOf(NewDRC));
EXPECT_TRUE(DRC.isParentOf(NewDRC));
// Now that we've updated the call graph, D2 is dead, so remove it.
CG.removeDeadFunction(D2F);
// Check that the graph still looks the same.
EXPECT_EQ(&CRC, CG.lookupRefSCC(C1));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C2));
EXPECT_EQ(&CRC, CG.lookupRefSCC(C3));
EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D1));
EXPECT_EQ(&NewDRC, CG.lookupRefSCC(D3));
EXPECT_TRUE(CRC.isParentOf(NewDRC));
// Verify that the post-order walk reflects the updated but still incomplete
// structure.
auto J = CG.postorder_ref_scc_begin();
EXPECT_NE(J, E);
EXPECT_EQ(&NewDRC, &*J) << "Actual RefSCC: " << *J;
++J;
EXPECT_NE(J, E);
EXPECT_EQ(&CRC, &*J) << "Actual RefSCC: " << *J;
EXPECT_EQ(I, J);
// Check that we can form the last two RefSCCs now, and even that we can do
// it with alternating iterators.
++J;
EXPECT_NE(J, E);
LazyCallGraph::RefSCC &BRC = *J;
EXPECT_NE(&BRC, nullptr);
EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b1"))));
EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b2"))));
EXPECT_EQ(&BRC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "b3"))));
EXPECT_TRUE(BRC.isParentOf(NewDRC));
++I;
EXPECT_EQ(J, I);
EXPECT_EQ(&BRC, &*I) << "Actual RefSCC: " << *I;
// Increment I this time to form the new RefSCC, flopping back to the first
// iterator.
++I;
EXPECT_NE(I, E);
LazyCallGraph::RefSCC &ARC = *I;
EXPECT_NE(&ARC, nullptr);
EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a1"))));
EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a2"))));
EXPECT_EQ(&ARC, CG.lookupRefSCC(*CG.lookup(lookupFunction(*M, "a3"))));
EXPECT_TRUE(ARC.isParentOf(BRC));
EXPECT_TRUE(ARC.isParentOf(CRC));
++J;
EXPECT_EQ(I, J);
EXPECT_EQ(&ARC, &*J) << "Actual RefSCC: " << *J;
++I;
EXPECT_EQ(E, I);
++J;
EXPECT_EQ(E, J);
}
TEST(LazyCallGraphTest, InternalEdgeMutation) {
LLVMContext Context;
std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" call void @b()\n"
" ret void\n"
"}\n"
"define void @b() {\n"
"entry:\n"
" call void @c()\n"
" ret void\n"
"}\n"
"define void @c() {\n"
"entry:\n"
" call void @a()\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
auto I = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &RC = *I++;
EXPECT_EQ(CG.postorder_ref_scc_end(), I);
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
EXPECT_EQ(&RC, CG.lookupRefSCC(A));
EXPECT_EQ(&RC, CG.lookupRefSCC(B));
EXPECT_EQ(&RC, CG.lookupRefSCC(C));
EXPECT_EQ(1, RC.size());
EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A));
EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B));
EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C));
// Insert an edge from 'a' to 'c'. Nothing changes about the graph.
RC.insertInternalRefEdge(A, C);
EXPECT_EQ(2, std::distance(A.begin(), A.end()));
EXPECT_EQ(&RC, CG.lookupRefSCC(A));
EXPECT_EQ(&RC, CG.lookupRefSCC(B));
EXPECT_EQ(&RC, CG.lookupRefSCC(C));
EXPECT_EQ(1, RC.size());
EXPECT_EQ(&*RC.begin(), CG.lookupSCC(A));
EXPECT_EQ(&*RC.begin(), CG.lookupSCC(B));
EXPECT_EQ(&*RC.begin(), CG.lookupSCC(C));
// Switch the call edge from 'b' to 'c' to a ref edge. This will break the
// call cycle and cause us to form more SCCs. The RefSCC will remain the same
// though.
auto NewCs = RC.switchInternalEdgeToRef(B, C);
EXPECT_EQ(&RC, CG.lookupRefSCC(A));
EXPECT_EQ(&RC, CG.lookupRefSCC(B));
EXPECT_EQ(&RC, CG.lookupRefSCC(C));
auto J = RC.begin();
// The SCCs must be in *post-order* which means successors before
// predecessors. At this point we have call edges from C to A and from A to
// B. The only valid postorder is B, A, C.
EXPECT_EQ(&*J++, CG.lookupSCC(B));
EXPECT_EQ(&*J++, CG.lookupSCC(A));
EXPECT_EQ(&*J++, CG.lookupSCC(C));
EXPECT_EQ(RC.end(), J);
// And the returned range must be the slice of this sequence containing new
// SCCs.
EXPECT_EQ(RC.begin(), NewCs.begin());
EXPECT_EQ(std::prev(RC.end()), NewCs.end());
// Test turning the ref edge from A to C into a call edge. This will form an
// SCC out of A and C. Since we previously had a call edge from C to A, the
// C SCC should be preserved and have A merged into it while the A SCC should
// be invalidated.
LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
auto InvalidatedSCCs = RC.switchInternalEdgeToCall(A, C);
ASSERT_EQ(1u, InvalidatedSCCs.size());
EXPECT_EQ(&AC, InvalidatedSCCs[0]);
EXPECT_EQ(2, CC.size());
EXPECT_EQ(&CC, CG.lookupSCC(A));
EXPECT_EQ(&CC, CG.lookupSCC(C));
J = RC.begin();
EXPECT_EQ(&*J++, CG.lookupSCC(B));
EXPECT_EQ(&*J++, CG.lookupSCC(C));
EXPECT_EQ(RC.end(), J);
}
TEST(LazyCallGraphTest, InternalEdgeRemoval) {
LLVMContext Context;
// A nice fully connected (including self-edges) RefSCC.
std::unique_ptr<Module> M = parseAssembly(
Context, "define void @a(i8** %ptr) {\n"
"entry:\n"
" store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
" store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
" store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
" ret void\n"
"}\n"
"define void @b(i8** %ptr) {\n"
"entry:\n"
" store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
" store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
" store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
" ret void\n"
"}\n"
"define void @c(i8** %ptr) {\n"
"entry:\n"
" store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
" store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
" store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
LazyCallGraph::RefSCC &RC = *I;
EXPECT_EQ(E, std::next(I));
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
EXPECT_EQ(&RC, CG.lookupRefSCC(A));
EXPECT_EQ(&RC, CG.lookupRefSCC(B));
EXPECT_EQ(&RC, CG.lookupRefSCC(C));
// Remove the edge from b -> a, which should leave the 3 functions still in
// a single connected component because of a -> b -> c -> a.
SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
RC.removeInternalRefEdge(B, A);
EXPECT_EQ(0u, NewRCs.size());
EXPECT_EQ(&RC, CG.lookupRefSCC(A));
EXPECT_EQ(&RC, CG.lookupRefSCC(B));
EXPECT_EQ(&RC, CG.lookupRefSCC(C));
auto J = CG.postorder_ref_scc_begin();
EXPECT_EQ(I, J);
EXPECT_EQ(&RC, &*J);
EXPECT_EQ(E, std::next(J));
// Remove the edge from c -> a, which should leave 'a' in the original RefSCC
// and form a new RefSCC for 'b' and 'c'.
NewRCs = RC.removeInternalRefEdge(C, A);
EXPECT_EQ(1u, NewRCs.size());
EXPECT_EQ(&RC, CG.lookupRefSCC(A));
EXPECT_EQ(1, std::distance(RC.begin(), RC.end()));
LazyCallGraph::RefSCC &RC2 = *CG.lookupRefSCC(B);
EXPECT_EQ(&RC2, CG.lookupRefSCC(C));
EXPECT_EQ(&RC2, NewRCs[0]);
J = CG.postorder_ref_scc_begin();
EXPECT_NE(I, J);
EXPECT_EQ(&RC2, &*J);
++J;
EXPECT_EQ(I, J);
EXPECT_EQ(&RC, &*J);
++I;
EXPECT_EQ(E, I);
++J;
EXPECT_EQ(E, J);
}
TEST(LazyCallGraphTest, InternalNoOpEdgeRemoval) {
LLVMContext Context;
// A graph with a single cycle formed both from call and reference edges
// which makes the reference edges trivial to delete. The graph looks like:
//
// Reference edges: a -> b -> c -> a
// Call edges: a -> c -> b -> a
std::unique_ptr<Module> M = parseAssembly(
Context, "define void @a(i8** %ptr) {\n"
"entry:\n"
" call void @b(i8** %ptr)\n"
" store i8* bitcast (void(i8**)* @c to i8*), i8** %ptr\n"
" ret void\n"
"}\n"
"define void @b(i8** %ptr) {\n"
"entry:\n"
" store i8* bitcast (void(i8**)* @a to i8*), i8** %ptr\n"
" call void @c(i8** %ptr)\n"
" ret void\n"
"}\n"
"define void @c(i8** %ptr) {\n"
"entry:\n"
" call void @a(i8** %ptr)\n"
" store i8* bitcast (void(i8**)* @b to i8*), i8** %ptr\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
auto I = CG.postorder_ref_scc_begin(), E = CG.postorder_ref_scc_end();
LazyCallGraph::RefSCC &RC = *I;
EXPECT_EQ(E, std::next(I));
LazyCallGraph::SCC &C = *RC.begin();
EXPECT_EQ(RC.end(), std::next(RC.begin()));
LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c"));
EXPECT_EQ(&RC, CG.lookupRefSCC(AN));
EXPECT_EQ(&RC, CG.lookupRefSCC(BN));
EXPECT_EQ(&RC, CG.lookupRefSCC(CN));
EXPECT_EQ(&C, CG.lookupSCC(AN));
EXPECT_EQ(&C, CG.lookupSCC(BN));
EXPECT_EQ(&C, CG.lookupSCC(CN));
// Remove the edge from a -> c which doesn't change anything.
SmallVector<LazyCallGraph::RefSCC *, 1> NewRCs =
RC.removeInternalRefEdge(AN, CN);
EXPECT_EQ(0u, NewRCs.size());
EXPECT_EQ(&RC, CG.lookupRefSCC(AN));
EXPECT_EQ(&RC, CG.lookupRefSCC(BN));
EXPECT_EQ(&RC, CG.lookupRefSCC(CN));
EXPECT_EQ(&C, CG.lookupSCC(AN));
EXPECT_EQ(&C, CG.lookupSCC(BN));
EXPECT_EQ(&C, CG.lookupSCC(CN));
auto J = CG.postorder_ref_scc_begin();
EXPECT_EQ(I, J);
EXPECT_EQ(&RC, &*J);
EXPECT_EQ(E, std::next(J));
// Remove the edge from b -> a and c -> b; again this doesn't change
// anything.
NewRCs = RC.removeInternalRefEdge(BN, AN);
NewRCs = RC.removeInternalRefEdge(CN, BN);
EXPECT_EQ(0u, NewRCs.size());
EXPECT_EQ(&RC, CG.lookupRefSCC(AN));
EXPECT_EQ(&RC, CG.lookupRefSCC(BN));
EXPECT_EQ(&RC, CG.lookupRefSCC(CN));
EXPECT_EQ(&C, CG.lookupSCC(AN));
EXPECT_EQ(&C, CG.lookupSCC(BN));
EXPECT_EQ(&C, CG.lookupSCC(CN));
J = CG.postorder_ref_scc_begin();
EXPECT_EQ(I, J);
EXPECT_EQ(&RC, &*J);
EXPECT_EQ(E, std::next(J));
}
TEST(LazyCallGraphTest, InternalCallEdgeToRef) {
LLVMContext Context;
// A nice fully connected (including self-edges) SCC (and RefSCC)
std::unique_ptr<Module> M = parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" call void @a()\n"
" call void @b()\n"
" call void @c()\n"
" ret void\n"
"}\n"
"define void @b() {\n"
"entry:\n"
" call void @a()\n"
" call void @b()\n"
" call void @c()\n"
" ret void\n"
"}\n"
"define void @c() {\n"
"entry:\n"
" call void @a()\n"
" call void @b()\n"
" call void @c()\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
auto I = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &RC = *I++;
EXPECT_EQ(CG.postorder_ref_scc_end(), I);
EXPECT_EQ(1, RC.size());
LazyCallGraph::SCC &AC = *RC.begin();
LazyCallGraph::Node &AN = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &BN = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &CN = *CG.lookup(lookupFunction(*M, "c"));
EXPECT_EQ(&AC, CG.lookupSCC(AN));
EXPECT_EQ(&AC, CG.lookupSCC(BN));
EXPECT_EQ(&AC, CG.lookupSCC(CN));
// Remove the call edge from b -> a to a ref edge, which should leave the
// 3 functions still in a single connected component because of a -> b ->
// c -> a.
auto NewCs = RC.switchInternalEdgeToRef(BN, AN);
EXPECT_EQ(NewCs.begin(), NewCs.end());
EXPECT_EQ(1, RC.size());
EXPECT_EQ(&AC, CG.lookupSCC(AN));
EXPECT_EQ(&AC, CG.lookupSCC(BN));
EXPECT_EQ(&AC, CG.lookupSCC(CN));
// Remove the edge from c -> a, which should leave 'a' in the original SCC
// and form a new SCC for 'b' and 'c'.
NewCs = RC.switchInternalEdgeToRef(CN, AN);
EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end()));
EXPECT_EQ(2, RC.size());
EXPECT_EQ(&AC, CG.lookupSCC(AN));
LazyCallGraph::SCC &BC = *CG.lookupSCC(BN);
EXPECT_NE(&BC, &AC);
EXPECT_EQ(&BC, CG.lookupSCC(CN));
auto J = RC.find(AC);
EXPECT_EQ(&AC, &*J);
--J;
EXPECT_EQ(&BC, &*J);
EXPECT_EQ(RC.begin(), J);
EXPECT_EQ(J, NewCs.begin());
// Remove the edge from c -> b, which should leave 'b' in the original SCC
// and form a new SCC for 'c'. It shouldn't change 'a's SCC.
NewCs = RC.switchInternalEdgeToRef(CN, BN);
EXPECT_EQ(1, std::distance(NewCs.begin(), NewCs.end()));
EXPECT_EQ(3, RC.size());
EXPECT_EQ(&AC, CG.lookupSCC(AN));
EXPECT_EQ(&BC, CG.lookupSCC(BN));
LazyCallGraph::SCC &CC = *CG.lookupSCC(CN);
EXPECT_NE(&CC, &AC);
EXPECT_NE(&CC, &BC);
J = RC.find(AC);
EXPECT_EQ(&AC, &*J);
--J;
EXPECT_EQ(&BC, &*J);
--J;
EXPECT_EQ(&CC, &*J);
EXPECT_EQ(RC.begin(), J);
EXPECT_EQ(J, NewCs.begin());
}
TEST(LazyCallGraphTest, InternalRefEdgeToCall) {
LLVMContext Context;
// Basic tests for making a ref edge a call. This hits the basics of the
// process only.
std::unique_ptr<Module> M =
parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" call void @b()\n"
" call void @c()\n"
" store void()* @d, void()** undef\n"
" ret void\n"
"}\n"
"define void @b() {\n"
"entry:\n"
" store void()* @c, void()** undef\n"
" call void @d()\n"
" ret void\n"
"}\n"
"define void @c() {\n"
"entry:\n"
" store void()* @b, void()** undef\n"
" call void @d()\n"
" ret void\n"
"}\n"
"define void @d() {\n"
"entry:\n"
" store void()* @a, void()** undef\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
auto I = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &RC = *I++;
EXPECT_EQ(CG.postorder_ref_scc_end(), I);
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
// Check the initial post-order. Note that B and C could be flipped here (and
// in our mutation) without changing the nature of this test.
ASSERT_EQ(4, RC.size());
EXPECT_EQ(&DC, &RC[0]);
EXPECT_EQ(&BC, &RC[1]);
EXPECT_EQ(&CC, &RC[2]);
EXPECT_EQ(&AC, &RC[3]);
// Switch the ref edge from A -> D to a call edge. This should have no
// effect as it is already in postorder and no new cycles are formed.
auto MergedCs = RC.switchInternalEdgeToCall(A, D);
EXPECT_EQ(0u, MergedCs.size());
ASSERT_EQ(4, RC.size());
EXPECT_EQ(&DC, &RC[0]);
EXPECT_EQ(&BC, &RC[1]);
EXPECT_EQ(&CC, &RC[2]);
EXPECT_EQ(&AC, &RC[3]);
// Switch B -> C to a call edge. This doesn't form any new cycles but does
// require reordering the SCCs.
MergedCs = RC.switchInternalEdgeToCall(B, C);
EXPECT_EQ(0u, MergedCs.size());
ASSERT_EQ(4, RC.size());
EXPECT_EQ(&DC, &RC[0]);
EXPECT_EQ(&CC, &RC[1]);
EXPECT_EQ(&BC, &RC[2]);
EXPECT_EQ(&AC, &RC[3]);
// Switch C -> B to a call edge. This forms a cycle and forces merging SCCs.
MergedCs = RC.switchInternalEdgeToCall(C, B);
ASSERT_EQ(1u, MergedCs.size());
EXPECT_EQ(&CC, MergedCs[0]);
ASSERT_EQ(3, RC.size());
EXPECT_EQ(&DC, &RC[0]);
EXPECT_EQ(&BC, &RC[1]);
EXPECT_EQ(&AC, &RC[2]);
EXPECT_EQ(2, BC.size());
EXPECT_EQ(&BC, CG.lookupSCC(B));
EXPECT_EQ(&BC, CG.lookupSCC(C));
}
TEST(LazyCallGraphTest, InternalRefEdgeToCallNoCycleInterleaved) {
LLVMContext Context;
// Test for having a post-order prior to changing a ref edge to a call edge
// with SCCs connecting to the source and connecting to the target, but not
// connecting to both, interleaved between the source and target. This
// ensures we correctly partition the range rather than simply moving one or
// the other.
std::unique_ptr<Module> M =
parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" call void @b1()\n"
" call void @c1()\n"
" ret void\n"
"}\n"
"define void @b1() {\n"
"entry:\n"
" call void @c1()\n"
" call void @b2()\n"
" ret void\n"
"}\n"
"define void @c1() {\n"
"entry:\n"
" call void @b2()\n"
" call void @c2()\n"
" ret void\n"
"}\n"
"define void @b2() {\n"
"entry:\n"
" call void @c2()\n"
" call void @b3()\n"
" ret void\n"
"}\n"
"define void @c2() {\n"
"entry:\n"
" call void @b3()\n"
" call void @c3()\n"
" ret void\n"
"}\n"
"define void @b3() {\n"
"entry:\n"
" call void @c3()\n"
" call void @d()\n"
" ret void\n"
"}\n"
"define void @c3() {\n"
"entry:\n"
" store void()* @b1, void()** undef\n"
" call void @d()\n"
" ret void\n"
"}\n"
"define void @d() {\n"
"entry:\n"
" store void()* @a, void()** undef\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
auto I = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &RC = *I++;
EXPECT_EQ(CG.postorder_ref_scc_end(), I);
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B1 = *CG.lookup(lookupFunction(*M, "b1"));
LazyCallGraph::Node &B2 = *CG.lookup(lookupFunction(*M, "b2"));
LazyCallGraph::Node &B3 = *CG.lookup(lookupFunction(*M, "b3"));
LazyCallGraph::Node &C1 = *CG.lookup(lookupFunction(*M, "c1"));
LazyCallGraph::Node &C2 = *CG.lookup(lookupFunction(*M, "c2"));
LazyCallGraph::Node &C3 = *CG.lookup(lookupFunction(*M, "c3"));
LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
LazyCallGraph::SCC &B1C = *CG.lookupSCC(B1);
LazyCallGraph::SCC &B2C = *CG.lookupSCC(B2);
LazyCallGraph::SCC &B3C = *CG.lookupSCC(B3);
LazyCallGraph::SCC &C1C = *CG.lookupSCC(C1);
LazyCallGraph::SCC &C2C = *CG.lookupSCC(C2);
LazyCallGraph::SCC &C3C = *CG.lookupSCC(C3);
LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
// Several call edges are initially present to force a particual post-order.
// Remove them now, leaving an interleaved post-order pattern.
RC.switchTrivialInternalEdgeToRef(B3, C3);
RC.switchTrivialInternalEdgeToRef(C2, B3);
RC.switchTrivialInternalEdgeToRef(B2, C2);
RC.switchTrivialInternalEdgeToRef(C1, B2);
RC.switchTrivialInternalEdgeToRef(B1, C1);
// Check the initial post-order. We ensure this order with the extra edges
// that are nuked above.
ASSERT_EQ(8, RC.size());
EXPECT_EQ(&DC, &RC[0]);
EXPECT_EQ(&C3C, &RC[1]);
EXPECT_EQ(&B3C, &RC[2]);
EXPECT_EQ(&C2C, &RC[3]);
EXPECT_EQ(&B2C, &RC[4]);
EXPECT_EQ(&C1C, &RC[5]);
EXPECT_EQ(&B1C, &RC[6]);
EXPECT_EQ(&AC, &RC[7]);
// Switch C3 -> B1 to a call edge. This doesn't form any new cycles but does
// require reordering the SCCs in the face of tricky internal node
// structures.
auto MergedCs = RC.switchInternalEdgeToCall(C3, B1);
EXPECT_EQ(0u, MergedCs.size());
ASSERT_EQ(8, RC.size());
EXPECT_EQ(&DC, &RC[0]);
EXPECT_EQ(&B3C, &RC[1]);
EXPECT_EQ(&B2C, &RC[2]);
EXPECT_EQ(&B1C, &RC[3]);
EXPECT_EQ(&C3C, &RC[4]);
EXPECT_EQ(&C2C, &RC[5]);
EXPECT_EQ(&C1C, &RC[6]);
EXPECT_EQ(&AC, &RC[7]);
}
TEST(LazyCallGraphTest, InternalRefEdgeToCallBothPartitionAndMerge) {
LLVMContext Context;
// Test for having a postorder where between the source and target are all
// three kinds of other SCCs:
// 1) One connected to the target only that have to be shifted below the
// source.
// 2) One connected to the source only that have to be shifted below the
// target.
// 3) One connected to both source and target that has to remain and get
// merged away.
//
// To achieve this we construct a heavily connected graph to force
// a particular post-order. Then we remove the forcing edges and connect
// a cycle.
//
// Diagram for the graph we want on the left and the graph we use to force
// the ordering on the right. Edges ponit down or right.
//
// A | A |
// / \ | / \ |
// B E | B \ |
// |\ | | |\ | |
// | D | | C-D-E |
// | \| | | \| |
// C F | \ F |
// \ / | \ / |
// G | G |
//
// And we form a cycle by connecting F to B.
std::unique_ptr<Module> M =
parseAssembly(Context, "define void @a() {\n"
"entry:\n"
" call void @b()\n"
" call void @e()\n"
" ret void\n"
"}\n"
"define void @b() {\n"
"entry:\n"
" call void @c()\n"
" call void @d()\n"
" ret void\n"
"}\n"
"define void @c() {\n"
"entry:\n"
" call void @d()\n"
" call void @g()\n"
" ret void\n"
"}\n"
"define void @d() {\n"
"entry:\n"
" call void @e()\n"
" call void @f()\n"
" ret void\n"
"}\n"
"define void @e() {\n"
"entry:\n"
" call void @f()\n"
" ret void\n"
"}\n"
"define void @f() {\n"
"entry:\n"
" store void()* @b, void()** undef\n"
" call void @g()\n"
" ret void\n"
"}\n"
"define void @g() {\n"
"entry:\n"
" store void()* @a, void()** undef\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
// Force the graph to be fully expanded.
auto I = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &RC = *I++;
EXPECT_EQ(CG.postorder_ref_scc_end(), I);
LazyCallGraph::Node &A = *CG.lookup(lookupFunction(*M, "a"));
LazyCallGraph::Node &B = *CG.lookup(lookupFunction(*M, "b"));
LazyCallGraph::Node &C = *CG.lookup(lookupFunction(*M, "c"));
LazyCallGraph::Node &D = *CG.lookup(lookupFunction(*M, "d"));
LazyCallGraph::Node &E = *CG.lookup(lookupFunction(*M, "e"));
LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f"));
LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g"));
LazyCallGraph::SCC &AC = *CG.lookupSCC(A);
LazyCallGraph::SCC &BC = *CG.lookupSCC(B);
LazyCallGraph::SCC &CC = *CG.lookupSCC(C);
LazyCallGraph::SCC &DC = *CG.lookupSCC(D);
LazyCallGraph::SCC &EC = *CG.lookupSCC(E);
LazyCallGraph::SCC &FC = *CG.lookupSCC(F);
LazyCallGraph::SCC &GC = *CG.lookupSCC(G);
// Remove the extra edges that were used to force a particular post-order.
RC.switchTrivialInternalEdgeToRef(C, D);
RC.switchTrivialInternalEdgeToRef(D, E);
// Check the initial post-order. We ensure this order with the extra edges
// that are nuked above.
ASSERT_EQ(7, RC.size());
EXPECT_EQ(&GC, &RC[0]);
EXPECT_EQ(&FC, &RC[1]);
EXPECT_EQ(&EC, &RC[2]);
EXPECT_EQ(&DC, &RC[3]);
EXPECT_EQ(&CC, &RC[4]);
EXPECT_EQ(&BC, &RC[5]);
EXPECT_EQ(&AC, &RC[6]);
// Switch F -> B to a call edge. This merges B, D, and F into a single SCC,
// and has to place the C and E SCCs on either side of it:
// A A |
// / \ / \ |
// B E | E |
// |\ | \ / |
// | D | -> B |
// | \| / \ |
// C F C | |
// \ / \ / |
// G G |
auto MergedCs = RC.switchInternalEdgeToCall(F, B);
ASSERT_EQ(2u, MergedCs.size());
EXPECT_EQ(&FC, MergedCs[0]);
EXPECT_EQ(&DC, MergedCs[1]);
EXPECT_EQ(3, BC.size());
// And make sure the postorder was updated.
ASSERT_EQ(5, RC.size());
EXPECT_EQ(&GC, &RC[0]);
EXPECT_EQ(&CC, &RC[1]);
EXPECT_EQ(&BC, &RC[2]);
EXPECT_EQ(&EC, &RC[3]);
EXPECT_EQ(&AC, &RC[4]);
}
// Test for IR containing constants using blockaddress constant expressions.
// These are truly unique constructs: constant expressions with non-constant
// operands.
TEST(LazyCallGraphTest, HandleBlockAddress) {
LLVMContext Context;
std::unique_ptr<Module> M =
parseAssembly(Context, "define void @f() {\n"
"entry:\n"
" ret void\n"
"bb:\n"
" unreachable\n"
"}\n"
"define void @g(i8** %ptr) {\n"
"entry:\n"
" store i8* blockaddress(@f, %bb), i8** %ptr\n"
" ret void\n"
"}\n");
LazyCallGraph CG(*M);
auto I = CG.postorder_ref_scc_begin();
LazyCallGraph::RefSCC &FRC = *I++;
LazyCallGraph::RefSCC &GRC = *I++;
EXPECT_EQ(CG.postorder_ref_scc_end(), I);
LazyCallGraph::Node &F = *CG.lookup(lookupFunction(*M, "f"));
LazyCallGraph::Node &G = *CG.lookup(lookupFunction(*M, "g"));
EXPECT_EQ(&FRC, CG.lookupRefSCC(F));
EXPECT_EQ(&GRC, CG.lookupRefSCC(G));
EXPECT_TRUE(GRC.isParentOf(FRC));
}
}