mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
1632 lines
62 KiB
C++
1632 lines
62 KiB
C++
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// Generic dominator tree construction - this file provides routines to
|
|
/// construct immediate dominator information for a flow-graph based on the
|
|
/// Semi-NCA algorithm described in this dissertation:
|
|
///
|
|
/// [1] Linear-Time Algorithms for Dominators and Related Problems
|
|
/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
|
|
/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
|
|
///
|
|
/// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
|
|
/// faster than Simple Lengauer-Tarjan in practice.
|
|
///
|
|
/// O(n^2) worst cases happen when the computation of nearest common ancestors
|
|
/// requires O(n) average time, which is very unlikely in real world. If this
|
|
/// ever turns out to be an issue, consider implementing a hybrid algorithm
|
|
/// that uses SLT to perform full constructions and SemiNCA for incremental
|
|
/// updates.
|
|
///
|
|
/// The file uses the Depth Based Search algorithm to perform incremental
|
|
/// updates (insertion and deletions). The implemented algorithm is based on
|
|
/// this publication:
|
|
///
|
|
/// [2] An Experimental Study of Dynamic Dominators
|
|
/// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
|
|
/// https://arxiv.org/pdf/1604.02711.pdf
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
|
|
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
#include <queue>
|
|
|
|
#define DEBUG_TYPE "dom-tree-builder"
|
|
|
|
namespace llvm {
|
|
namespace DomTreeBuilder {
|
|
|
|
template <typename DomTreeT>
|
|
struct SemiNCAInfo {
|
|
using NodePtr = typename DomTreeT::NodePtr;
|
|
using NodeT = typename DomTreeT::NodeType;
|
|
using TreeNodePtr = DomTreeNodeBase<NodeT> *;
|
|
using RootsT = decltype(DomTreeT::Roots);
|
|
static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
|
|
using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
|
|
|
|
// Information record used by Semi-NCA during tree construction.
|
|
struct InfoRec {
|
|
unsigned DFSNum = 0;
|
|
unsigned Parent = 0;
|
|
unsigned Semi = 0;
|
|
NodePtr Label = nullptr;
|
|
NodePtr IDom = nullptr;
|
|
SmallVector<NodePtr, 2> ReverseChildren;
|
|
};
|
|
|
|
// Number to node mapping is 1-based. Initialize the mapping to start with
|
|
// a dummy element.
|
|
std::vector<NodePtr> NumToNode = {nullptr};
|
|
DenseMap<NodePtr, InfoRec> NodeToInfo;
|
|
|
|
using UpdateT = typename DomTreeT::UpdateType;
|
|
using UpdateKind = typename DomTreeT::UpdateKind;
|
|
struct BatchUpdateInfo {
|
|
// Note: Updates inside PreViewCFG are aleady legalized.
|
|
BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
|
|
: PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
|
|
NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
|
|
|
|
// Remembers if the whole tree was recalculated at some point during the
|
|
// current batch update.
|
|
bool IsRecalculated = false;
|
|
GraphDiffT &PreViewCFG;
|
|
GraphDiffT *PostViewCFG;
|
|
const size_t NumLegalized;
|
|
};
|
|
|
|
BatchUpdateInfo *BatchUpdates;
|
|
using BatchUpdatePtr = BatchUpdateInfo *;
|
|
|
|
// If BUI is a nullptr, then there's no batch update in progress.
|
|
SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
|
|
|
|
void clear() {
|
|
NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
|
|
NodeToInfo.clear();
|
|
// Don't reset the pointer to BatchUpdateInfo here -- if there's an update
|
|
// in progress, we need this information to continue it.
|
|
}
|
|
|
|
template <bool Inversed>
|
|
static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
|
|
if (BUI)
|
|
return BUI->PreViewCFG.template getChildren<Inversed>(N);
|
|
return getChildren<Inversed>(N);
|
|
}
|
|
|
|
template <bool Inversed>
|
|
static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
|
|
using DirectedNodeT =
|
|
std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
|
|
auto R = children<DirectedNodeT>(N);
|
|
SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
|
|
|
|
// Remove nullptr children for clang.
|
|
llvm::erase_value(Res, nullptr);
|
|
return Res;
|
|
}
|
|
|
|
NodePtr getIDom(NodePtr BB) const {
|
|
auto InfoIt = NodeToInfo.find(BB);
|
|
if (InfoIt == NodeToInfo.end()) return nullptr;
|
|
|
|
return InfoIt->second.IDom;
|
|
}
|
|
|
|
TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
|
|
if (TreeNodePtr Node = DT.getNode(BB)) return Node;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
NodePtr IDom = getIDom(BB);
|
|
|
|
assert(IDom || DT.DomTreeNodes[nullptr]);
|
|
TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
|
|
|
|
// Add a new tree node for this NodeT, and link it as a child of
|
|
// IDomNode
|
|
return DT.createChild(BB, IDomNode);
|
|
}
|
|
|
|
static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
|
|
|
|
struct BlockNamePrinter {
|
|
NodePtr N;
|
|
|
|
BlockNamePrinter(NodePtr Block) : N(Block) {}
|
|
BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
|
|
|
|
friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
|
|
if (!BP.N)
|
|
O << "nullptr";
|
|
else
|
|
BP.N->printAsOperand(O, false);
|
|
|
|
return O;
|
|
}
|
|
};
|
|
|
|
using NodeOrderMap = DenseMap<NodePtr, unsigned>;
|
|
|
|
// Custom DFS implementation which can skip nodes based on a provided
|
|
// predicate. It also collects ReverseChildren so that we don't have to spend
|
|
// time getting predecessors in SemiNCA.
|
|
//
|
|
// If IsReverse is set to true, the DFS walk will be performed backwards
|
|
// relative to IsPostDom -- using reverse edges for dominators and forward
|
|
// edges for postdominators.
|
|
//
|
|
// If SuccOrder is specified then in this order the DFS traverses the children
|
|
// otherwise the order is implied by the results of getChildren().
|
|
template <bool IsReverse = false, typename DescendCondition>
|
|
unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
|
|
unsigned AttachToNum,
|
|
const NodeOrderMap *SuccOrder = nullptr) {
|
|
assert(V);
|
|
SmallVector<NodePtr, 64> WorkList = {V};
|
|
if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
|
|
|
|
while (!WorkList.empty()) {
|
|
const NodePtr BB = WorkList.pop_back_val();
|
|
auto &BBInfo = NodeToInfo[BB];
|
|
|
|
// Visited nodes always have positive DFS numbers.
|
|
if (BBInfo.DFSNum != 0) continue;
|
|
BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
|
|
BBInfo.Label = BB;
|
|
NumToNode.push_back(BB);
|
|
|
|
constexpr bool Direction = IsReverse != IsPostDom; // XOR.
|
|
auto Successors = getChildren<Direction>(BB, BatchUpdates);
|
|
if (SuccOrder && Successors.size() > 1)
|
|
llvm::sort(
|
|
Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
|
|
return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
|
|
});
|
|
|
|
for (const NodePtr Succ : Successors) {
|
|
const auto SIT = NodeToInfo.find(Succ);
|
|
// Don't visit nodes more than once but remember to collect
|
|
// ReverseChildren.
|
|
if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
|
|
if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
|
|
continue;
|
|
}
|
|
|
|
if (!Condition(BB, Succ)) continue;
|
|
|
|
// It's fine to add Succ to the map, because we know that it will be
|
|
// visited later.
|
|
auto &SuccInfo = NodeToInfo[Succ];
|
|
WorkList.push_back(Succ);
|
|
SuccInfo.Parent = LastNum;
|
|
SuccInfo.ReverseChildren.push_back(BB);
|
|
}
|
|
}
|
|
|
|
return LastNum;
|
|
}
|
|
|
|
// V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
|
|
// of sdom(U), where U > W and there is a virtual forest path from U to V. The
|
|
// virtual forest consists of linked edges of processed vertices.
|
|
//
|
|
// We can follow Parent pointers (virtual forest edges) to determine the
|
|
// ancestor U with minimum sdom(U). But it is slow and thus we employ the path
|
|
// compression technique to speed up to O(m*log(n)). Theoretically the virtual
|
|
// forest can be organized as balanced trees to achieve almost linear
|
|
// O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
|
|
// and Child) and is unlikely to be faster than the simple implementation.
|
|
//
|
|
// For each vertex V, its Label points to the vertex with the minimal sdom(U)
|
|
// (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
|
|
NodePtr eval(NodePtr V, unsigned LastLinked,
|
|
SmallVectorImpl<InfoRec *> &Stack) {
|
|
InfoRec *VInfo = &NodeToInfo[V];
|
|
if (VInfo->Parent < LastLinked)
|
|
return VInfo->Label;
|
|
|
|
// Store ancestors except the last (root of a virtual tree) into a stack.
|
|
assert(Stack.empty());
|
|
do {
|
|
Stack.push_back(VInfo);
|
|
VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
|
|
} while (VInfo->Parent >= LastLinked);
|
|
|
|
// Path compression. Point each vertex's Parent to the root and update its
|
|
// Label if any of its ancestors (PInfo->Label) has a smaller Semi.
|
|
const InfoRec *PInfo = VInfo;
|
|
const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
|
|
do {
|
|
VInfo = Stack.pop_back_val();
|
|
VInfo->Parent = PInfo->Parent;
|
|
const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
|
|
if (PLabelInfo->Semi < VLabelInfo->Semi)
|
|
VInfo->Label = PInfo->Label;
|
|
else
|
|
PLabelInfo = VLabelInfo;
|
|
PInfo = VInfo;
|
|
} while (!Stack.empty());
|
|
return VInfo->Label;
|
|
}
|
|
|
|
// This function requires DFS to be run before calling it.
|
|
void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
|
|
const unsigned NextDFSNum(NumToNode.size());
|
|
// Initialize IDoms to spanning tree parents.
|
|
for (unsigned i = 1; i < NextDFSNum; ++i) {
|
|
const NodePtr V = NumToNode[i];
|
|
auto &VInfo = NodeToInfo[V];
|
|
VInfo.IDom = NumToNode[VInfo.Parent];
|
|
}
|
|
|
|
// Step #1: Calculate the semidominators of all vertices.
|
|
SmallVector<InfoRec *, 32> EvalStack;
|
|
for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
|
|
NodePtr W = NumToNode[i];
|
|
auto &WInfo = NodeToInfo[W];
|
|
|
|
// Initialize the semi dominator to point to the parent node.
|
|
WInfo.Semi = WInfo.Parent;
|
|
for (const auto &N : WInfo.ReverseChildren) {
|
|
if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
|
|
continue;
|
|
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
// Skip predecessors whose level is above the subtree we are processing.
|
|
if (TN && TN->getLevel() < MinLevel)
|
|
continue;
|
|
|
|
unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
|
|
if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
|
|
}
|
|
}
|
|
|
|
// Step #2: Explicitly define the immediate dominator of each vertex.
|
|
// IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
|
|
// Note that the parents were stored in IDoms and later got invalidated
|
|
// during path compression in Eval.
|
|
for (unsigned i = 2; i < NextDFSNum; ++i) {
|
|
const NodePtr W = NumToNode[i];
|
|
auto &WInfo = NodeToInfo[W];
|
|
const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
|
|
NodePtr WIDomCandidate = WInfo.IDom;
|
|
while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
|
|
WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
|
|
|
|
WInfo.IDom = WIDomCandidate;
|
|
}
|
|
}
|
|
|
|
// PostDominatorTree always has a virtual root that represents a virtual CFG
|
|
// node that serves as a single exit from the function. All the other exits
|
|
// (CFG nodes with terminators and nodes in infinite loops are logically
|
|
// connected to this virtual CFG exit node).
|
|
// This functions maps a nullptr CFG node to the virtual root tree node.
|
|
void addVirtualRoot() {
|
|
assert(IsPostDom && "Only postdominators have a virtual root");
|
|
assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
|
|
|
|
auto &BBInfo = NodeToInfo[nullptr];
|
|
BBInfo.DFSNum = BBInfo.Semi = 1;
|
|
BBInfo.Label = nullptr;
|
|
|
|
NumToNode.push_back(nullptr); // NumToNode[1] = nullptr;
|
|
}
|
|
|
|
// For postdominators, nodes with no forward successors are trivial roots that
|
|
// are always selected as tree roots. Roots with forward successors correspond
|
|
// to CFG nodes within infinite loops.
|
|
static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
|
|
assert(N && "N must be a valid node");
|
|
return !getChildren<false>(N, BUI).empty();
|
|
}
|
|
|
|
static NodePtr GetEntryNode(const DomTreeT &DT) {
|
|
assert(DT.Parent && "Parent not set");
|
|
return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
|
|
}
|
|
|
|
// Finds all roots without relaying on the set of roots already stored in the
|
|
// tree.
|
|
// We define roots to be some non-redundant set of the CFG nodes
|
|
static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
|
|
assert(DT.Parent && "Parent pointer is not set");
|
|
RootsT Roots;
|
|
|
|
// For dominators, function entry CFG node is always a tree root node.
|
|
if (!IsPostDom) {
|
|
Roots.push_back(GetEntryNode(DT));
|
|
return Roots;
|
|
}
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
|
|
// PostDominatorTree always has a virtual root.
|
|
SNCA.addVirtualRoot();
|
|
unsigned Num = 1;
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
|
|
|
|
// Step #1: Find all the trivial roots that are going to will definitely
|
|
// remain tree roots.
|
|
unsigned Total = 0;
|
|
// It may happen that there are some new nodes in the CFG that are result of
|
|
// the ongoing batch update, but we cannot really pretend that they don't
|
|
// exist -- we won't see any outgoing or incoming edges to them, so it's
|
|
// fine to discover them here, as they would end up appearing in the CFG at
|
|
// some point anyway.
|
|
for (const NodePtr N : nodes(DT.Parent)) {
|
|
++Total;
|
|
// If it has no *successors*, it is definitely a root.
|
|
if (!HasForwardSuccessors(N, BUI)) {
|
|
Roots.push_back(N);
|
|
// Run DFS not to walk this part of CFG later.
|
|
Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
|
|
LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << "Last visited node: "
|
|
<< BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
|
|
|
|
// Step #2: Find all non-trivial root candidates. Those are CFG nodes that
|
|
// are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
|
|
// nodes in infinite loops).
|
|
bool HasNonTrivialRoots = false;
|
|
// Accounting for the virtual exit, see if we had any reverse-unreachable
|
|
// nodes.
|
|
if (Total + 1 != Num) {
|
|
HasNonTrivialRoots = true;
|
|
|
|
// SuccOrder is the order of blocks in the function. It is needed to make
|
|
// the calculation of the FurthestAway node and the whole PostDomTree
|
|
// immune to swap successors transformation (e.g. canonicalizing branch
|
|
// predicates). SuccOrder is initialized lazily only for successors of
|
|
// reverse unreachable nodes.
|
|
Optional<NodeOrderMap> SuccOrder;
|
|
auto InitSuccOrderOnce = [&]() {
|
|
SuccOrder = NodeOrderMap();
|
|
for (const auto Node : nodes(DT.Parent))
|
|
if (SNCA.NodeToInfo.count(Node) == 0)
|
|
for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
|
|
SuccOrder->try_emplace(Succ, 0);
|
|
|
|
// Add mapping for all entries of SuccOrder.
|
|
unsigned NodeNum = 0;
|
|
for (const auto Node : nodes(DT.Parent)) {
|
|
++NodeNum;
|
|
auto Order = SuccOrder->find(Node);
|
|
if (Order != SuccOrder->end()) {
|
|
assert(Order->second == 0);
|
|
Order->second = NodeNum;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Make another DFS pass over all other nodes to find the
|
|
// reverse-unreachable blocks, and find the furthest paths we'll be able
|
|
// to make.
|
|
// Note that this looks N^2, but it's really 2N worst case, if every node
|
|
// is unreachable. This is because we are still going to only visit each
|
|
// unreachable node once, we may just visit it in two directions,
|
|
// depending on how lucky we get.
|
|
SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
|
|
for (const NodePtr I : nodes(DT.Parent)) {
|
|
if (SNCA.NodeToInfo.count(I) == 0) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
|
|
// Find the furthest away we can get by following successors, then
|
|
// follow them in reverse. This gives us some reasonable answer about
|
|
// the post-dom tree inside any infinite loop. In particular, it
|
|
// guarantees we get to the farthest away point along *some*
|
|
// path. This also matches the GCC's behavior.
|
|
// If we really wanted a totally complete picture of dominance inside
|
|
// this infinite loop, we could do it with SCC-like algorithms to find
|
|
// the lowest and highest points in the infinite loop. In theory, it
|
|
// would be nice to give the canonical backedge for the loop, but it's
|
|
// expensive and does not always lead to a minimal set of roots.
|
|
LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
|
|
|
|
if (!SuccOrder)
|
|
InitSuccOrderOnce();
|
|
assert(SuccOrder);
|
|
|
|
const unsigned NewNum =
|
|
SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
|
|
const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
|
|
LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
|
|
<< "(non-trivial root): "
|
|
<< BlockNamePrinter(FurthestAway) << "\n");
|
|
ConnectToExitBlock.insert(FurthestAway);
|
|
Roots.push_back(FurthestAway);
|
|
LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
|
|
<< NewNum << "\n\t\t\tRemoving DFS info\n");
|
|
for (unsigned i = NewNum; i > Num; --i) {
|
|
const NodePtr N = SNCA.NumToNode[i];
|
|
LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
|
|
<< BlockNamePrinter(N) << "\n");
|
|
SNCA.NodeToInfo.erase(N);
|
|
SNCA.NumToNode.pop_back();
|
|
}
|
|
const unsigned PrevNum = Num;
|
|
LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
|
|
Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
|
|
for (unsigned i = PrevNum + 1; i <= Num; ++i)
|
|
LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
|
|
<< BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
|
|
LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
|
|
LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
|
|
<< i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
|
|
|
|
assert((Total + 1 == Num) && "Everything should have been visited");
|
|
|
|
// Step #3: If we found some non-trivial roots, make them non-redundant.
|
|
if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
|
|
|
|
LLVM_DEBUG(dbgs() << "Found roots: ");
|
|
LLVM_DEBUG(for (auto *Root
|
|
: Roots) dbgs()
|
|
<< BlockNamePrinter(Root) << " ");
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
return Roots;
|
|
}
|
|
|
|
// This function only makes sense for postdominators.
|
|
// We define roots to be some set of CFG nodes where (reverse) DFS walks have
|
|
// to start in order to visit all the CFG nodes (including the
|
|
// reverse-unreachable ones).
|
|
// When the search for non-trivial roots is done it may happen that some of
|
|
// the non-trivial roots are reverse-reachable from other non-trivial roots,
|
|
// which makes them redundant. This function removes them from the set of
|
|
// input roots.
|
|
static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
|
|
RootsT &Roots) {
|
|
assert(IsPostDom && "This function is for postdominators only");
|
|
LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
|
|
for (unsigned i = 0; i < Roots.size(); ++i) {
|
|
auto &Root = Roots[i];
|
|
// Trivial roots are always non-redundant.
|
|
if (!HasForwardSuccessors(Root, BUI)) continue;
|
|
LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
|
|
<< " remains a root\n");
|
|
SNCA.clear();
|
|
// Do a forward walk looking for the other roots.
|
|
const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
|
|
// Skip the start node and begin from the second one (note that DFS uses
|
|
// 1-based indexing).
|
|
for (unsigned x = 2; x <= Num; ++x) {
|
|
const NodePtr N = SNCA.NumToNode[x];
|
|
// If we wound another root in a (forward) DFS walk, remove the current
|
|
// root from the set of roots, as it is reverse-reachable from the other
|
|
// one.
|
|
if (llvm::is_contained(Roots, N)) {
|
|
LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
|
|
<< BlockNamePrinter(N) << "\n\tRemoving root "
|
|
<< BlockNamePrinter(Root) << "\n");
|
|
std::swap(Root, Roots.back());
|
|
Roots.pop_back();
|
|
|
|
// Root at the back takes the current root's place.
|
|
// Start the next loop iteration with the same index.
|
|
--i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DescendCondition>
|
|
void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
|
|
if (!IsPostDom) {
|
|
assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
|
|
runDFS(DT.Roots[0], 0, DC, 0);
|
|
return;
|
|
}
|
|
|
|
addVirtualRoot();
|
|
unsigned Num = 1;
|
|
for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
|
|
}
|
|
|
|
static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
|
|
auto *Parent = DT.Parent;
|
|
DT.reset();
|
|
DT.Parent = Parent;
|
|
// If the update is using the actual CFG, BUI is null. If it's using a view,
|
|
// BUI is non-null and the PreCFGView is used. When calculating from
|
|
// scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
|
|
BatchUpdatePtr PostViewBUI = nullptr;
|
|
if (BUI && BUI->PostViewCFG) {
|
|
BUI->PreViewCFG = *BUI->PostViewCFG;
|
|
PostViewBUI = BUI;
|
|
}
|
|
// This is rebuilding the whole tree, not incrementally, but PostViewBUI is
|
|
// used in case the caller needs a DT update with a CFGView.
|
|
SemiNCAInfo SNCA(PostViewBUI);
|
|
|
|
// Step #0: Number blocks in depth-first order and initialize variables used
|
|
// in later stages of the algorithm.
|
|
DT.Roots = FindRoots(DT, PostViewBUI);
|
|
SNCA.doFullDFSWalk(DT, AlwaysDescend);
|
|
|
|
SNCA.runSemiNCA(DT);
|
|
if (BUI) {
|
|
BUI->IsRecalculated = true;
|
|
LLVM_DEBUG(
|
|
dbgs() << "DomTree recalculated, skipping future batch updates\n");
|
|
}
|
|
|
|
if (DT.Roots.empty()) return;
|
|
|
|
// Add a node for the root. If the tree is a PostDominatorTree it will be
|
|
// the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
|
|
// all real exits (including multiple exit blocks, infinite loops).
|
|
NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
|
|
|
|
DT.RootNode = DT.createNode(Root);
|
|
SNCA.attachNewSubtree(DT, DT.RootNode);
|
|
}
|
|
|
|
void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
|
|
// Attach the first unreachable block to AttachTo.
|
|
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
|
|
// Loop over all of the discovered blocks in the function...
|
|
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
|
|
NodePtr W = NumToNode[i];
|
|
|
|
// Don't replace this with 'count', the insertion side effect is important
|
|
if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
|
|
|
|
NodePtr ImmDom = getIDom(W);
|
|
|
|
// Get or calculate the node for the immediate dominator.
|
|
TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode.
|
|
DT.createChild(W, IDomNode);
|
|
}
|
|
}
|
|
|
|
void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
|
|
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
|
|
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
|
|
const NodePtr N = NumToNode[i];
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
assert(TN);
|
|
const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
|
|
TN->setIDom(NewIDom);
|
|
}
|
|
}
|
|
|
|
// Helper struct used during edge insertions.
|
|
struct InsertionInfo {
|
|
struct Compare {
|
|
bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
|
|
return LHS->getLevel() < RHS->getLevel();
|
|
}
|
|
};
|
|
|
|
// Bucket queue of tree nodes ordered by descending level. For simplicity,
|
|
// we use a priority_queue here.
|
|
std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
|
|
Compare>
|
|
Bucket;
|
|
SmallDenseSet<TreeNodePtr, 8> Visited;
|
|
SmallVector<TreeNodePtr, 8> Affected;
|
|
#ifndef NDEBUG
|
|
SmallVector<TreeNodePtr, 8> VisitedUnaffected;
|
|
#endif
|
|
};
|
|
|
|
static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const NodePtr From, const NodePtr To) {
|
|
assert((From || IsPostDom) &&
|
|
"From has to be a valid CFG node or a virtual root");
|
|
assert(To && "Cannot be a nullptr");
|
|
LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
|
|
<< BlockNamePrinter(To) << "\n");
|
|
TreeNodePtr FromTN = DT.getNode(From);
|
|
|
|
if (!FromTN) {
|
|
// Ignore edges from unreachable nodes for (forward) dominators.
|
|
if (!IsPostDom) return;
|
|
|
|
// The unreachable node becomes a new root -- a tree node for it.
|
|
TreeNodePtr VirtualRoot = DT.getNode(nullptr);
|
|
FromTN = DT.createChild(From, VirtualRoot);
|
|
DT.Roots.push_back(From);
|
|
}
|
|
|
|
DT.DFSInfoValid = false;
|
|
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
if (!ToTN)
|
|
InsertUnreachable(DT, BUI, FromTN, To);
|
|
else
|
|
InsertReachable(DT, BUI, FromTN, ToTN);
|
|
}
|
|
|
|
// Determines if some existing root becomes reverse-reachable after the
|
|
// insertion. Rebuilds the whole tree if that situation happens.
|
|
static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr From,
|
|
const TreeNodePtr To) {
|
|
assert(IsPostDom && "This function is only for postdominators");
|
|
// Destination node is not attached to the virtual root, so it cannot be a
|
|
// root.
|
|
if (!DT.isVirtualRoot(To->getIDom())) return false;
|
|
|
|
if (!llvm::is_contained(DT.Roots, To->getBlock()))
|
|
return false; // To is not a root, nothing to update.
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
|
|
<< " is no longer a root\n\t\tRebuilding the tree!!!\n");
|
|
|
|
CalculateFromScratch(DT, BUI);
|
|
return true;
|
|
}
|
|
|
|
static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
|
|
const SmallVectorImpl<NodePtr> &B) {
|
|
if (A.size() != B.size())
|
|
return false;
|
|
SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
|
|
for (NodePtr N : B)
|
|
if (Set.count(N) == 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Updates the set of roots after insertion or deletion. This ensures that
|
|
// roots are the same when after a series of updates and when the tree would
|
|
// be built from scratch.
|
|
static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
|
|
assert(IsPostDom && "This function is only for postdominators");
|
|
|
|
// The tree has only trivial roots -- nothing to update.
|
|
if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
|
|
return HasForwardSuccessors(N, BUI);
|
|
}))
|
|
return;
|
|
|
|
// Recalculate the set of roots.
|
|
RootsT Roots = FindRoots(DT, BUI);
|
|
if (!isPermutation(DT.Roots, Roots)) {
|
|
// The roots chosen in the CFG have changed. This is because the
|
|
// incremental algorithm does not really know or use the set of roots and
|
|
// can make a different (implicit) decision about which node within an
|
|
// infinite loop becomes a root.
|
|
|
|
LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
|
|
<< "The entire tree needs to be rebuilt\n");
|
|
// It may be possible to update the tree without recalculating it, but
|
|
// we do not know yet how to do it, and it happens rarely in practice.
|
|
CalculateFromScratch(DT, BUI);
|
|
}
|
|
}
|
|
|
|
// Handles insertion to a node already in the dominator tree.
|
|
static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr From, const TreeNodePtr To) {
|
|
LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
|
|
<< " -> " << BlockNamePrinter(To->getBlock()) << "\n");
|
|
if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
|
|
// DT.findNCD expects both pointers to be valid. When From is a virtual
|
|
// root, then its CFG block pointer is a nullptr, so we have to 'compute'
|
|
// the NCD manually.
|
|
const NodePtr NCDBlock =
|
|
(From->getBlock() && To->getBlock())
|
|
? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
|
|
: nullptr;
|
|
assert(NCDBlock || DT.isPostDominator());
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
assert(NCD);
|
|
|
|
LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
|
|
const unsigned NCDLevel = NCD->getLevel();
|
|
|
|
// Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
|
|
// iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
|
|
// w on P s.t. depth(v) <= depth(w)
|
|
//
|
|
// This reduces to a widest path problem (maximizing the depth of the
|
|
// minimum vertex in the path) which can be solved by a modified version of
|
|
// Dijkstra with a bucket queue (named depth-based search in [2]).
|
|
|
|
// To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
|
|
// affected if this does not hold.
|
|
if (NCDLevel + 1 >= To->getLevel())
|
|
return;
|
|
|
|
InsertionInfo II;
|
|
SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
|
|
II.Bucket.push(To);
|
|
II.Visited.insert(To);
|
|
|
|
while (!II.Bucket.empty()) {
|
|
TreeNodePtr TN = II.Bucket.top();
|
|
II.Bucket.pop();
|
|
II.Affected.push_back(TN);
|
|
|
|
const unsigned CurrentLevel = TN->getLevel();
|
|
LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
|
|
"as affected, CurrentLevel " << CurrentLevel << "\n");
|
|
|
|
assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
|
|
|
|
while (true) {
|
|
// Unlike regular Dijkstra, we have an inner loop to expand more
|
|
// vertices. The first iteration is for the (affected) vertex popped
|
|
// from II.Bucket and the rest are for vertices in
|
|
// UnaffectedOnCurrentLevel, which may eventually expand to affected
|
|
// vertices.
|
|
//
|
|
// Invariant: there is an optimal path from `To` to TN with the minimum
|
|
// depth being CurrentLevel.
|
|
for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
|
|
const TreeNodePtr SuccTN = DT.getNode(Succ);
|
|
assert(SuccTN &&
|
|
"Unreachable successor found at reachable insertion");
|
|
const unsigned SuccLevel = SuccTN->getLevel();
|
|
|
|
LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
|
|
<< ", level = " << SuccLevel << "\n");
|
|
|
|
// There is an optimal path from `To` to Succ with the minimum depth
|
|
// being min(CurrentLevel, SuccLevel).
|
|
//
|
|
// If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
|
|
// and no affected vertex may be reached by a path passing through it.
|
|
// Stop here. Also, Succ may be visited by other predecessors but the
|
|
// first visit has the optimal path. Stop if Succ has been visited.
|
|
if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
|
|
continue;
|
|
|
|
if (SuccLevel > CurrentLevel) {
|
|
// Succ is unaffected but it may (transitively) expand to affected
|
|
// vertices. Store it in UnaffectedOnCurrentLevel.
|
|
LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
|
|
<< BlockNamePrinter(Succ) << "\n");
|
|
UnaffectedOnCurrentLevel.push_back(SuccTN);
|
|
#ifndef NDEBUG
|
|
II.VisitedUnaffected.push_back(SuccTN);
|
|
#endif
|
|
} else {
|
|
// The condition is satisfied (Succ is affected). Add Succ to the
|
|
// bucket queue.
|
|
LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
|
|
<< " to a Bucket\n");
|
|
II.Bucket.push(SuccTN);
|
|
}
|
|
}
|
|
|
|
if (UnaffectedOnCurrentLevel.empty())
|
|
break;
|
|
TN = UnaffectedOnCurrentLevel.pop_back_val();
|
|
LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
|
|
}
|
|
}
|
|
|
|
// Finish by updating immediate dominators and levels.
|
|
UpdateInsertion(DT, BUI, NCD, II);
|
|
}
|
|
|
|
// Updates immediate dominators and levels after insertion.
|
|
static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr NCD, InsertionInfo &II) {
|
|
LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
|
|
|
|
for (const TreeNodePtr TN : II.Affected) {
|
|
LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
|
|
<< ") = " << BlockNamePrinter(NCD) << "\n");
|
|
TN->setIDom(NCD);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (const TreeNodePtr TN : II.VisitedUnaffected)
|
|
assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
|
|
"TN should have been updated by an affected ancestor");
|
|
#endif
|
|
|
|
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
|
|
}
|
|
|
|
// Handles insertion to previously unreachable nodes.
|
|
static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr From, const NodePtr To) {
|
|
LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
|
|
<< " -> (unreachable) " << BlockNamePrinter(To) << "\n");
|
|
|
|
// Collect discovered edges to already reachable nodes.
|
|
SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
|
|
// Discover and connect nodes that became reachable with the insertion.
|
|
ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
|
|
|
|
LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
|
|
<< " -> (prev unreachable) " << BlockNamePrinter(To)
|
|
<< "\n");
|
|
|
|
// Used the discovered edges and inset discovered connecting (incoming)
|
|
// edges.
|
|
for (const auto &Edge : DiscoveredEdgesToReachable) {
|
|
LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
|
|
<< BlockNamePrinter(Edge.first) << " -> "
|
|
<< BlockNamePrinter(Edge.second) << "\n");
|
|
InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
|
|
}
|
|
}
|
|
|
|
// Connects nodes that become reachable with an insertion.
|
|
static void ComputeUnreachableDominators(
|
|
DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
|
|
const TreeNodePtr Incoming,
|
|
SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
|
|
&DiscoveredConnectingEdges) {
|
|
assert(!DT.getNode(Root) && "Root must not be reachable");
|
|
|
|
// Visit only previously unreachable nodes.
|
|
auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
|
|
NodePtr To) {
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
if (!ToTN) return true;
|
|
|
|
DiscoveredConnectingEdges.push_back({From, ToTN});
|
|
return false;
|
|
};
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
SNCA.runDFS(Root, 0, UnreachableDescender, 0);
|
|
SNCA.runSemiNCA(DT);
|
|
SNCA.attachNewSubtree(DT, Incoming);
|
|
|
|
LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
|
|
}
|
|
|
|
static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const NodePtr From, const NodePtr To) {
|
|
assert(From && To && "Cannot disconnect nullptrs");
|
|
LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
|
|
<< BlockNamePrinter(To) << "\n");
|
|
|
|
#ifndef NDEBUG
|
|
// Ensure that the edge was in fact deleted from the CFG before informing
|
|
// the DomTree about it.
|
|
// The check is O(N), so run it only in debug configuration.
|
|
auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
|
|
auto Successors = getChildren<IsPostDom>(Of, BUI);
|
|
return llvm::is_contained(Successors, SuccCandidate);
|
|
};
|
|
(void)IsSuccessor;
|
|
assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
|
|
#endif
|
|
|
|
const TreeNodePtr FromTN = DT.getNode(From);
|
|
// Deletion in an unreachable subtree -- nothing to do.
|
|
if (!FromTN) return;
|
|
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
if (!ToTN) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "\tTo (" << BlockNamePrinter(To)
|
|
<< ") already unreachable -- there is no edge to delete\n");
|
|
return;
|
|
}
|
|
|
|
const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
|
|
// If To dominates From -- nothing to do.
|
|
if (ToTN != NCD) {
|
|
DT.DFSInfoValid = false;
|
|
|
|
const TreeNodePtr ToIDom = ToTN->getIDom();
|
|
LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
|
|
<< BlockNamePrinter(ToIDom) << "\n");
|
|
|
|
// To remains reachable after deletion.
|
|
// (Based on the caption under Figure 4. from [2].)
|
|
if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
|
|
DeleteReachable(DT, BUI, FromTN, ToTN);
|
|
else
|
|
DeleteUnreachable(DT, BUI, ToTN);
|
|
}
|
|
|
|
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
|
|
}
|
|
|
|
// Handles deletions that leave destination nodes reachable.
|
|
static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr FromTN,
|
|
const TreeNodePtr ToTN) {
|
|
LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
|
|
<< " -> " << BlockNamePrinter(ToTN) << "\n");
|
|
LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
|
|
|
|
// Find the top of the subtree that needs to be rebuilt.
|
|
// (Based on the lemma 2.6 from [2].)
|
|
const NodePtr ToIDom =
|
|
DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
|
|
assert(ToIDom || DT.isPostDominator());
|
|
const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
|
|
assert(ToIDomTN);
|
|
const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
|
|
// Top of the subtree to rebuild is the root node. Rebuild the tree from
|
|
// scratch.
|
|
if (!PrevIDomSubTree) {
|
|
LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
|
|
CalculateFromScratch(DT, BUI);
|
|
return;
|
|
}
|
|
|
|
// Only visit nodes in the subtree starting at To.
|
|
const unsigned Level = ToIDomTN->getLevel();
|
|
auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
|
|
return DT.getNode(To)->getLevel() > Level;
|
|
};
|
|
|
|
LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
|
|
<< "\n");
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
|
|
LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
|
|
SNCA.runSemiNCA(DT, Level);
|
|
SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
|
|
}
|
|
|
|
// Checks if a node has proper support, as defined on the page 3 and later
|
|
// explained on the page 7 of [2].
|
|
static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr TN) {
|
|
LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
|
|
<< "\n");
|
|
auto TNB = TN->getBlock();
|
|
for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
|
|
LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
|
|
if (!DT.getNode(Pred)) continue;
|
|
|
|
const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
|
|
LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
|
|
if (Support != TNB) {
|
|
LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
|
|
<< " is reachable from support "
|
|
<< BlockNamePrinter(Support) << "\n");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Handle deletions that make destination node unreachable.
|
|
// (Based on the lemma 2.7 from the [2].)
|
|
static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
|
|
const TreeNodePtr ToTN) {
|
|
LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
|
|
<< BlockNamePrinter(ToTN) << "\n");
|
|
assert(ToTN);
|
|
assert(ToTN->getBlock());
|
|
|
|
if (IsPostDom) {
|
|
// Deletion makes a region reverse-unreachable and creates a new root.
|
|
// Simulate that by inserting an edge from the virtual root to ToTN and
|
|
// adding it as a new root.
|
|
LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
|
|
LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
|
|
<< "\n");
|
|
DT.Roots.push_back(ToTN->getBlock());
|
|
InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
|
|
return;
|
|
}
|
|
|
|
SmallVector<NodePtr, 16> AffectedQueue;
|
|
const unsigned Level = ToTN->getLevel();
|
|
|
|
// Traverse destination node's descendants with greater level in the tree
|
|
// and collect visited nodes.
|
|
auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
|
|
const TreeNodePtr TN = DT.getNode(To);
|
|
assert(TN);
|
|
if (TN->getLevel() > Level) return true;
|
|
if (!llvm::is_contained(AffectedQueue, To))
|
|
AffectedQueue.push_back(To);
|
|
|
|
return false;
|
|
};
|
|
|
|
SemiNCAInfo SNCA(BUI);
|
|
unsigned LastDFSNum =
|
|
SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
|
|
|
|
TreeNodePtr MinNode = ToTN;
|
|
|
|
// Identify the top of the subtree to rebuild by finding the NCD of all
|
|
// the affected nodes.
|
|
for (const NodePtr N : AffectedQueue) {
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
const NodePtr NCDBlock =
|
|
DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
|
|
assert(NCDBlock || DT.isPostDominator());
|
|
const TreeNodePtr NCD = DT.getNode(NCDBlock);
|
|
assert(NCD);
|
|
|
|
LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
|
|
<< " with NCD = " << BlockNamePrinter(NCD)
|
|
<< ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
|
|
if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
|
|
}
|
|
|
|
// Root reached, rebuild the whole tree from scratch.
|
|
if (!MinNode->getIDom()) {
|
|
LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
|
|
CalculateFromScratch(DT, BUI);
|
|
return;
|
|
}
|
|
|
|
// Erase the unreachable subtree in reverse preorder to process all children
|
|
// before deleting their parent.
|
|
for (unsigned i = LastDFSNum; i > 0; --i) {
|
|
const NodePtr N = SNCA.NumToNode[i];
|
|
const TreeNodePtr TN = DT.getNode(N);
|
|
LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
|
|
|
|
EraseNode(DT, TN);
|
|
}
|
|
|
|
// The affected subtree start at the To node -- there's no extra work to do.
|
|
if (MinNode == ToTN) return;
|
|
|
|
LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
|
|
<< BlockNamePrinter(MinNode) << "\n");
|
|
const unsigned MinLevel = MinNode->getLevel();
|
|
const TreeNodePtr PrevIDom = MinNode->getIDom();
|
|
assert(PrevIDom);
|
|
SNCA.clear();
|
|
|
|
// Identify nodes that remain in the affected subtree.
|
|
auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
|
|
const TreeNodePtr ToTN = DT.getNode(To);
|
|
return ToTN && ToTN->getLevel() > MinLevel;
|
|
};
|
|
SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
|
|
|
|
LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
|
|
<< BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
|
|
|
|
// Rebuild the remaining part of affected subtree.
|
|
SNCA.runSemiNCA(DT, MinLevel);
|
|
SNCA.reattachExistingSubtree(DT, PrevIDom);
|
|
}
|
|
|
|
// Removes leaf tree nodes from the dominator tree.
|
|
static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
|
|
assert(TN);
|
|
assert(TN->getNumChildren() == 0 && "Not a tree leaf");
|
|
|
|
const TreeNodePtr IDom = TN->getIDom();
|
|
assert(IDom);
|
|
|
|
auto ChIt = llvm::find(IDom->Children, TN);
|
|
assert(ChIt != IDom->Children.end());
|
|
std::swap(*ChIt, IDom->Children.back());
|
|
IDom->Children.pop_back();
|
|
|
|
DT.DomTreeNodes.erase(TN->getBlock());
|
|
}
|
|
|
|
//~~
|
|
//===--------------------- DomTree Batch Updater --------------------------===
|
|
//~~
|
|
|
|
static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
|
|
GraphDiffT *PostViewCFG) {
|
|
// Note: the PostViewCFG is only used when computing from scratch. It's data
|
|
// should already included in the PreViewCFG for incremental updates.
|
|
const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
|
|
if (NumUpdates == 0)
|
|
return;
|
|
|
|
// Take the fast path for a single update and avoid running the batch update
|
|
// machinery.
|
|
if (NumUpdates == 1) {
|
|
UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
|
|
if (!PostViewCFG) {
|
|
if (Update.getKind() == UpdateKind::Insert)
|
|
InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
|
|
else
|
|
DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
|
|
} else {
|
|
BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
|
|
if (Update.getKind() == UpdateKind::Insert)
|
|
InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
|
|
else
|
|
DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
|
|
}
|
|
return;
|
|
}
|
|
|
|
BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
|
|
// Recalculate the DominatorTree when the number of updates
|
|
// exceeds a threshold, which usually makes direct updating slower than
|
|
// recalculation. We select this threshold proportional to the
|
|
// size of the DominatorTree. The constant is selected
|
|
// by choosing the one with an acceptable performance on some real-world
|
|
// inputs.
|
|
|
|
// Make unittests of the incremental algorithm work
|
|
if (DT.DomTreeNodes.size() <= 100) {
|
|
if (BUI.NumLegalized > DT.DomTreeNodes.size())
|
|
CalculateFromScratch(DT, &BUI);
|
|
} else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
|
|
CalculateFromScratch(DT, &BUI);
|
|
|
|
// If the DominatorTree was recalculated at some point, stop the batch
|
|
// updates. Full recalculations ignore batch updates and look at the actual
|
|
// CFG.
|
|
for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
|
|
ApplyNextUpdate(DT, BUI);
|
|
}
|
|
|
|
static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
|
|
// Popping the next update, will move the PreViewCFG to the next snapshot.
|
|
UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
|
|
#if 0
|
|
// FIXME: The LLVM_DEBUG macro only plays well with a modular
|
|
// build of LLVM when the header is marked as textual, but doing
|
|
// so causes redefinition errors.
|
|
LLVM_DEBUG(dbgs() << "Applying update: ");
|
|
LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
|
|
#endif
|
|
|
|
if (CurrentUpdate.getKind() == UpdateKind::Insert)
|
|
InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
|
|
else
|
|
DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
|
|
}
|
|
|
|
//~~
|
|
//===--------------- DomTree correctness verification ---------------------===
|
|
//~~
|
|
|
|
// Check if the tree has correct roots. A DominatorTree always has a single
|
|
// root which is the function's entry node. A PostDominatorTree can have
|
|
// multiple roots - one for each node with no successors and for infinite
|
|
// loops.
|
|
// Running time: O(N).
|
|
bool verifyRoots(const DomTreeT &DT) {
|
|
if (!DT.Parent && !DT.Roots.empty()) {
|
|
errs() << "Tree has no parent but has roots!\n";
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
if (!IsPostDom) {
|
|
if (DT.Roots.empty()) {
|
|
errs() << "Tree doesn't have a root!\n";
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
if (DT.getRoot() != GetEntryNode(DT)) {
|
|
errs() << "Tree's root is not its parent's entry node!\n";
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
RootsT ComputedRoots = FindRoots(DT, nullptr);
|
|
if (!isPermutation(DT.Roots, ComputedRoots)) {
|
|
errs() << "Tree has different roots than freshly computed ones!\n";
|
|
errs() << "\tPDT roots: ";
|
|
for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
|
|
errs() << "\n\tComputed roots: ";
|
|
for (const NodePtr N : ComputedRoots)
|
|
errs() << BlockNamePrinter(N) << ", ";
|
|
errs() << "\n";
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Checks if the tree contains all reachable nodes in the input graph.
|
|
// Running time: O(N).
|
|
bool verifyReachability(const DomTreeT &DT) {
|
|
clear();
|
|
doFullDFSWalk(DT, AlwaysDescend);
|
|
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
|
|
// Virtual root has a corresponding virtual CFG node.
|
|
if (DT.isVirtualRoot(TN)) continue;
|
|
|
|
if (NodeToInfo.count(BB) == 0) {
|
|
errs() << "DomTree node " << BlockNamePrinter(BB)
|
|
<< " not found by DFS walk!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const NodePtr N : NumToNode) {
|
|
if (N && !DT.getNode(N)) {
|
|
errs() << "CFG node " << BlockNamePrinter(N)
|
|
<< " not found in the DomTree!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if for every parent with a level L in the tree all of its children
|
|
// have level L + 1.
|
|
// Running time: O(N).
|
|
static bool VerifyLevels(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB) continue;
|
|
|
|
const TreeNodePtr IDom = TN->getIDom();
|
|
if (!IDom && TN->getLevel() != 0) {
|
|
errs() << "Node without an IDom " << BlockNamePrinter(BB)
|
|
<< " has a nonzero level " << TN->getLevel() << "!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
|
|
if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
|
|
errs() << "Node " << BlockNamePrinter(BB) << " has level "
|
|
<< TN->getLevel() << " while its IDom "
|
|
<< BlockNamePrinter(IDom->getBlock()) << " has level "
|
|
<< IDom->getLevel() << "!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if the computed DFS numbers are correct. Note that DFS info may not
|
|
// be valid, and when that is the case, we don't verify the numbers.
|
|
// Running time: O(N log(N)).
|
|
static bool VerifyDFSNumbers(const DomTreeT &DT) {
|
|
if (!DT.DFSInfoValid || !DT.Parent)
|
|
return true;
|
|
|
|
const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
|
|
const TreeNodePtr Root = DT.getNode(RootBB);
|
|
|
|
auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
|
|
errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
|
|
<< TN->getDFSNumOut() << '}';
|
|
};
|
|
|
|
// Verify the root's DFS In number. Although DFS numbering would also work
|
|
// if we started from some other value, we assume 0-based numbering.
|
|
if (Root->getDFSNumIn() != 0) {
|
|
errs() << "DFSIn number for the tree root is not:\n\t";
|
|
PrintNodeAndDFSNums(Root);
|
|
errs() << '\n';
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
// For each tree node verify if children's DFS numbers cover their parent's
|
|
// DFS numbers with no gaps.
|
|
for (const auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr Node = NodeToTN.second.get();
|
|
|
|
// Handle tree leaves.
|
|
if (Node->isLeaf()) {
|
|
if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
|
|
errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
|
|
PrintNodeAndDFSNums(Node);
|
|
errs() << '\n';
|
|
errs().flush();
|
|
return false;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Make a copy and sort it such that it is possible to check if there are
|
|
// no gaps between DFS numbers of adjacent children.
|
|
SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
|
|
llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
|
|
return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
|
|
});
|
|
|
|
auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
|
|
const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
|
|
assert(FirstCh);
|
|
|
|
errs() << "Incorrect DFS numbers for:\n\tParent ";
|
|
PrintNodeAndDFSNums(Node);
|
|
|
|
errs() << "\n\tChild ";
|
|
PrintNodeAndDFSNums(FirstCh);
|
|
|
|
if (SecondCh) {
|
|
errs() << "\n\tSecond child ";
|
|
PrintNodeAndDFSNums(SecondCh);
|
|
}
|
|
|
|
errs() << "\nAll children: ";
|
|
for (const TreeNodePtr Ch : Children) {
|
|
PrintNodeAndDFSNums(Ch);
|
|
errs() << ", ";
|
|
}
|
|
|
|
errs() << '\n';
|
|
errs().flush();
|
|
};
|
|
|
|
if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
|
|
PrintChildrenError(Children.front(), nullptr);
|
|
return false;
|
|
}
|
|
|
|
if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
|
|
PrintChildrenError(Children.back(), nullptr);
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
|
|
if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
|
|
PrintChildrenError(Children[i], Children[i + 1]);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// The below routines verify the correctness of the dominator tree relative to
|
|
// the CFG it's coming from. A tree is a dominator tree iff it has two
|
|
// properties, called the parent property and the sibling property. Tarjan
|
|
// and Lengauer prove (but don't explicitly name) the properties as part of
|
|
// the proofs in their 1972 paper, but the proofs are mostly part of proving
|
|
// things about semidominators and idoms, and some of them are simply asserted
|
|
// based on even earlier papers (see, e.g., lemma 2). Some papers refer to
|
|
// these properties as "valid" and "co-valid". See, e.g., "Dominators,
|
|
// directed bipolar orders, and independent spanning trees" by Loukas
|
|
// Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
|
|
// and Vertex-Disjoint Paths " by the same authors.
|
|
|
|
// A very simple and direct explanation of these properties can be found in
|
|
// "An Experimental Study of Dynamic Dominators", found at
|
|
// https://arxiv.org/abs/1604.02711
|
|
|
|
// The easiest way to think of the parent property is that it's a requirement
|
|
// of being a dominator. Let's just take immediate dominators. For PARENT to
|
|
// be an immediate dominator of CHILD, all paths in the CFG must go through
|
|
// PARENT before they hit CHILD. This implies that if you were to cut PARENT
|
|
// out of the CFG, there should be no paths to CHILD that are reachable. If
|
|
// there are, then you now have a path from PARENT to CHILD that goes around
|
|
// PARENT and still reaches CHILD, which by definition, means PARENT can't be
|
|
// a dominator of CHILD (let alone an immediate one).
|
|
|
|
// The sibling property is similar. It says that for each pair of sibling
|
|
// nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
|
|
// other. If sibling LEFT dominated sibling RIGHT, it means there are no
|
|
// paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
|
|
// LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
|
|
// RIGHT, not a sibling.
|
|
|
|
// It is possible to verify the parent and sibling properties in linear time,
|
|
// but the algorithms are complex. Instead, we do it in a straightforward
|
|
// N^2 and N^3 way below, using direct path reachability.
|
|
|
|
// Checks if the tree has the parent property: if for all edges from V to W in
|
|
// the input graph, such that V is reachable, the parent of W in the tree is
|
|
// an ancestor of V in the tree.
|
|
// Running time: O(N^2).
|
|
//
|
|
// This means that if a node gets disconnected from the graph, then all of
|
|
// the nodes it dominated previously will now become unreachable.
|
|
bool verifyParentProperty(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB || TN->isLeaf())
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Verifying parent property of node "
|
|
<< BlockNamePrinter(TN) << "\n");
|
|
clear();
|
|
doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
|
|
return From != BB && To != BB;
|
|
});
|
|
|
|
for (TreeNodePtr Child : TN->children())
|
|
if (NodeToInfo.count(Child->getBlock()) != 0) {
|
|
errs() << "Child " << BlockNamePrinter(Child)
|
|
<< " reachable after its parent " << BlockNamePrinter(BB)
|
|
<< " is removed!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if the tree has sibling property: if a node V does not dominate a
|
|
// node W for all siblings V and W in the tree.
|
|
// Running time: O(N^3).
|
|
//
|
|
// This means that if a node gets disconnected from the graph, then all of its
|
|
// siblings will now still be reachable.
|
|
bool verifySiblingProperty(const DomTreeT &DT) {
|
|
for (auto &NodeToTN : DT.DomTreeNodes) {
|
|
const TreeNodePtr TN = NodeToTN.second.get();
|
|
const NodePtr BB = TN->getBlock();
|
|
if (!BB || TN->isLeaf())
|
|
continue;
|
|
|
|
for (const TreeNodePtr N : TN->children()) {
|
|
clear();
|
|
NodePtr BBN = N->getBlock();
|
|
doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
|
|
return From != BBN && To != BBN;
|
|
});
|
|
|
|
for (const TreeNodePtr S : TN->children()) {
|
|
if (S == N) continue;
|
|
|
|
if (NodeToInfo.count(S->getBlock()) == 0) {
|
|
errs() << "Node " << BlockNamePrinter(S)
|
|
<< " not reachable when its sibling " << BlockNamePrinter(N)
|
|
<< " is removed!\n";
|
|
errs().flush();
|
|
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if the given tree is the same as a freshly computed one for the same
|
|
// Parent.
|
|
// Running time: O(N^2), but faster in practice (same as tree construction).
|
|
//
|
|
// Note that this does not check if that the tree construction algorithm is
|
|
// correct and should be only used for fast (but possibly unsound)
|
|
// verification.
|
|
static bool IsSameAsFreshTree(const DomTreeT &DT) {
|
|
DomTreeT FreshTree;
|
|
FreshTree.recalculate(*DT.Parent);
|
|
const bool Different = DT.compare(FreshTree);
|
|
|
|
if (Different) {
|
|
errs() << (DT.isPostDominator() ? "Post" : "")
|
|
<< "DominatorTree is different than a freshly computed one!\n"
|
|
<< "\tCurrent:\n";
|
|
DT.print(errs());
|
|
errs() << "\n\tFreshly computed tree:\n";
|
|
FreshTree.print(errs());
|
|
errs().flush();
|
|
}
|
|
|
|
return !Different;
|
|
}
|
|
};
|
|
|
|
template <class DomTreeT>
|
|
void Calculate(DomTreeT &DT) {
|
|
SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
|
|
}
|
|
|
|
template <typename DomTreeT>
|
|
void CalculateWithUpdates(DomTreeT &DT,
|
|
ArrayRef<typename DomTreeT::UpdateType> Updates) {
|
|
// FIXME: Updated to use the PreViewCFG and behave the same as until now.
|
|
// This behavior is however incorrect; this actually needs the PostViewCFG.
|
|
GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
|
|
Updates, /*ReverseApplyUpdates=*/true);
|
|
typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
|
|
SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To) {
|
|
if (DT.isPostDominator()) std::swap(From, To);
|
|
SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To) {
|
|
if (DT.isPostDominator()) std::swap(From, To);
|
|
SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
void ApplyUpdates(DomTreeT &DT,
|
|
GraphDiff<typename DomTreeT::NodePtr,
|
|
DomTreeT::IsPostDominator> &PreViewCFG,
|
|
GraphDiff<typename DomTreeT::NodePtr,
|
|
DomTreeT::IsPostDominator> *PostViewCFG) {
|
|
SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
|
|
}
|
|
|
|
template <class DomTreeT>
|
|
bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
|
|
SemiNCAInfo<DomTreeT> SNCA(nullptr);
|
|
|
|
// Simplist check is to compare against a new tree. This will also
|
|
// usefully print the old and new trees, if they are different.
|
|
if (!SNCA.IsSameAsFreshTree(DT))
|
|
return false;
|
|
|
|
// Common checks to verify the properties of the tree. O(N log N) at worst.
|
|
if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
|
|
!SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
|
|
return false;
|
|
|
|
// Extra checks depending on VerificationLevel. Up to O(N^3).
|
|
if (VL == DomTreeT::VerificationLevel::Basic ||
|
|
VL == DomTreeT::VerificationLevel::Full)
|
|
if (!SNCA.verifyParentProperty(DT))
|
|
return false;
|
|
if (VL == DomTreeT::VerificationLevel::Full)
|
|
if (!SNCA.verifySiblingProperty(DT))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace DomTreeBuilder
|
|
} // namespace llvm
|
|
|
|
#undef DEBUG_TYPE
|
|
|
|
#endif
|