1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 21:13:02 +02:00
llvm-mirror/lib/Target/AMDGPU/SIISelLowering.cpp
Tom Stellard 98822b77c0 AMDGPU/SI: Refactor fixup handling for constant addrspace variables
Summary:
We now use a standard fixup type applying the pc-relative address of
constant address space variables, and we have the GlobalAddress lowering
code add the required 4 byte offset to the global address rather than
doing it as part of the fixup.

This refactoring will make it easier to use the same code for global
address space variables and also simplifies the code.

Re-commit this after fixing a bug where we were trying to use a
reference to a Triple object that had already been destroyed.

Reviewers: arsenm, kzhuravl

Subscribers: arsenm, kzhuravl, llvm-commits

Differential Revision: http://reviews.llvm.org/D21154

llvm-svn: 272705
2016-06-14 20:29:59 +00:00

3355 lines
118 KiB
C++

//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#ifdef _MSC_VER
// Provide M_PI.
#define _USE_MATH_DEFINES
#include <cmath>
#endif
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIISelLowering.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
using namespace llvm;
// -amdgpu-fast-fdiv - Command line option to enable faster 2.5 ulp fdiv.
static cl::opt<bool> EnableAMDGPUFastFDIV(
"amdgpu-fast-fdiv",
cl::desc("Enable faster 2.5 ulp fdiv"),
cl::init(false));
static unsigned findFirstFreeSGPR(CCState &CCInfo) {
unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
return AMDGPU::SGPR0 + Reg;
}
}
llvm_unreachable("Cannot allocate sgpr");
}
SITargetLowering::SITargetLowering(TargetMachine &TM,
const AMDGPUSubtarget &STI)
: AMDGPUTargetLowering(TM, STI) {
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
computeRegisterProperties(STI.getRegisterInfo());
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
setOperationAction(ISD::SELECT, MVT::i1, Promote);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
setOperationAction(ISD::SETCC, MVT::i1, Promote);
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
// We only support LOAD/STORE and vector manipulation ops for vectors
// with > 4 elements.
for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch (Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
case ISD::SCALAR_TO_VECTOR:
break;
case ISD::CONCAT_VECTORS:
setOperationAction(Op, VT, Custom);
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
// Most operations are naturally 32-bit vector operations. We only support
// load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
}
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
// BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
// and output demarshalling
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
// We can't return success/failure, only the old value,
// let LLVM add the comparison
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
if (Subtarget->hasFlatAddressSpace()) {
setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
}
setOperationAction(ISD::BSWAP, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
// On SI this is s_memtime and s_memrealtime on VI.
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
}
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FSIN, MVT::f32, Custom);
setOperationAction(ISD::FCOS, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f64, Custom);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FMINNUM);
setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::SMIN);
setTargetDAGCombine(ISD::SMAX);
setTargetDAGCombine(ISD::UMIN);
setTargetDAGCombine(ISD::UMAX);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::FCANONICALIZE);
// All memory operations. Some folding on the pointer operand is done to help
// matching the constant offsets in the addressing modes.
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ATOMIC_LOAD);
setTargetDAGCombine(ISD::ATOMIC_STORE);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
setTargetDAGCombine(ISD::ATOMIC_SWAP);
setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
setSchedulingPreference(Sched::RegPressure);
}
//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//
bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &CI,
unsigned IntrID) const {
switch (IntrID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align = 0;
Info.vol = false;
Info.readMem = true;
Info.writeMem = true;
return true;
default:
return false;
}
}
bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
EVT) const {
// SI has some legal vector types, but no legal vector operations. Say no
// shuffles are legal in order to prefer scalarizing some vector operations.
return false;
}
bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
// Flat instructions do not have offsets, and only have the register
// address.
return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
}
bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
// MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
// additionally can do r + r + i with addr64. 32-bit has more addressing
// mode options. Depending on the resource constant, it can also do
// (i64 r0) + (i32 r1) * (i14 i).
//
// Private arrays end up using a scratch buffer most of the time, so also
// assume those use MUBUF instructions. Scratch loads / stores are currently
// implemented as mubuf instructions with offen bit set, so slightly
// different than the normal addr64.
if (!isUInt<12>(AM.BaseOffs))
return false;
// FIXME: Since we can split immediate into soffset and immediate offset,
// would it make sense to allow any immediate?
switch (AM.Scale) {
case 0: // r + i or just i, depending on HasBaseReg.
return true;
case 1:
return true; // We have r + r or r + i.
case 2:
if (AM.HasBaseReg) {
// Reject 2 * r + r.
return false;
}
// Allow 2 * r as r + r
// Or 2 * r + i is allowed as r + r + i.
return true;
default: // Don't allow n * r
return false;
}
}
bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS: {
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
// Assume the we will use FLAT for all global memory accesses
// on VI.
// FIXME: This assumption is currently wrong. On VI we still use
// MUBUF instructions for the r + i addressing mode. As currently
// implemented, the MUBUF instructions only work on buffer < 4GB.
// It may be possible to support > 4GB buffers with MUBUF instructions,
// by setting the stride value in the resource descriptor which would
// increase the size limit to (stride * 4GB). However, this is risky,
// because it has never been validated.
return isLegalFlatAddressingMode(AM);
}
return isLegalMUBUFAddressingMode(AM);
}
case AMDGPUAS::CONSTANT_ADDRESS: {
// If the offset isn't a multiple of 4, it probably isn't going to be
// correctly aligned.
if (AM.BaseOffs % 4 != 0)
return isLegalMUBUFAddressingMode(AM);
// There are no SMRD extloads, so if we have to do a small type access we
// will use a MUBUF load.
// FIXME?: We also need to do this if unaligned, but we don't know the
// alignment here.
if (DL.getTypeStoreSize(Ty) < 4)
return isLegalMUBUFAddressingMode(AM);
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
// SMRD instructions have an 8-bit, dword offset on SI.
if (!isUInt<8>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
// On CI+, this can also be a 32-bit literal constant offset. If it fits
// in 8-bits, it can use a smaller encoding.
if (!isUInt<32>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
// On VI, these use the SMEM format and the offset is 20-bit in bytes.
if (!isUInt<20>(AM.BaseOffs))
return false;
} else
llvm_unreachable("unhandled generation");
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
}
case AMDGPUAS::PRIVATE_ADDRESS:
return isLegalMUBUFAddressingMode(AM);
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::REGION_ADDRESS: {
// Basic, single offset DS instructions allow a 16-bit unsigned immediate
// field.
// XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
// an 8-bit dword offset but we don't know the alignment here.
if (!isUInt<16>(AM.BaseOffs))
return false;
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
}
case AMDGPUAS::FLAT_ADDRESS:
case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
// For an unknown address space, this usually means that this is for some
// reason being used for pure arithmetic, and not based on some addressing
// computation. We don't have instructions that compute pointers with any
// addressing modes, so treat them as having no offset like flat
// instructions.
return isLegalFlatAddressingMode(AM);
default:
llvm_unreachable("unhandled address space");
}
}
bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
unsigned Align,
bool *IsFast) const {
if (IsFast)
*IsFast = false;
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
// which isn't a simple VT.
if (!VT.isSimple() || VT == MVT::Other)
return false;
// TODO - CI+ supports unaligned memory accesses, but this requires driver
// support.
// XXX - The only mention I see of this in the ISA manual is for LDS direct
// reads the "byte address and must be dword aligned". Is it also true for the
// normal loads and stores?
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
// ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
// aligned, 8 byte access in a single operation using ds_read2/write2_b32
// with adjacent offsets.
bool AlignedBy4 = (Align % 4 == 0);
if (IsFast)
*IsFast = AlignedBy4;
return AlignedBy4;
}
// Smaller than dword value must be aligned.
// FIXME: This should be allowed on CI+
if (VT.bitsLT(MVT::i32))
return false;
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
// byte-address are ignored, thus forcing Dword alignment.
// This applies to private, global, and constant memory.
if (IsFast)
*IsFast = true;
return VT.bitsGT(MVT::i32) && Align % 4 == 0;
}
EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign, bool IsMemset,
bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
// FIXME: Should account for address space here.
// The default fallback uses the private pointer size as a guess for a type to
// use. Make sure we switch these to 64-bit accesses.
if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
return MVT::v4i32;
if (Size >= 8 && DstAlign >= 4)
return MVT::v2i32;
// Use the default.
return MVT::Other;
}
static bool isFlatGlobalAddrSpace(unsigned AS) {
return AS == AMDGPUAS::GLOBAL_ADDRESS ||
AS == AMDGPUAS::FLAT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS;
}
bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
}
bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
const MemSDNode *MemNode = cast<MemSDNode>(N);
const Value *Ptr = MemNode->getMemOperand()->getValue();
// UndefValue means this is a load of a kernel input. These are uniform.
// Sometimes LDS instructions have constant pointers
if (isa<UndefValue>(Ptr) || isa<Argument>(Ptr) || isa<Constant>(Ptr) ||
isa<GlobalValue>(Ptr))
return true;
const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
return I && I->getMetadata("amdgpu.uniform");
}
TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
return TypeSplitVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
return TII->isInlineConstant(Imm);
}
bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
// SimplifySetCC uses this function to determine whether or not it should
// create setcc with i1 operands. We don't have instructions for i1 setcc.
if (VT == MVT::i1 && Op == ISD::SETCC)
return false;
return TargetLowering::isTypeDesirableForOp(Op, VT);
}
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
const SDLoc &SL, SDValue Chain,
unsigned Offset, bool Signed) const {
const DataLayout &DL = DAG.getDataLayout();
MachineFunction &MF = DAG.getMachineFunction();
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
DAG.getConstant(Offset, SL, PtrVT));
SDValue PtrOffset = DAG.getUNDEF(PtrVT);
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
unsigned Align = DL.getABITypeAlignment(Ty);
ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
if (MemVT.isFloatingPoint())
ExtTy = ISD::EXTLOAD;
return DAG.getLoad(ISD::UNINDEXED, ExtTy,
VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
false, // isVolatile
true, // isNonTemporal
true, // isInvariant
Align); // Alignment
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
MachineFunction &MF = DAG.getMachineFunction();
FunctionType *FType = MF.getFunction()->getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
const Function *Fn = MF.getFunction();
DiagnosticInfoUnsupported NoGraphicsHSA(
*Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
DAG.getContext()->diagnose(NoGraphicsHSA);
return DAG.getEntryNode();
}
SmallVector<ISD::InputArg, 16> Splits;
BitVector Skipped(Ins.size());
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
// First check if it's a PS input addr
if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
!Arg.Flags.isByVal() && PSInputNum <= 15) {
if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
// We can safely skip PS inputs
Skipped.set(i);
++PSInputNum;
continue;
}
Info->markPSInputAllocated(PSInputNum);
if (Arg.Used)
Info->PSInputEna |= 1 << PSInputNum;
++PSInputNum;
}
if (AMDGPU::isShader(CallConv)) {
// Second split vertices into their elements
if (Arg.VT.isVector()) {
ISD::InputArg NewArg = Arg;
NewArg.Flags.setSplit();
NewArg.VT = Arg.VT.getVectorElementType();
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
// three or five element vertex only needs three or five registers,
// NOT four or eight.
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
unsigned NumElements = ParamType->getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
Splits.push_back(NewArg);
NewArg.PartOffset += NewArg.VT.getStoreSize();
}
} else {
Splits.push_back(Arg);
}
}
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// At least one interpolation mode must be enabled or else the GPU will hang.
//
// Check PSInputAddr instead of PSInputEna. The idea is that if the user set
// PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if (CallConv == CallingConv::AMDGPU_PS &&
((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 &&
Info->isPSInputAllocated(11)))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->PSInputEna |= 1;
}
if (!AMDGPU::isShader(CallConv)) {
getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
Splits);
assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
} else {
assert(!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ());
}
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (Info->hasPrivateSegmentBuffer()) {
unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (Info->hasDispatchPtr()) {
unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
if (Info->hasQueuePtr()) {
unsigned QueuePtrReg = Info->addQueuePtr(*TRI);
MF.addLiveIn(QueuePtrReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(QueuePtrReg);
}
if (Info->hasKernargSegmentPtr()) {
unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(InputPtrReg);
}
if (Info->hasFlatScratchInit()) {
unsigned FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(FlatScratchInitReg);
}
AnalyzeFormalArguments(CCInfo, Splits);
SmallVector<SDValue, 16> Chains;
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
if (Skipped[i]) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
MVT VT = VA.getLocVT();
if (VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = Splits[i].VT;
const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
VA.getLocMemOffset();
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain,
Offset, Ins[i].Flags.isSExt());
Chains.push_back(Arg.getValue(1));
auto *ParamTy =
dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
// On SI local pointers are just offsets into LDS, so they are always
// less than 16-bits. On CI and newer they could potentially be
// real pointers, so we can't guarantee their size.
Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
DAG.getValueType(MVT::i16));
}
InVals.push_back(Arg);
Info->ABIArgOffset = Offset + MemVT.getStoreSize();
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
unsigned Reg = VA.getLocReg();
if (VT == MVT::i64) {
// For now assume it is a pointer
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
&AMDGPU::SReg_64RegClass);
Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
InVals.push_back(Copy);
continue;
}
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
if (Arg.VT.isVector()) {
// Build a vector from the registers
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
unsigned NumElements = ParamType->getVectorNumElements();
SmallVector<SDValue, 4> Regs;
Regs.push_back(Val);
for (unsigned j = 1; j != NumElements; ++j) {
Reg = ArgLocs[ArgIdx++].getLocReg();
Reg = MF.addLiveIn(Reg, RC);
SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
Regs.push_back(Copy);
}
// Fill up the missing vector elements
NumElements = Arg.VT.getVectorNumElements() - NumElements;
Regs.append(NumElements, DAG.getUNDEF(VT));
InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
continue;
}
InVals.push_back(Val);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
// Start adding system SGPRs.
if (Info->hasWorkGroupIDX()) {
unsigned Reg = Info->addWorkGroupIDX();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkGroupIDY()) {
unsigned Reg = Info->addWorkGroupIDY();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkGroupIDZ()) {
unsigned Reg = Info->addWorkGroupIDZ();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkGroupInfo()) {
unsigned Reg = Info->addWorkGroupInfo();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasPrivateSegmentWaveByteOffset()) {
// Scratch wave offset passed in system SGPR.
unsigned PrivateSegmentWaveByteOffsetReg;
if (AMDGPU::isShader(CallConv)) {
PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
Info->setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
} else
PrivateSegmentWaveByteOffsetReg = Info->addPrivateSegmentWaveByteOffset();
MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
}
// Now that we've figured out where the scratch register inputs are, see if
// should reserve the arguments and use them directly.
bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
// Record that we know we have non-spill stack objects so we don't need to
// check all stack objects later.
if (HasStackObjects)
Info->setHasNonSpillStackObjects(true);
if (ST.isAmdHsaOS()) {
// TODO: Assume we will spill without optimizations.
if (HasStackObjects) {
// If we have stack objects, we unquestionably need the private buffer
// resource. For the HSA ABI, this will be the first 4 user SGPR
// inputs. We can reserve those and use them directly.
unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
Info->setScratchRSrcReg(PrivateSegmentBufferReg);
unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
} else {
unsigned ReservedBufferReg
= TRI->reservedPrivateSegmentBufferReg(MF);
unsigned ReservedOffsetReg
= TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
// We tentatively reserve the last registers (skipping the last two
// which may contain VCC). After register allocation, we'll replace
// these with the ones immediately after those which were really
// allocated. In the prologue copies will be inserted from the argument
// to these reserved registers.
Info->setScratchRSrcReg(ReservedBufferReg);
Info->setScratchWaveOffsetReg(ReservedOffsetReg);
}
} else {
unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
// Without HSA, relocations are used for the scratch pointer and the
// buffer resource setup is always inserted in the prologue. Scratch wave
// offset is still in an input SGPR.
Info->setScratchRSrcReg(ReservedBufferReg);
if (HasStackObjects) {
unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
} else {
unsigned ReservedOffsetReg
= TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
Info->setScratchWaveOffsetReg(ReservedOffsetReg);
}
}
if (Info->hasWorkItemIDX()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkItemIDY()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkItemIDZ()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Chains.empty())
return Chain;
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
SDValue
SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (!AMDGPU::isShader(CallConv))
return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
OutVals, DL, DAG);
Info->setIfReturnsVoid(Outs.size() == 0);
SmallVector<ISD::OutputArg, 48> Splits;
SmallVector<SDValue, 48> SplitVals;
// Split vectors into their elements.
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
const ISD::OutputArg &Out = Outs[i];
if (Out.VT.isVector()) {
MVT VT = Out.VT.getVectorElementType();
ISD::OutputArg NewOut = Out;
NewOut.Flags.setSplit();
NewOut.VT = VT;
// We want the original number of vector elements here, e.g.
// three or five, not four or eight.
unsigned NumElements = Out.ArgVT.getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
DAG.getConstant(j, DL, MVT::i32));
SplitVals.push_back(Elem);
Splits.push_back(NewOut);
NewOut.PartOffset += NewOut.VT.getStoreSize();
}
} else {
SplitVals.push_back(OutVals[i]);
Splits.push_back(Out);
}
}
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 48> RVLocs;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze outgoing return values.
AnalyzeReturn(CCInfo, Splits);
SDValue Flag;
SmallVector<SDValue, 48> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = SplitVals[realRVLocIdx];
// Copied from other backends.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
// Update chain and glue.
RetOps[0] = Chain;
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, RetOps);
}
unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("m0", AMDGPU::M0)
.Case("exec", AMDGPU::EXEC)
.Case("exec_lo", AMDGPU::EXEC_LO)
.Case("exec_hi", AMDGPU::EXEC_HI)
.Case("flat_scratch", AMDGPU::FLAT_SCR)
.Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
.Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
.Default(AMDGPU::NoRegister);
if (Reg == AMDGPU::NoRegister) {
report_fatal_error(Twine("invalid register name \""
+ StringRef(RegName) + "\"."));
}
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
report_fatal_error(Twine("invalid register \""
+ StringRef(RegName) + "\" for subtarget."));
}
switch (Reg) {
case AMDGPU::M0:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
if (VT.getSizeInBits() == 32)
return Reg;
break;
case AMDGPU::EXEC:
case AMDGPU::FLAT_SCR:
if (VT.getSizeInBits() == 64)
return Reg;
break;
default:
llvm_unreachable("missing register type checking");
}
report_fatal_error(Twine("invalid type for register \""
+ StringRef(RegName) + "\"."));
}
MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr *MI, MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
case AMDGPU::SI_INIT_M0: {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
BuildMI(*BB, MI->getIterator(), MI->getDebugLoc(),
TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addOperand(MI->getOperand(0));
MI->eraseFromParent();
break;
}
case AMDGPU::BRANCH:
return BB;
case AMDGPU::GET_GROUPSTATICSIZE: {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
MachineFunction *MF = BB->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
DebugLoc DL = MI->getDebugLoc();
BuildMI (*BB, MI, DL, TII->get(AMDGPU::S_MOVK_I32))
.addOperand(MI->getOperand(0))
.addImm(MFI->LDSSize);
MI->eraseFromParent();
return BB;
}
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
}
return BB;
}
bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
// This currently forces unfolding various combinations of fsub into fma with
// free fneg'd operands. As long as we have fast FMA (controlled by
// isFMAFasterThanFMulAndFAdd), we should perform these.
// When fma is quarter rate, for f64 where add / sub are at best half rate,
// most of these combines appear to be cycle neutral but save on instruction
// count / code size.
return true;
}
EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
return MVT::i32;
}
// Answering this is somewhat tricky and depends on the specific device which
// have different rates for fma or all f64 operations.
//
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
// regardless of which device (although the number of cycles differs between
// devices), so it is always profitable for f64.
//
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
// which we can always do even without fused FP ops since it returns the same
// result as the separate operations and since it is always full
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
// however does not support denormals, so we do report fma as faster if we have
// a fast fma device and require denormals.
//
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
// This is as fast on some subtargets. However, we always have full rate f32
// mad available which returns the same result as the separate operations
// which we should prefer over fma. We can't use this if we want to support
// denormals, so only report this in these cases.
return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
case MVT::f64:
return true;
default:
break;
}
return false;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::LOAD: {
SDValue Result = LowerLOAD(Op, DAG);
assert((!Result.getNode() ||
Result.getNode()->getNumValues() == 2) &&
"Load should return a value and a chain");
return Result;
}
case ISD::FSIN:
case ISD::FCOS:
return LowerTrig(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::FDIV: return LowerFDIV(Op, DAG);
case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::GlobalAddress: {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return LowerGlobalAddress(MFI, Op, DAG);
}
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
}
return SDValue();
}
/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return nullptr;
}
SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
unsigned FrameIndex = FINode->getIndex();
// A FrameIndex node represents a 32-bit offset into scratch memory. If the
// high bit of a frame index offset were to be set, this would mean that it
// represented an offset of ~2GB * 64 = ~128GB from the start of the scratch
// buffer, with 64 being the number of threads per wave.
//
// The maximum private allocation for the entire GPU is 4G, and we are
// concerned with the largest the index could ever be for an individual
// workitem. This will occur with the minmum dispatch size. If a program
// requires more, the dispatch size will be reduced.
//
// With this limit, we can mark the high bit of the FrameIndex node as known
// zero, which is important, because it means in most situations we can prove
// that values derived from FrameIndex nodes are non-negative. This enables us
// to take advantage of more addressing modes when accessing scratch buffers,
// since for scratch reads/writes, the register offset must always be
// positive.
uint64_t MaxGPUAlloc = UINT64_C(4) * 1024 * 1024 * 1024;
// XXX - It is unclear if partial dispatch works. Assume it works at half wave
// granularity. It is probably a full wave.
uint64_t MinGranularity = 32;
unsigned KnownBits = Log2_64(MaxGPUAlloc / MinGranularity);
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), KnownBits);
SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
DAG.getValueType(ExtVT));
}
bool SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
if (Intr->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return false;
switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
default: return false;
case AMDGPUIntrinsic::amdgcn_if:
case AMDGPUIntrinsic::amdgcn_else:
case AMDGPUIntrinsic::amdgcn_break:
case AMDGPUIntrinsic::amdgcn_if_break:
case AMDGPUIntrinsic::amdgcn_else_break:
case AMDGPUIntrinsic::amdgcn_loop:
case AMDGPUIntrinsic::amdgcn_end_cf:
return true;
}
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
SDLoc DL(BRCOND);
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = nullptr;
SDNode *SetCC = nullptr;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SetCC = Intr;
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
if (!isCFIntrinsic(Intr)) {
// This is a uniform branch so we don't need to legalize.
return BRCOND;
}
assert(!SetCC ||
(SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE));
// Build the result and
ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
Ops.push_back(BRCOND.getOperand(0));
Ops.append(Intr->op_begin() + 1, Intr->op_end());
Ops.push_back(Target);
// build the new intrinsic call
SDNode *Result = DAG.getNode(
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
DAG.getVTList(Res), Ops).getNode();
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
BR = NewBR.getNode();
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::getSegmentAperture(unsigned AS,
SelectionDAG &DAG) const {
SDLoc SL;
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
unsigned UserSGPR = Info->getQueuePtrUserSGPR();
assert(UserSGPR != AMDGPU::NoRegister);
SDValue QueuePtr = CreateLiveInRegister(
DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
// Offset into amd_queue_t for group_segment_aperture_base_hi /
// private_segment_aperture_base_hi.
uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, QueuePtr,
DAG.getConstant(StructOffset, SL, MVT::i64));
// TODO: Use custom target PseudoSourceValue.
// TODO: We should use the value from the IR intrinsic call, but it might not
// be available and how do we get it?
Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
AMDGPUAS::CONSTANT_ADDRESS));
MachinePointerInfo PtrInfo(V, StructOffset);
return DAG.getLoad(MVT::i32, SL, QueuePtr.getValue(1), Ptr,
PtrInfo, false,
false, true,
MinAlign(64, StructOffset));
}
SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
SDValue Src = ASC->getOperand(0);
// FIXME: Really support non-0 null pointers.
SDValue SegmentNullPtr = DAG.getConstant(-1, SL, MVT::i32);
SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
// flat -> local/private
if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
if (ASC->getDestAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
ASC->getDestAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
return DAG.getNode(ISD::SELECT, SL, MVT::i32,
NonNull, Ptr, SegmentNullPtr);
}
}
// local/private -> flat
if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
if (ASC->getSrcAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
ASC->getSrcAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
SDValue NonNull
= DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), DAG);
SDValue CvtPtr
= DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
FlatNullPtr);
}
}
// global <-> flat are no-ops and never emitted.
const MachineFunction &MF = DAG.getMachineFunction();
DiagnosticInfoUnsupported InvalidAddrSpaceCast(
*MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
DAG.getContext()->diagnose(InvalidAddrSpaceCast);
return DAG.getUNDEF(ASC->getValueType(0));
}
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
SDLoc DL(GSD);
const GlobalValue *GV = GSD->getGlobal();
MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace());
// In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
// lowered to the following code sequence:
// s_getpc_b64 s[0:1]
// s_add_u32 s0, s0, $symbol
// s_addc_u32 s1, s1, 0
//
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
// a fixup or relocation is emitted to replace $symbol with a literal
// constant, which is a pc-relative offset from the encoding of the $symbol
// operand to the global variable.
//
// What we want here is an offset from the value returned by s_getpc
// (which is the address of the s_add_u32 instruction) to the global
// variable, but since the encoding of $symbol starts 4 bytes after the start
// of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
// small. This requires us to add 4 to the global variable offset in order to
// compute the correct address.
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32,
GSD->getOffset() + 4);
return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, GA);
}
SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
const SDLoc &DL, SDValue V) const {
// We can't use S_MOV_B32 directly, because there is no way to specify m0 as
// the destination register.
//
// We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
// so we will end up with redundant moves to m0.
//
// We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
// A Null SDValue creates a glue result.
SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
V, Chain);
return SDValue(M0, 0);
}
SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
SDValue Op,
MVT VT,
unsigned Offset) const {
SDLoc SL(Op);
SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
DAG.getEntryNode(), Offset, false);
// The local size values will have the hi 16-bits as zero.
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
DAG.getValueType(VT));
}
static SDValue emitNonHSAIntrinsicError(SelectionDAG& DAG, EVT VT) {
DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
"non-hsa intrinsic with hsa target");
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto MFI = MF.getInfo<SIMachineFunctionInfo>();
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
// TODO: Should this propagate fast-math-flags?
switch (IntrinsicID) {
case Intrinsic::amdgcn_dispatch_ptr:
case Intrinsic::amdgcn_queue_ptr: {
if (!Subtarget->isAmdHsaOS()) {
DiagnosticInfoUnsupported BadIntrin(
*MF.getFunction(), "unsupported hsa intrinsic without hsa target",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
auto Reg = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
SIRegisterInfo::DISPATCH_PTR : SIRegisterInfo::QUEUE_PTR;
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
TRI->getPreloadedValue(MF, Reg), VT);
}
case Intrinsic::amdgcn_kernarg_segment_ptr: {
unsigned Reg
= TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
}
case Intrinsic::amdgcn_rcp:
return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq:
case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq_clamp:
case AMDGPUIntrinsic::AMDGPU_rsq_clamped: { // Legacy name
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
Type *Type = VT.getTypeForEVT(*DAG.getContext());
APFloat Max = APFloat::getLargest(Type->getFltSemantics());
APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
DAG.getConstantFP(Max, DL, VT));
return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
DAG.getConstantFP(Min, DL, VT));
}
case Intrinsic::r600_read_ngroups_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_X, false);
case Intrinsic::r600_read_ngroups_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Y, false);
case Intrinsic::r600_read_ngroups_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Z, false);
case Intrinsic::r600_read_global_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
case Intrinsic::r600_read_global_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
case Intrinsic::r600_read_global_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
case Intrinsic::r600_read_local_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_X);
case Intrinsic::r600_read_local_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Y);
case Intrinsic::r600_read_local_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Z);
case Intrinsic::amdgcn_read_workdim:
case AMDGPUIntrinsic::AMDGPU_read_workdim: // Legacy name.
// Really only 2 bits.
return lowerImplicitZextParam(DAG, Op, MVT::i8,
getImplicitParameterOffset(MFI, GRID_DIM));
case Intrinsic::amdgcn_workgroup_id_x:
case Intrinsic::r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
case Intrinsic::amdgcn_workgroup_id_y:
case Intrinsic::r600_read_tgid_y:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
case Intrinsic::amdgcn_workgroup_id_z:
case Intrinsic::r600_read_tgid_z:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::r600_read_tidig_x:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::r600_read_tidig_y:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::r600_read_tidig_z:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
case AMDGPUIntrinsic::SI_load_const: {
SDValue Ops[] = {
Op.getOperand(1),
Op.getOperand(2)
};
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
VT.getStoreSize(), 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
Op->getVTList(), Ops, VT, MMO);
}
case AMDGPUIntrinsic::SI_vs_load_input:
return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::SI_fs_constant: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
SDValue Glue = M0.getValue(1);
return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
DAG.getConstant(2, DL, MVT::i32), // P0
Op.getOperand(1), Op.getOperand(2), Glue);
}
case AMDGPUIntrinsic::SI_packf16:
if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
return DAG.getUNDEF(MVT::i32);
return Op;
case AMDGPUIntrinsic::SI_fs_interp: {
SDValue IJ = Op.getOperand(4);
SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
DAG.getConstant(0, DL, MVT::i32));
SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
DAG.getConstant(1, DL, MVT::i32));
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
SDValue Glue = M0.getValue(1);
SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
DAG.getVTList(MVT::f32, MVT::Glue),
I, Op.getOperand(1), Op.getOperand(2), Glue);
Glue = SDValue(P1.getNode(), 1);
return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
Op.getOperand(1), Op.getOperand(2), Glue);
}
case Intrinsic::amdgcn_interp_p1: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
SDValue Glue = M0.getValue(1);
return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Glue);
}
case Intrinsic::amdgcn_interp_p2: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
SDValue Glue = SDValue(M0.getNode(), 1);
return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
Glue);
}
case Intrinsic::amdgcn_sin:
return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_cos:
return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_log_clamp: {
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
return SDValue();
DiagnosticInfoUnsupported BadIntrin(
*MF.getFunction(), "intrinsic not supported on subtarget",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
case Intrinsic::amdgcn_ldexp:
return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_fract:
return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_class:
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_fmas:
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(4));
case Intrinsic::amdgcn_div_fixup:
return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_trig_preop:
return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_scale: {
// 3rd parameter required to be a constant.
const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
if (!Param)
return DAG.getUNDEF(VT);
// Translate to the operands expected by the machine instruction. The
// first parameter must be the same as the first instruction.
SDValue Numerator = Op.getOperand(1);
SDValue Denominator = Op.getOperand(2);
// Note this order is opposite of the machine instruction's operations,
// which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
// intrinsic has the numerator as the first operand to match a normal
// division operation.
SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
Denominator, Numerator);
}
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
default:
return AMDGPUTargetLowering::LowerOperation(Op, DAG);
}
}
SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec: {
MemSDNode *M = cast<MemSDNode>(Op);
unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
SDValue Ops[] = {
M->getOperand(0), // Chain
M->getOperand(2), // Ptr
M->getOperand(3) // Value
};
return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrinsicID) {
case AMDGPUIntrinsic::SI_sendmsg: {
Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
SDValue Glue = Chain.getValue(1);
return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
Op.getOperand(2), Glue);
}
case AMDGPUIntrinsic::SI_tbuffer_store: {
SDValue Ops[] = {
Chain,
Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4),
Op.getOperand(5),
Op.getOperand(6),
Op.getOperand(7),
Op.getOperand(8),
Op.getOperand(9),
Op.getOperand(10),
Op.getOperand(11),
Op.getOperand(12),
Op.getOperand(13),
Op.getOperand(14)
};
EVT VT = Op.getOperand(3).getValueType();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOStore,
VT.getStoreSize(), 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
Op->getVTList(), Ops, VT, MMO);
}
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
ISD::LoadExtType ExtType = Load->getExtensionType();
EVT MemVT = Load->getMemoryVT();
if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
assert(MemVT == MVT::i1 && "Only i1 non-extloads expected");
// FIXME: Copied from PPC
// First, load into 32 bits, then truncate to 1 bit.
SDValue Chain = Load->getChain();
SDValue BasePtr = Load->getBasePtr();
MachineMemOperand *MMO = Load->getMemOperand();
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
BasePtr, MVT::i8, MMO);
SDValue Ops[] = {
DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
NewLD.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
if (!MemVT.isVector())
return SDValue();
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented.");
unsigned AS = Load->getAddressSpace();
if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
AS, Load->getAlignment())) {
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
return DAG.getMergeValues(Ops, DL);
}
unsigned NumElements = MemVT.getVectorNumElements();
switch (AS) {
case AMDGPUAS::CONSTANT_ADDRESS:
if (isMemOpUniform(Load))
return SDValue();
// Non-uniform loads will be selected to MUBUF instructions, so they
// have the same legalization requires ments as global and private
// loads.
//
// Fall-through
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::FLAT_ADDRESS:
if (NumElements > 4)
return SplitVectorLoad(Op, DAG);
// v4 loads are supported for private and global memory.
return SDValue();
case AMDGPUAS::PRIVATE_ADDRESS: {
// Depending on the setting of the private_element_size field in the
// resource descriptor, we can only make private accesses up to a certain
// size.
switch (Subtarget->getMaxPrivateElementSize()) {
case 4:
return scalarizeVectorLoad(Load, DAG);
case 8:
if (NumElements > 2)
return SplitVectorLoad(Op, DAG);
return SDValue();
case 16:
// Same as global/flat
if (NumElements > 4)
return SplitVectorLoad(Op, DAG);
return SDValue();
default:
llvm_unreachable("unsupported private_element_size");
}
}
case AMDGPUAS::LOCAL_ADDRESS: {
if (NumElements > 2)
return SplitVectorLoad(Op, DAG);
if (NumElements == 2)
return SDValue();
// If properly aligned, if we split we might be able to use ds_read_b64.
return SplitVectorLoad(Op, DAG);
}
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() != MVT::i64)
return SDValue();
SDLoc DL(Op);
SDValue Cond = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
SDValue One = DAG.getConstant(1, DL, MVT::i32);
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
}
// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT VT = Op.getValueType();
bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
CLHS->isExactlyValue(1.0)) {
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
// 1.0 / sqrt(x) -> rsq(x)
//
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
// error seems really high at 2^29 ULP.
if (RHS.getOpcode() == ISD::FSQRT)
return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
// 1.0 / x -> rcp(x)
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
}
}
const SDNodeFlags *Flags = Op->getFlags();
if (Unsafe || Flags->hasAllowReciprocal()) {
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
SDNodeFlags Flags;
Flags.setUnsafeAlgebra(true);
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
}
return SDValue();
}
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
if (SDValue FastLowered = LowerFastFDIV(Op, DAG))
return FastLowered;
// This uses v_rcp_f32 which does not handle denormals. Let this hit a
// selection error for now rather than do something incorrect.
if (Subtarget->hasFP32Denormals())
return SDValue();
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
// faster 2.5 ulp fdiv when using -amdgpu-fast-fdiv flag
if (EnableAMDGPUFastFDIV) {
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
const APFloat K0Val(BitsToFloat(0x6f800000));
const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
const APFloat K1Val(BitsToFloat(0x2f800000));
const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
// TODO: Should this propagate fast-math-flags?
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
}
// Generates more precise fpdiv32.
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, RHS, RHS, LHS);
SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, LHS, RHS, LHS);
SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled);
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, ApproxRcp, One);
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, ApproxRcp);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1);
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, NumeratorScaled);
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul);
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, NumeratorScaled);
SDValue Scale = NumeratorScaled.getValue(1);
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, Fma4, Fma1, Fma3, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
}
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
if (DAG.getTarget().Options.UnsafeFPMath)
return LowerFastFDIV(Op, DAG);
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
NegDivScale0, Mul, DivScale1);
SDValue Scale;
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
// Workaround a hardware bug on SI where the condition output from div_scale
// is not usable.
const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
// Figure out if the scale to use for div_fmas.
SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
SDValue Scale0Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
SDValue Scale1Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
} else {
Scale = DivScale1.getValue(1);
}
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
Fma4, Fma3, Mul, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
}
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFDIV32(Op, DAG);
if (VT == MVT::f64)
return LowerFDIV64(Op, DAG);
llvm_unreachable("Unexpected type for fdiv");
}
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
if (VT == MVT::i1) {
return DAG.getTruncStore(Store->getChain(), DL,
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
}
assert(VT.isVector() &&
Store->getValue().getValueType().getScalarType() == MVT::i32);
unsigned AS = Store->getAddressSpace();
if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
AS, Store->getAlignment())) {
return expandUnalignedStore(Store, DAG);
}
unsigned NumElements = VT.getVectorNumElements();
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::FLAT_ADDRESS:
if (NumElements > 4)
return SplitVectorStore(Op, DAG);
return SDValue();
case AMDGPUAS::PRIVATE_ADDRESS: {
switch (Subtarget->getMaxPrivateElementSize()) {
case 4:
return scalarizeVectorStore(Store, DAG);
case 8:
if (NumElements > 2)
return SplitVectorStore(Op, DAG);
return SDValue();
case 16:
if (NumElements > 4)
return SplitVectorStore(Op, DAG);
return SDValue();
default:
llvm_unreachable("unsupported private_element_size");
}
}
case AMDGPUAS::LOCAL_ADDRESS: {
if (NumElements > 2)
return SplitVectorStore(Op, DAG);
if (NumElements == 2)
return Op;
// If properly aligned, if we split we might be able to use ds_write_b64.
return SplitVectorStore(Op, DAG);
}
default:
llvm_unreachable("unhandled address space");
}
}
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Arg = Op.getOperand(0);
// TODO: Should this propagate fast-math-flags?
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
DAG.getNode(ISD::FMUL, DL, VT, Arg,
DAG.getConstantFP(0.5/M_PI, DL,
VT)));
switch (Op.getOpcode()) {
case ISD::FCOS:
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
case ISD::FSIN:
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
default:
llvm_unreachable("Wrong trig opcode");
}
}
SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
assert(AtomicNode->isCompareAndSwap());
unsigned AS = AtomicNode->getAddressSpace();
// No custom lowering required for local address space
if (!isFlatGlobalAddrSpace(AS))
return Op;
// Non-local address space requires custom lowering for atomic compare
// and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
SDLoc DL(Op);
SDValue ChainIn = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
SDValue Old = Op.getOperand(2);
SDValue New = Op.getOperand(3);
EVT VT = Op.getValueType();
MVT SimpleVT = VT.getSimpleVT();
MVT VecType = MVT::getVectorVT(SimpleVT, 2);
SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
SDValue Ops[] = { ChainIn, Addr, NewOld };
return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
Ops, VT, AtomicNode->getMemOperand());
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
// TODO: We could try to match extracting the higher bytes, which would be
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
// about in practice.
if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
DCI.AddToWorklist(Cvt.getNode());
return Cvt;
}
}
// We are primarily trying to catch operations on illegal vector types
// before they are expanded.
// For scalars, we can use the more flexible method of checking masked bits
// after legalization.
if (!DCI.isBeforeLegalize() ||
!SrcVT.isVector() ||
SrcVT.getVectorElementType() != MVT::i8) {
return SDValue();
}
assert(DCI.isBeforeLegalize() && "Unexpected legal type");
// Weird sized vectors are a pain to handle, but we know 3 is really the same
// size as 4.
unsigned NElts = SrcVT.getVectorNumElements();
if (!SrcVT.isSimple() && NElts != 3)
return SDValue();
// Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
// prevent a mess from expanding to v4i32 and repacking.
if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
LoadSDNode *Load = cast<LoadSDNode>(Src);
unsigned AS = Load->getAddressSpace();
unsigned Align = Load->getAlignment();
Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
// Don't try to replace the load if we have to expand it due to alignment
// problems. Otherwise we will end up scalarizing the load, and trying to
// repack into the vector for no real reason.
if (Align < ABIAlignment &&
!allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
return SDValue();
}
SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
Load->getChain(),
Load->getBasePtr(),
LoadVT,
Load->getMemOperand());
// Make sure successors of the original load stay after it by updating
// them to use the new Chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
SmallVector<SDValue, 4> Elts;
if (RegVT.isVector())
DAG.ExtractVectorElements(NewLoad, Elts);
else
Elts.push_back(NewLoad);
SmallVector<SDValue, 4> Ops;
unsigned EltIdx = 0;
for (SDValue Elt : Elts) {
unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
for (unsigned I = 0; I < ComponentsInElt; ++I) {
unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
DCI.AddToWorklist(Cvt.getNode());
Ops.push_back(Cvt);
}
++EltIdx;
}
assert(Ops.size() == NElts);
return DAG.getBuildVector(FloatVT, DL, Ops);
}
return SDValue();
}
/// \brief Return true if the given offset Size in bytes can be folded into
/// the immediate offsets of a memory instruction for the given address space.
static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
const AMDGPUSubtarget &STI) {
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS: {
// MUBUF instructions a 12-bit offset in bytes.
return isUInt<12>(OffsetSize);
}
case AMDGPUAS::CONSTANT_ADDRESS: {
// SMRD instructions have an 8-bit offset in dwords on SI and
// a 20-bit offset in bytes on VI.
if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return isUInt<20>(OffsetSize);
else
return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
}
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::REGION_ADDRESS: {
// The single offset versions have a 16-bit offset in bytes.
return isUInt<16>(OffsetSize);
}
case AMDGPUAS::PRIVATE_ADDRESS:
// Indirect register addressing does not use any offsets.
default:
return 0;
}
}
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
// This is a variant of
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
//
// The normal DAG combiner will do this, but only if the add has one use since
// that would increase the number of instructions.
//
// This prevents us from seeing a constant offset that can be folded into a
// memory instruction's addressing mode. If we know the resulting add offset of
// a pointer can be folded into an addressing offset, we can replace the pointer
// operand with the add of new constant offset. This eliminates one of the uses,
// and may allow the remaining use to also be simplified.
//
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
unsigned AddrSpace,
DAGCombinerInfo &DCI) const {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (N0.getOpcode() != ISD::ADD)
return SDValue();
const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
if (!CN1)
return SDValue();
const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!CAdd)
return SDValue();
// If the resulting offset is too large, we can't fold it into the addressing
// mode offset.
APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
EVT VT = N->getValueType(0);
SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
}
SDValue SITargetLowering::performAndCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.isBeforeLegalize())
return SDValue();
if (SDValue Base = AMDGPUTargetLowering::performAndCombine(N, DCI))
return Base;
SelectionDAG &DAG = DCI.DAG;
// (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
// fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::SETCC &&
RHS.getOpcode() == ISD::SETCC) {
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
SDValue X = LHS.getOperand(0);
SDValue Y = RHS.getOperand(0);
if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
return SDValue();
if (LCC == ISD::SETO) {
if (X != LHS.getOperand(1))
return SDValue();
if (RCC == ISD::SETUNE) {
const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
if (!C1 || !C1->isInfinity() || C1->isNegative())
return SDValue();
const uint32_t Mask = SIInstrFlags::N_NORMAL |
SIInstrFlags::N_SUBNORMAL |
SIInstrFlags::N_ZERO |
SIInstrFlags::P_ZERO |
SIInstrFlags::P_SUBNORMAL |
SIInstrFlags::P_NORMAL;
static_assert(((~(SIInstrFlags::S_NAN |
SIInstrFlags::Q_NAN |
SIInstrFlags::N_INFINITY |
SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
"mask not equal");
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
X, DAG.getConstant(Mask, DL, MVT::i32));
}
}
}
return SDValue();
}
SDValue SITargetLowering::performOrCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
if (VT == MVT::i64) {
// TODO: This could be a generic combine with a predicate for extracting the
// high half of an integer being free.
// (or i64:x, (zero_extend i32:y)) ->
// i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
RHS.getOpcode() != ISD::ZERO_EXTEND)
std::swap(LHS, RHS);
if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
SDValue ExtSrc = RHS.getOperand(0);
EVT SrcVT = ExtSrc.getValueType();
if (SrcVT == MVT::i32) {
SDLoc SL(N);
SDValue LowLHS, HiBits;
std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
DCI.AddToWorklist(LowOr.getNode());
DCI.AddToWorklist(HiBits.getNode());
SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
LowOr, HiBits);
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
}
}
// or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
SDValue Src = LHS.getOperand(0);
if (Src != RHS.getOperand(0))
return SDValue();
const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if (!CLHS || !CRHS)
return SDValue();
// Only 10 bits are used.
static const uint32_t MaxMask = 0x3ff;
uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
Src, DAG.getConstant(NewMask, DL, MVT::i32));
}
return SDValue();
}
SDValue SITargetLowering::performClassCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Mask = N->getOperand(1);
// fp_class x, 0 -> false
if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
if (CMask->isNullValue())
return DAG.getConstant(0, SDLoc(N), MVT::i1);
}
return SDValue();
}
// Constant fold canonicalize.
SDValue SITargetLowering::performFCanonicalizeCombine(
SDNode *N,
DAGCombinerInfo &DCI) const {
ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
if (!CFP)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
const APFloat &C = CFP->getValueAPF();
// Flush denormals to 0 if not enabled.
if (C.isDenormal()) {
EVT VT = N->getValueType(0);
if (VT == MVT::f32 && !Subtarget->hasFP32Denormals())
return DAG.getConstantFP(0.0, SDLoc(N), VT);
if (VT == MVT::f64 && !Subtarget->hasFP64Denormals())
return DAG.getConstantFP(0.0, SDLoc(N), VT);
}
if (C.isNaN()) {
EVT VT = N->getValueType(0);
APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
if (C.isSignaling()) {
// Quiet a signaling NaN.
return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
}
// Make sure it is the canonical NaN bitpattern.
//
// TODO: Can we use -1 as the canonical NaN value since it's an inline
// immediate?
if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
}
return SDValue(CFP, 0);
}
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
switch (Opc) {
case ISD::FMAXNUM:
return AMDGPUISD::FMAX3;
case ISD::SMAX:
return AMDGPUISD::SMAX3;
case ISD::UMAX:
return AMDGPUISD::UMAX3;
case ISD::FMINNUM:
return AMDGPUISD::FMIN3;
case ISD::SMIN:
return AMDGPUISD::SMIN3;
case ISD::UMIN:
return AMDGPUISD::UMIN3;
default:
llvm_unreachable("Not a min/max opcode");
}
}
static SDValue performIntMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
SDValue Op0, SDValue Op1, bool Signed) {
ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
if (!K1)
return SDValue();
ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
if (!K0)
return SDValue();
if (Signed) {
if (K0->getAPIntValue().sge(K1->getAPIntValue()))
return SDValue();
} else {
if (K0->getAPIntValue().uge(K1->getAPIntValue()))
return SDValue();
}
EVT VT = K0->getValueType(0);
return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT,
Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
}
static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
return true;
return DAG.isKnownNeverNaN(Op);
}
static SDValue performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
SDValue Op0, SDValue Op1) {
ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
if (!K1)
return SDValue();
ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
if (!K0)
return SDValue();
// Ordered >= (although NaN inputs should have folded away by now).
APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
if (Cmp == APFloat::cmpGreaterThan)
return SDValue();
// This isn't safe with signaling NaNs because in IEEE mode, min/max on a
// signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
// give the other result, which is different from med3 with a NaN input.
SDValue Var = Op0.getOperand(0);
if (!isKnownNeverSNan(DAG, Var))
return SDValue();
return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
Var, SDValue(K0, 0), SDValue(K1, 0));
}
SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
unsigned Opc = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Only do this if the inner op has one use since this will just increases
// register pressure for no benefit.
if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) {
// max(max(a, b), c) -> max3(a, b, c)
// min(min(a, b), c) -> min3(a, b, c)
if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0.getOperand(0),
Op0.getOperand(1),
Op1);
}
// Try commuted.
// max(a, max(b, c)) -> max3(a, b, c)
// min(a, min(b, c)) -> min3(a, b, c)
if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0,
Op1.getOperand(0),
Op1.getOperand(1));
}
}
// min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
return Med3;
}
if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
return Med3;
}
// fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
(Opc == AMDGPUISD::FMIN_LEGACY &&
Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) {
if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
return Res;
}
return SDValue();
}
SDValue SITargetLowering::performSetCCCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = LHS.getValueType();
if (VT != MVT::f32 && VT != MVT::f64)
return SDValue();
// Match isinf pattern
// (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
if (!CRHS)
return SDValue();
const APFloat &APF = CRHS->getValueAPF();
if (APF.isInfinity() && !APF.isNegative()) {
unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(Mask, SL, MVT::i32));
}
}
return SDValue();
}
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
switch (N->getOpcode()) {
default:
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
case ISD::SETCC:
return performSetCCCombine(N, DCI);
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMAX:
case ISD::UMIN:
case AMDGPUISD::FMIN_LEGACY:
case AMDGPUISD::FMAX_LEGACY: {
if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
N->getValueType(0) != MVT::f64 &&
getTargetMachine().getOptLevel() > CodeGenOpt::None)
return performMinMaxCombine(N, DCI);
break;
}
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3: {
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
SDValue Src = N->getOperand(0);
if (Src.getOpcode() == ISD::SRL) {
// cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
// cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
// cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(1))) {
unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
if (SrcOffset < 32 && SrcOffset % 8 == 0) {
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, DL,
MVT::f32, Src.getOperand(0));
}
}
}
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case ISD::UINT_TO_FP: {
return performUCharToFloatCombine(N, DCI);
}
case ISD::FADD: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
EVT VT = N->getValueType(0);
if (VT != MVT::f32)
break;
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
if (Subtarget->hasFP32Denormals())
break;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// These should really be instruction patterns, but writing patterns with
// source modiifiers is a pain.
// fadd (fadd (a, a), b) -> mad 2.0, a, b
if (LHS.getOpcode() == ISD::FADD) {
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
}
}
// fadd (b, fadd (a, a)) -> mad 2.0, a, b
if (RHS.getOpcode() == ISD::FADD) {
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
}
}
return SDValue();
}
case ISD::FSUB: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
EVT VT = N->getValueType(0);
// Try to get the fneg to fold into the source modifier. This undoes generic
// DAG combines and folds them into the mad.
//
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
if (VT == MVT::f32 &&
!Subtarget->hasFP32Denormals()) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::FADD) {
// (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
}
}
if (RHS.getOpcode() == ISD::FADD) {
// (fsub c, (fadd a, a)) -> mad -2.0, a, c
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
}
}
return SDValue();
}
break;
}
case ISD::LOAD:
case ISD::STORE:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE:
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case AMDGPUISD::ATOMIC_INC:
case AMDGPUISD::ATOMIC_DEC: { // TODO: Target mem intrinsics.
if (DCI.isBeforeLegalize())
break;
MemSDNode *MemNode = cast<MemSDNode>(N);
SDValue Ptr = MemNode->getBasePtr();
// TODO: We could also do this for multiplies.
unsigned AS = MemNode->getAddressSpace();
if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
if (NewPtr) {
SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
}
}
break;
}
case ISD::AND:
return performAndCombine(N, DCI);
case ISD::OR:
return performOrCombine(N, DCI);
case AMDGPUISD::FP_CLASS:
return performClassCombine(N, DCI);
case ISD::FCANONICALIZE:
return performFCanonicalizeCombine(N, DCI);
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
if (TII->isInlineConstant(Node->getAPIntValue()))
return 0;
uint64_t Val = Node->getZExtValue();
return isUInt<32>(Val) ? Val : -1;
}
if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
return 0;
if (Node->getValueType(0) == MVT::f32)
return FloatToBits(Node->getValueAPF().convertToFloat());
return -1;
}
return -1;
}
/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return 0;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
}
}
/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
SDNode *Users[4] = { };
unsigned Lane = 0;
unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
unsigned NewDmask = 0;
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return;
// Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
// Note that subregs are packed, i.e. Lane==0 is the first bit set
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
// set, etc.
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
// Set which texture component corresponds to the lane.
unsigned Comp;
for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
assert(Dmask);
Comp = countTrailingZeros(Dmask);
Dmask &= ~(1 << Comp);
}
// Abort if we have more than one user per component
if (Users[Lane])
return;
Users[Lane] = *I;
NewDmask |= 1 << Comp;
}
// Abort if there's no change
if (NewDmask == OldDmask)
return;
// Adjust the writemask in the node
std::vector<SDValue> Ops;
Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
// If we only got one lane, replace it with a copy
// (if NewDmask has only one bit set...)
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
MVT::i32);
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
SDLoc(), Users[Lane]->getValueType(0),
SDValue(Node, 0), RC);
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
SDNode *User = Users[i];
if (!User)
continue;
SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
}
}
}
static bool isFrameIndexOp(SDValue Op) {
if (Op.getOpcode() == ISD::AssertZext)
Op = Op.getOperand(0);
return isa<FrameIndexSDNode>(Op);
}
/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
/// with frame index operands.
/// LLVM assumes that inputs are to these instructions are registers.
void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
if (!isFrameIndexOp(Node->getOperand(i))) {
Ops.push_back(Node->getOperand(i));
continue;
}
SDLoc DL(Node);
Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
Node->getOperand(i).getValueType(),
Node->getOperand(i)), 0));
}
DAG.UpdateNodeOperands(Node, Ops);
}
/// \brief Fold the instructions after selecting them.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
unsigned Opcode = Node->getMachineOpcode();
if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore())
adjustWritemask(Node, DAG);
if (Opcode == AMDGPU::INSERT_SUBREG ||
Opcode == AMDGPU::REG_SEQUENCE) {
legalizeTargetIndependentNode(Node, DAG);
return Node;
}
return Node;
}
/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
if (TII->isVOP3(MI->getOpcode())) {
// Make sure constant bus requirements are respected.
TII->legalizeOperandsVOP3(MRI, MI);
return;
}
if (TII->isMIMG(*MI)) {
unsigned VReg = MI->getOperand(0).getReg();
unsigned DmaskIdx = MI->getNumOperands() == 12 ? 3 : 4;
unsigned Writemask = MI->getOperand(DmaskIdx).getImm();
unsigned BitsSet = 0;
for (unsigned i = 0; i < 4; ++i)
BitsSet += Writemask & (1 << i) ? 1 : 0;
const TargetRegisterClass *RC;
switch (BitsSet) {
default: return;
case 1: RC = &AMDGPU::VGPR_32RegClass; break;
case 2: RC = &AMDGPU::VReg_64RegClass; break;
case 3: RC = &AMDGPU::VReg_96RegClass; break;
}
unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
MI->setDesc(TII->get(NewOpcode));
MRI.setRegClass(VReg, RC);
return;
}
// Replace unused atomics with the no return version.
int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
if (NoRetAtomicOp != -1) {
if (!Node->hasAnyUseOfValue(0)) {
MI->setDesc(TII->get(NoRetAtomicOp));
MI->RemoveOperand(0);
return;
}
// For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
// instruction, because the return type of these instructions is a vec2 of
// the memory type, so it can be tied to the input operand.
// This means these instructions always have a use, so we need to add a
// special case to check if the atomic has only one extract_subreg use,
// which itself has no uses.
if ((Node->hasNUsesOfValue(1, 0) &&
Node->use_begin()->isMachineOpcode() &&
Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
!Node->use_begin()->hasAnyUseOfValue(0))) {
unsigned Def = MI->getOperand(0).getReg();
// Change this into a noret atomic.
MI->setDesc(TII->get(NoRetAtomicOp));
MI->RemoveOperand(0);
// If we only remove the def operand from the atomic instruction, the
// extract_subreg will be left with a use of a vreg without a def.
// So we need to insert an implicit_def to avoid machine verifier
// errors.
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
TII->get(AMDGPU::IMPLICIT_DEF), Def);
}
return;
}
}
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
uint64_t Val) {
SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
}
MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
const SDLoc &DL,
SDValue Ptr) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
// Build the half of the subregister with the constants before building the
// full 128-bit register. If we are building multiple resource descriptors,
// this will allow CSEing of the 2-component register.
const SDValue Ops0[] = {
DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
buildSMovImm32(DAG, DL, 0),
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
};
SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::v2i32, Ops0), 0);
// Combine the constants and the pointer.
const SDValue Ops1[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
Ptr,
DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
SubRegHi,
DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
}
/// \brief Return a resource descriptor with the 'Add TID' bit enabled
/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
/// of the resource descriptor) to create an offset, which is added to
/// the resource pointer.
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
SDValue Ptr, uint32_t RsrcDword1,
uint64_t RsrcDword2And3) const {
SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
if (RsrcDword1) {
PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
DAG.getConstant(RsrcDword1, DL, MVT::i32)),
0);
}
SDValue DataLo = buildSMovImm32(DAG, DL,
RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
const SDValue Ops[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
PtrLo,
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
PtrHi,
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
DataLo,
DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
DataHi,
DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
}
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
cast<RegisterSDNode>(VReg)->getReg(), VT);
}
//===----------------------------------------------------------------------===//
// SI Inline Assembly Support
//===----------------------------------------------------------------------===//
std::pair<unsigned, const TargetRegisterClass *>
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 's':
case 'r':
switch (VT.getSizeInBits()) {
default:
return std::make_pair(0U, nullptr);
case 32:
return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
case 64:
return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
case 128:
return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
case 256:
return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
}
case 'v':
switch (VT.getSizeInBits()) {
default:
return std::make_pair(0U, nullptr);
case 32:
return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
case 64:
return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
case 96:
return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
case 128:
return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
case 256:
return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
case 512:
return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
}
}
}
if (Constraint.size() > 1) {
const TargetRegisterClass *RC = nullptr;
if (Constraint[1] == 'v') {
RC = &AMDGPU::VGPR_32RegClass;
} else if (Constraint[1] == 's') {
RC = &AMDGPU::SGPR_32RegClass;
}
if (RC) {
uint32_t Idx;
bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
if (!Failed && Idx < RC->getNumRegs())
return std::make_pair(RC->getRegister(Idx), RC);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
SITargetLowering::ConstraintType
SITargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 's':
case 'v':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}