1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Analysis/StratifiedSets.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

597 lines
19 KiB
C++

//===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_STRATIFIEDSETS_H
#define LLVM_ADT_STRATIFIEDSETS_H
#include "AliasAnalysisSummary.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include <bitset>
#include <cassert>
#include <cmath>
#include <type_traits>
#include <utility>
#include <vector>
namespace llvm {
namespace cflaa {
/// An index into Stratified Sets.
typedef unsigned StratifiedIndex;
/// NOTE: ^ This can't be a short -- bootstrapping clang has a case where
/// ~1M sets exist.
// Container of information related to a value in a StratifiedSet.
struct StratifiedInfo {
StratifiedIndex Index;
/// For field sensitivity, etc. we can tack fields on here.
};
/// A "link" between two StratifiedSets.
struct StratifiedLink {
/// This is a value used to signify "does not exist" where the
/// StratifiedIndex type is used.
///
/// This is used instead of Optional<StratifiedIndex> because
/// Optional<StratifiedIndex> would eat up a considerable amount of extra
/// memory, after struct padding/alignment is taken into account.
static const StratifiedIndex SetSentinel;
/// The index for the set "above" current
StratifiedIndex Above;
/// The link for the set "below" current
StratifiedIndex Below;
/// Attributes for these StratifiedSets.
AliasAttrs Attrs;
StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
bool hasBelow() const { return Below != SetSentinel; }
bool hasAbove() const { return Above != SetSentinel; }
void clearBelow() { Below = SetSentinel; }
void clearAbove() { Above = SetSentinel; }
};
/// These are stratified sets, as described in "Fast algorithms for
/// Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
/// R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
/// of Value*s. If two Value*s are in the same set, or if both sets have
/// overlapping attributes, then the Value*s are said to alias.
///
/// Sets may be related by position, meaning that one set may be considered as
/// above or below another. In CFL Alias Analysis, this gives us an indication
/// of how two variables are related; if the set of variable A is below a set
/// containing variable B, then at some point, a variable that has interacted
/// with B (or B itself) was either used in order to extract the variable A, or
/// was used as storage of variable A.
///
/// Sets may also have attributes (as noted above). These attributes are
/// generally used for noting whether a variable in the set has interacted with
/// a variable whose origins we don't quite know (i.e. globals/arguments), or if
/// the variable may have had operations performed on it (modified in a function
/// call). All attributes that exist in a set A must exist in all sets marked as
/// below set A.
template <typename T> class StratifiedSets {
public:
StratifiedSets() = default;
StratifiedSets(StratifiedSets &&) = default;
StratifiedSets &operator=(StratifiedSets &&) = default;
StratifiedSets(DenseMap<T, StratifiedInfo> Map,
std::vector<StratifiedLink> Links)
: Values(std::move(Map)), Links(std::move(Links)) {}
Optional<StratifiedInfo> find(const T &Elem) const {
auto Iter = Values.find(Elem);
if (Iter == Values.end())
return None;
return Iter->second;
}
const StratifiedLink &getLink(StratifiedIndex Index) const {
assert(inbounds(Index));
return Links[Index];
}
private:
DenseMap<T, StratifiedInfo> Values;
std::vector<StratifiedLink> Links;
bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
};
/// Generic Builder class that produces StratifiedSets instances.
///
/// The goal of this builder is to efficiently produce correct StratifiedSets
/// instances. To this end, we use a few tricks:
/// > Set chains (A method for linking sets together)
/// > Set remaps (A method for marking a set as an alias [irony?] of another)
///
/// ==== Set chains ====
/// This builder has a notion of some value A being above, below, or with some
/// other value B:
/// > The `A above B` relationship implies that there is a reference edge
/// going from A to B. Namely, it notes that A can store anything in B's set.
/// > The `A below B` relationship is the opposite of `A above B`. It implies
/// that there's a dereference edge going from A to B.
/// > The `A with B` relationship states that there's an assignment edge going
/// from A to B, and that A and B should be treated as equals.
///
/// As an example, take the following code snippet:
///
/// %a = alloca i32, align 4
/// %ap = alloca i32*, align 8
/// %app = alloca i32**, align 8
/// store %a, %ap
/// store %ap, %app
/// %aw = getelementptr %ap, i32 0
///
/// Given this, the following relations exist:
/// - %a below %ap & %ap above %a
/// - %ap below %app & %app above %ap
/// - %aw with %ap & %ap with %aw
///
/// These relations produce the following sets:
/// [{%a}, {%ap, %aw}, {%app}]
///
/// ...Which state that the only MayAlias relationship in the above program is
/// between %ap and %aw.
///
/// Because LLVM allows arbitrary casts, code like the following needs to be
/// supported:
/// %ip = alloca i64, align 8
/// %ipp = alloca i64*, align 8
/// %i = bitcast i64** ipp to i64
/// store i64* %ip, i64** %ipp
/// store i64 %i, i64* %ip
///
/// Which, because %ipp ends up *both* above and below %ip, is fun.
///
/// This is solved by merging %i and %ipp into a single set (...which is the
/// only way to solve this, since their bit patterns are equivalent). Any sets
/// that ended up in between %i and %ipp at the time of merging (in this case,
/// the set containing %ip) also get conservatively merged into the set of %i
/// and %ipp. In short, the resulting StratifiedSet from the above code would be
/// {%ip, %ipp, %i}.
///
/// ==== Set remaps ====
/// More of an implementation detail than anything -- when merging sets, we need
/// to update the numbers of all of the elements mapped to those sets. Rather
/// than doing this at each merge, we note in the BuilderLink structure that a
/// remap has occurred, and use this information so we can defer renumbering set
/// elements until build time.
template <typename T> class StratifiedSetsBuilder {
/// Represents a Stratified Set, with information about the Stratified
/// Set above it, the set below it, and whether the current set has been
/// remapped to another.
struct BuilderLink {
const StratifiedIndex Number;
BuilderLink(StratifiedIndex N) : Number(N) {
Remap = StratifiedLink::SetSentinel;
}
bool hasAbove() const {
assert(!isRemapped());
return Link.hasAbove();
}
bool hasBelow() const {
assert(!isRemapped());
return Link.hasBelow();
}
void setBelow(StratifiedIndex I) {
assert(!isRemapped());
Link.Below = I;
}
void setAbove(StratifiedIndex I) {
assert(!isRemapped());
Link.Above = I;
}
void clearBelow() {
assert(!isRemapped());
Link.clearBelow();
}
void clearAbove() {
assert(!isRemapped());
Link.clearAbove();
}
StratifiedIndex getBelow() const {
assert(!isRemapped());
assert(hasBelow());
return Link.Below;
}
StratifiedIndex getAbove() const {
assert(!isRemapped());
assert(hasAbove());
return Link.Above;
}
AliasAttrs getAttrs() {
assert(!isRemapped());
return Link.Attrs;
}
void setAttrs(AliasAttrs Other) {
assert(!isRemapped());
Link.Attrs |= Other;
}
bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
/// For initial remapping to another set
void remapTo(StratifiedIndex Other) {
assert(!isRemapped());
Remap = Other;
}
StratifiedIndex getRemapIndex() const {
assert(isRemapped());
return Remap;
}
/// Should only be called when we're already remapped.
void updateRemap(StratifiedIndex Other) {
assert(isRemapped());
Remap = Other;
}
/// Prefer the above functions to calling things directly on what's returned
/// from this -- they guard against unexpected calls when the current
/// BuilderLink is remapped.
const StratifiedLink &getLink() const { return Link; }
private:
StratifiedLink Link;
StratifiedIndex Remap;
};
/// This function performs all of the set unioning/value renumbering
/// that we've been putting off, and generates a vector<StratifiedLink> that
/// may be placed in a StratifiedSets instance.
void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
for (auto &Link : Links) {
if (Link.isRemapped())
continue;
StratifiedIndex Number = StratLinks.size();
Remaps.insert(std::make_pair(Link.Number, Number));
StratLinks.push_back(Link.getLink());
}
for (auto &Link : StratLinks) {
if (Link.hasAbove()) {
auto &Above = linksAt(Link.Above);
auto Iter = Remaps.find(Above.Number);
assert(Iter != Remaps.end());
Link.Above = Iter->second;
}
if (Link.hasBelow()) {
auto &Below = linksAt(Link.Below);
auto Iter = Remaps.find(Below.Number);
assert(Iter != Remaps.end());
Link.Below = Iter->second;
}
}
for (auto &Pair : Values) {
auto &Info = Pair.second;
auto &Link = linksAt(Info.Index);
auto Iter = Remaps.find(Link.Number);
assert(Iter != Remaps.end());
Info.Index = Iter->second;
}
}
/// There's a guarantee in StratifiedLink where all bits set in a
/// Link.externals will be set in all Link.externals "below" it.
static void propagateAttrs(std::vector<StratifiedLink> &Links) {
const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
const auto *Link = &Links[Idx];
while (Link->hasAbove()) {
Idx = Link->Above;
Link = &Links[Idx];
}
return Idx;
};
SmallSet<StratifiedIndex, 16> Visited;
for (unsigned I = 0, E = Links.size(); I < E; ++I) {
auto CurrentIndex = getHighestParentAbove(I);
if (!Visited.insert(CurrentIndex).second)
continue;
while (Links[CurrentIndex].hasBelow()) {
auto &CurrentBits = Links[CurrentIndex].Attrs;
auto NextIndex = Links[CurrentIndex].Below;
auto &NextBits = Links[NextIndex].Attrs;
NextBits |= CurrentBits;
CurrentIndex = NextIndex;
}
}
}
public:
/// Builds a StratifiedSet from the information we've been given since either
/// construction or the prior build() call.
StratifiedSets<T> build() {
std::vector<StratifiedLink> StratLinks;
finalizeSets(StratLinks);
propagateAttrs(StratLinks);
Links.clear();
return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
}
bool has(const T &Elem) const { return get(Elem).hasValue(); }
bool add(const T &Main) {
if (get(Main).hasValue())
return false;
auto NewIndex = getNewUnlinkedIndex();
return addAtMerging(Main, NewIndex);
}
/// Restructures the stratified sets as necessary to make "ToAdd" in a
/// set above "Main". There are some cases where this is not possible (see
/// above), so we merge them such that ToAdd and Main are in the same set.
bool addAbove(const T &Main, const T &ToAdd) {
assert(has(Main));
auto Index = *indexOf(Main);
if (!linksAt(Index).hasAbove())
addLinkAbove(Index);
auto Above = linksAt(Index).getAbove();
return addAtMerging(ToAdd, Above);
}
/// Restructures the stratified sets as necessary to make "ToAdd" in a
/// set below "Main". There are some cases where this is not possible (see
/// above), so we merge them such that ToAdd and Main are in the same set.
bool addBelow(const T &Main, const T &ToAdd) {
assert(has(Main));
auto Index = *indexOf(Main);
if (!linksAt(Index).hasBelow())
addLinkBelow(Index);
auto Below = linksAt(Index).getBelow();
return addAtMerging(ToAdd, Below);
}
bool addWith(const T &Main, const T &ToAdd) {
assert(has(Main));
auto MainIndex = *indexOf(Main);
return addAtMerging(ToAdd, MainIndex);
}
void noteAttributes(const T &Main, AliasAttrs NewAttrs) {
assert(has(Main));
auto *Info = *get(Main);
auto &Link = linksAt(Info->Index);
Link.setAttrs(NewAttrs);
}
private:
DenseMap<T, StratifiedInfo> Values;
std::vector<BuilderLink> Links;
/// Adds the given element at the given index, merging sets if necessary.
bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
StratifiedInfo Info = {Index};
auto Pair = Values.insert(std::make_pair(ToAdd, Info));
if (Pair.second)
return true;
auto &Iter = Pair.first;
auto &IterSet = linksAt(Iter->second.Index);
auto &ReqSet = linksAt(Index);
// Failed to add where we wanted to. Merge the sets.
if (&IterSet != &ReqSet)
merge(IterSet.Number, ReqSet.Number);
return false;
}
/// Gets the BuilderLink at the given index, taking set remapping into
/// account.
BuilderLink &linksAt(StratifiedIndex Index) {
auto *Start = &Links[Index];
if (!Start->isRemapped())
return *Start;
auto *Current = Start;
while (Current->isRemapped())
Current = &Links[Current->getRemapIndex()];
auto NewRemap = Current->Number;
// Run through everything that has yet to be updated, and update them to
// remap to NewRemap
Current = Start;
while (Current->isRemapped()) {
auto *Next = &Links[Current->getRemapIndex()];
Current->updateRemap(NewRemap);
Current = Next;
}
return *Current;
}
/// Merges two sets into one another. Assumes that these sets are not
/// already one in the same.
void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
assert(inbounds(Idx1) && inbounds(Idx2));
assert(&linksAt(Idx1) != &linksAt(Idx2) &&
"Merging a set into itself is not allowed");
// CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
// both the
// given sets, and all sets between them, into one.
if (tryMergeUpwards(Idx1, Idx2))
return;
if (tryMergeUpwards(Idx2, Idx1))
return;
// CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
// We therefore need to merge the two chains together.
mergeDirect(Idx1, Idx2);
}
/// Merges two sets assuming that the set at `Idx1` is unreachable from
/// traversing above or below the set at `Idx2`.
void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
assert(inbounds(Idx1) && inbounds(Idx2));
auto *LinksInto = &linksAt(Idx1);
auto *LinksFrom = &linksAt(Idx2);
// Merging everything above LinksInto then proceeding to merge everything
// below LinksInto becomes problematic, so we go as far "up" as possible!
while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
LinksInto = &linksAt(LinksInto->getAbove());
LinksFrom = &linksAt(LinksFrom->getAbove());
}
if (LinksFrom->hasAbove()) {
LinksInto->setAbove(LinksFrom->getAbove());
auto &NewAbove = linksAt(LinksInto->getAbove());
NewAbove.setBelow(LinksInto->Number);
}
// Merging strategy:
// > If neither has links below, stop.
// > If only `LinksInto` has links below, stop.
// > If only `LinksFrom` has links below, reset `LinksInto.Below` to
// match `LinksFrom.Below`
// > If both have links above, deal with those next.
while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
auto FromAttrs = LinksFrom->getAttrs();
LinksInto->setAttrs(FromAttrs);
// Remap needs to happen after getBelow(), but before
// assignment of LinksFrom
auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
LinksFrom->remapTo(LinksInto->Number);
LinksFrom = NewLinksFrom;
LinksInto = &linksAt(LinksInto->getBelow());
}
if (LinksFrom->hasBelow()) {
LinksInto->setBelow(LinksFrom->getBelow());
auto &NewBelow = linksAt(LinksInto->getBelow());
NewBelow.setAbove(LinksInto->Number);
}
LinksInto->setAttrs(LinksFrom->getAttrs());
LinksFrom->remapTo(LinksInto->Number);
}
/// Checks to see if lowerIndex is at a level lower than upperIndex. If so, it
/// will merge lowerIndex with upperIndex (and all of the sets between) and
/// return true. Otherwise, it will return false.
bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
assert(inbounds(LowerIndex) && inbounds(UpperIndex));
auto *Lower = &linksAt(LowerIndex);
auto *Upper = &linksAt(UpperIndex);
if (Lower == Upper)
return true;
SmallVector<BuilderLink *, 8> Found;
auto *Current = Lower;
auto Attrs = Current->getAttrs();
while (Current->hasAbove() && Current != Upper) {
Found.push_back(Current);
Attrs |= Current->getAttrs();
Current = &linksAt(Current->getAbove());
}
if (Current != Upper)
return false;
Upper->setAttrs(Attrs);
if (Lower->hasBelow()) {
auto NewBelowIndex = Lower->getBelow();
Upper->setBelow(NewBelowIndex);
auto &NewBelow = linksAt(NewBelowIndex);
NewBelow.setAbove(UpperIndex);
} else {
Upper->clearBelow();
}
for (const auto &Ptr : Found)
Ptr->remapTo(Upper->Number);
return true;
}
Optional<const StratifiedInfo *> get(const T &Val) const {
auto Result = Values.find(Val);
if (Result == Values.end())
return None;
return &Result->second;
}
Optional<StratifiedInfo *> get(const T &Val) {
auto Result = Values.find(Val);
if (Result == Values.end())
return None;
return &Result->second;
}
Optional<StratifiedIndex> indexOf(const T &Val) {
auto MaybeVal = get(Val);
if (!MaybeVal.hasValue())
return None;
auto *Info = *MaybeVal;
auto &Link = linksAt(Info->Index);
return Link.Number;
}
StratifiedIndex addLinkBelow(StratifiedIndex Set) {
auto At = addLinks();
Links[Set].setBelow(At);
Links[At].setAbove(Set);
return At;
}
StratifiedIndex addLinkAbove(StratifiedIndex Set) {
auto At = addLinks();
Links[At].setBelow(Set);
Links[Set].setAbove(At);
return At;
}
StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
StratifiedIndex addLinks() {
auto Link = Links.size();
Links.push_back(BuilderLink(Link));
return Link;
}
bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
};
}
}
#endif // LLVM_ADT_STRATIFIEDSETS_H