1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/VMCore/Function.cpp
2007-12-29 20:36:04 +00:00

566 lines
17 KiB
C++

//===-- Function.cpp - Implement the Global object classes ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Function class for the VMCore library.
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/StringPool.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;
BasicBlock *ilist_traits<BasicBlock>::createSentinel() {
BasicBlock *Ret = new BasicBlock();
// This should not be garbage monitored.
LeakDetector::removeGarbageObject(Ret);
return Ret;
}
iplist<BasicBlock> &ilist_traits<BasicBlock>::getList(Function *F) {
return F->getBasicBlockList();
}
Argument *ilist_traits<Argument>::createSentinel() {
Argument *Ret = new Argument(Type::Int32Ty);
// This should not be garbage monitored.
LeakDetector::removeGarbageObject(Ret);
return Ret;
}
iplist<Argument> &ilist_traits<Argument>::getList(Function *F) {
return F->getArgumentList();
}
// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class SymbolTableListTraits<Argument, Function>;
template class SymbolTableListTraits<BasicBlock, Function>;
//===----------------------------------------------------------------------===//
// Argument Implementation
//===----------------------------------------------------------------------===//
Argument::Argument(const Type *Ty, const std::string &Name, Function *Par)
: Value(Ty, Value::ArgumentVal) {
Parent = 0;
// Make sure that we get added to a function
LeakDetector::addGarbageObject(this);
if (Par)
Par->getArgumentList().push_back(this);
setName(Name);
}
void Argument::setParent(Function *parent) {
if (getParent())
LeakDetector::addGarbageObject(this);
Parent = parent;
if (getParent())
LeakDetector::removeGarbageObject(this);
}
//===----------------------------------------------------------------------===//
// ParamAttrsList Implementation
//===----------------------------------------------------------------------===//
uint16_t
ParamAttrsList::getParamAttrs(uint16_t Index) const {
unsigned limit = attrs.size();
for (unsigned i = 0; i < limit && attrs[i].index <= Index; ++i)
if (attrs[i].index == Index)
return attrs[i].attrs;
return ParamAttr::None;
}
std::string
ParamAttrsList::getParamAttrsText(uint16_t Attrs) {
std::string Result;
if (Attrs & ParamAttr::ZExt)
Result += "zeroext ";
if (Attrs & ParamAttr::SExt)
Result += "signext ";
if (Attrs & ParamAttr::NoReturn)
Result += "noreturn ";
if (Attrs & ParamAttr::NoUnwind)
Result += "nounwind ";
if (Attrs & ParamAttr::InReg)
Result += "inreg ";
if (Attrs & ParamAttr::NoAlias)
Result += "noalias ";
if (Attrs & ParamAttr::StructRet)
Result += "sret ";
if (Attrs & ParamAttr::ByVal)
Result += "byval ";
if (Attrs & ParamAttr::Nest)
Result += "nest ";
if (Attrs & ParamAttr::ReadNone)
Result += "readnone ";
if (Attrs & ParamAttr::ReadOnly)
Result += "readonly ";
return Result;
}
/// onlyInformative - Returns whether only informative attributes are set.
static inline bool onlyInformative(uint16_t attrs) {
return !(attrs & ~ParamAttr::Informative);
}
bool
ParamAttrsList::areCompatible(const ParamAttrsList *A, const ParamAttrsList *B){
if (A == B)
return true;
unsigned ASize = A ? A->size() : 0;
unsigned BSize = B ? B->size() : 0;
unsigned AIndex = 0;
unsigned BIndex = 0;
while (AIndex < ASize && BIndex < BSize) {
uint16_t AIdx = A->getParamIndex(AIndex);
uint16_t BIdx = B->getParamIndex(BIndex);
uint16_t AAttrs = A->getParamAttrsAtIndex(AIndex);
uint16_t BAttrs = B->getParamAttrsAtIndex(AIndex);
if (AIdx < BIdx) {
if (!onlyInformative(AAttrs))
return false;
++AIndex;
} else if (BIdx < AIdx) {
if (!onlyInformative(BAttrs))
return false;
++BIndex;
} else {
if (!onlyInformative(AAttrs ^ BAttrs))
return false;
++AIndex;
++BIndex;
}
}
for (; AIndex < ASize; ++AIndex)
if (!onlyInformative(A->getParamAttrsAtIndex(AIndex)))
return false;
for (; BIndex < BSize; ++BIndex)
if (!onlyInformative(B->getParamAttrsAtIndex(AIndex)))
return false;
return true;
}
void
ParamAttrsList::Profile(FoldingSetNodeID &ID) const {
for (unsigned i = 0; i < attrs.size(); ++i) {
uint32_t val = uint32_t(attrs[i].attrs) << 16 | attrs[i].index;
ID.AddInteger(val);
}
}
static ManagedStatic<FoldingSet<ParamAttrsList> > ParamAttrsLists;
const ParamAttrsList *
ParamAttrsList::get(const ParamAttrsVector &attrVec) {
// If there are no attributes then return a null ParamAttrsList pointer.
if (attrVec.empty())
return 0;
#ifndef NDEBUG
for (unsigned i = 0, e = attrVec.size(); i < e; ++i) {
assert(attrVec[i].attrs != ParamAttr::None
&& "Pointless parameter attribute!");
assert((!i || attrVec[i-1].index < attrVec[i].index)
&& "Misordered ParamAttrsList!");
}
#endif
// Otherwise, build a key to look up the existing attributes.
ParamAttrsList key(attrVec);
FoldingSetNodeID ID;
key.Profile(ID);
void *InsertPos;
ParamAttrsList* PAL = ParamAttrsLists->FindNodeOrInsertPos(ID, InsertPos);
// If we didn't find any existing attributes of the same shape then
// create a new one and insert it.
if (!PAL) {
PAL = new ParamAttrsList(attrVec);
ParamAttrsLists->InsertNode(PAL, InsertPos);
}
// Return the ParamAttrsList that we found or created.
return PAL;
}
const ParamAttrsList *
ParamAttrsList::getModified(const ParamAttrsList *PAL,
const ParamAttrsVector &modVec) {
if (modVec.empty())
return PAL;
#ifndef NDEBUG
for (unsigned i = 0, e = modVec.size(); i < e; ++i)
assert((!i || modVec[i-1].index < modVec[i].index)
&& "Misordered ParamAttrsList!");
#endif
if (!PAL) {
// Strip any instances of ParamAttr::None from modVec before calling 'get'.
ParamAttrsVector newVec;
for (unsigned i = 0, e = modVec.size(); i < e; ++i)
if (modVec[i].attrs != ParamAttr::None)
newVec.push_back(modVec[i]);
return get(newVec);
}
const ParamAttrsVector &oldVec = PAL->attrs;
ParamAttrsVector newVec;
unsigned oldI = 0;
unsigned modI = 0;
unsigned oldE = oldVec.size();
unsigned modE = modVec.size();
while (oldI < oldE && modI < modE) {
uint16_t oldIndex = oldVec[oldI].index;
uint16_t modIndex = modVec[modI].index;
if (oldIndex < modIndex) {
newVec.push_back(oldVec[oldI]);
++oldI;
} else if (modIndex < oldIndex) {
if (modVec[modI].attrs != ParamAttr::None)
newVec.push_back(modVec[modI]);
++modI;
} else {
// Same index - overwrite or delete existing attributes.
if (modVec[modI].attrs != ParamAttr::None)
newVec.push_back(modVec[modI]);
++oldI;
++modI;
}
}
for (; oldI < oldE; ++oldI)
newVec.push_back(oldVec[oldI]);
for (; modI < modE; ++modI)
if (modVec[modI].attrs != ParamAttr::None)
newVec.push_back(modVec[modI]);
return get(newVec);
}
const ParamAttrsList *
ParamAttrsList::includeAttrs(const ParamAttrsList *PAL,
uint16_t idx, uint16_t attrs) {
uint16_t OldAttrs = PAL ? PAL->getParamAttrs(idx) : 0;
uint16_t NewAttrs = OldAttrs | attrs;
if (NewAttrs == OldAttrs)
return PAL;
ParamAttrsVector modVec;
modVec.push_back(ParamAttrsWithIndex::get(idx, NewAttrs));
return getModified(PAL, modVec);
}
const ParamAttrsList *
ParamAttrsList::excludeAttrs(const ParamAttrsList *PAL,
uint16_t idx, uint16_t attrs) {
uint16_t OldAttrs = PAL ? PAL->getParamAttrs(idx) : 0;
uint16_t NewAttrs = OldAttrs & ~attrs;
if (NewAttrs == OldAttrs)
return PAL;
ParamAttrsVector modVec;
modVec.push_back(ParamAttrsWithIndex::get(idx, NewAttrs));
return getModified(PAL, modVec);
}
ParamAttrsList::~ParamAttrsList() {
ParamAttrsLists->RemoveNode(this);
}
//===----------------------------------------------------------------------===//
// Function Implementation
//===----------------------------------------------------------------------===//
Function::Function(const FunctionType *Ty, LinkageTypes Linkage,
const std::string &name, Module *ParentModule)
: GlobalValue(PointerType::getUnqual(Ty),
Value::FunctionVal, 0, 0, Linkage, name),
ParamAttrs(0) {
SymTab = new ValueSymbolTable();
assert((getReturnType()->isFirstClassType() ||getReturnType() == Type::VoidTy)
&& "LLVM functions cannot return aggregate values!");
// If the function has arguments, mark them as lazily built.
if (Ty->getNumParams())
SubclassData = 1; // Set the "has lazy arguments" bit.
// Make sure that we get added to a function
LeakDetector::addGarbageObject(this);
if (ParentModule)
ParentModule->getFunctionList().push_back(this);
}
Function::~Function() {
dropAllReferences(); // After this it is safe to delete instructions.
// Delete all of the method arguments and unlink from symbol table...
ArgumentList.clear();
delete SymTab;
// Drop our reference to the parameter attributes, if any.
if (ParamAttrs)
ParamAttrs->dropRef();
// Remove the function from the on-the-side collector table.
clearCollector();
}
void Function::BuildLazyArguments() const {
// Create the arguments vector, all arguments start out unnamed.
const FunctionType *FT = getFunctionType();
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
assert(FT->getParamType(i) != Type::VoidTy &&
"Cannot have void typed arguments!");
ArgumentList.push_back(new Argument(FT->getParamType(i)));
}
// Clear the lazy arguments bit.
const_cast<Function*>(this)->SubclassData &= ~1;
}
size_t Function::arg_size() const {
return getFunctionType()->getNumParams();
}
bool Function::arg_empty() const {
return getFunctionType()->getNumParams() == 0;
}
void Function::setParent(Module *parent) {
if (getParent())
LeakDetector::addGarbageObject(this);
Parent = parent;
if (getParent())
LeakDetector::removeGarbageObject(this);
}
void Function::setParamAttrs(const ParamAttrsList *attrs) {
// Avoid deleting the ParamAttrsList if they are setting the
// attributes to the same list.
if (ParamAttrs == attrs)
return;
// Drop reference on the old ParamAttrsList
if (ParamAttrs)
ParamAttrs->dropRef();
// Add reference to the new ParamAttrsList
if (attrs)
attrs->addRef();
// Set the new ParamAttrsList.
ParamAttrs = attrs;
}
const FunctionType *Function::getFunctionType() const {
return cast<FunctionType>(getType()->getElementType());
}
bool Function::isVarArg() const {
return getFunctionType()->isVarArg();
}
const Type *Function::getReturnType() const {
return getFunctionType()->getReturnType();
}
void Function::removeFromParent() {
getParent()->getFunctionList().remove(this);
}
void Function::eraseFromParent() {
getParent()->getFunctionList().erase(this);
}
// dropAllReferences() - This function causes all the subinstructions to "let
// go" of all references that they are maintaining. This allows one to
// 'delete' a whole class at a time, even though there may be circular
// references... first all references are dropped, and all use counts go to
// zero. Then everything is deleted for real. Note that no operations are
// valid on an object that has "dropped all references", except operator
// delete.
//
void Function::dropAllReferences() {
for (iterator I = begin(), E = end(); I != E; ++I)
I->dropAllReferences();
BasicBlocks.clear(); // Delete all basic blocks...
}
// Maintain the collector name for each function in an on-the-side table. This
// saves allocating an additional word in Function for programs which do not use
// GC (i.e., most programs) at the cost of increased overhead for clients which
// do use GC.
static DenseMap<const Function*,PooledStringPtr> *CollectorNames;
static StringPool *CollectorNamePool;
bool Function::hasCollector() const {
return CollectorNames && CollectorNames->count(this);
}
const char *Function::getCollector() const {
assert(hasCollector() && "Function has no collector");
return *(*CollectorNames)[this];
}
void Function::setCollector(const char *Str) {
if (!CollectorNamePool)
CollectorNamePool = new StringPool();
if (!CollectorNames)
CollectorNames = new DenseMap<const Function*,PooledStringPtr>();
(*CollectorNames)[this] = CollectorNamePool->intern(Str);
}
void Function::clearCollector() {
if (CollectorNames) {
CollectorNames->erase(this);
if (CollectorNames->empty()) {
delete CollectorNames;
CollectorNames = 0;
if (CollectorNamePool->empty()) {
delete CollectorNamePool;
CollectorNamePool = 0;
}
}
}
}
/// getIntrinsicID - This method returns the ID number of the specified
/// function, or Intrinsic::not_intrinsic if the function is not an
/// intrinsic, or if the pointer is null. This value is always defined to be
/// zero to allow easy checking for whether a function is intrinsic or not. The
/// particular intrinsic functions which correspond to this value are defined in
/// llvm/Intrinsics.h.
///
unsigned Function::getIntrinsicID(bool noAssert) const {
const ValueName *ValName = this->getValueName();
if (!ValName)
return 0;
unsigned Len = ValName->getKeyLength();
const char *Name = ValName->getKeyData();
if (Len < 5 || Name[4] != '.' || Name[0] != 'l' || Name[1] != 'l'
|| Name[2] != 'v' || Name[3] != 'm')
return 0; // All intrinsics start with 'llvm.'
assert((Len != 5 || noAssert) && "'llvm.' is an invalid intrinsic name!");
#define GET_FUNCTION_RECOGNIZER
#include "llvm/Intrinsics.gen"
#undef GET_FUNCTION_RECOGNIZER
assert(noAssert && "Invalid LLVM intrinsic name");
return 0;
}
std::string Intrinsic::getName(ID id, const Type **Tys, unsigned numTys) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
const char * const Table[] = {
"not_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_NAME_TABLE
};
if (numTys == 0)
return Table[id];
std::string Result(Table[id]);
for (unsigned i = 0; i < numTys; ++i)
if (Tys[i])
Result += "." + MVT::getValueTypeString(MVT::getValueType(Tys[i]));
return Result;
}
const FunctionType *Intrinsic::getType(ID id, const Type **Tys,
unsigned numTys) {
const Type *ResultTy = NULL;
std::vector<const Type*> ArgTys;
bool IsVarArg = false;
#define GET_INTRINSIC_GENERATOR
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_GENERATOR
return FunctionType::get(ResultTy, ArgTys, IsVarArg);
}
const ParamAttrsList *Intrinsic::getParamAttrs(ID id) {
static const ParamAttrsList *IntrinsicAttributes[Intrinsic::num_intrinsics];
if (IntrinsicAttributes[id])
return IntrinsicAttributes[id];
ParamAttrsVector Attrs;
uint16_t Attr = ParamAttr::None;
#define GET_INTRINSIC_ATTRIBUTES
#include "llvm/Intrinsics.gen"
#undef GET_INTRINSIC_ATTRIBUTES
// Intrinsics cannot throw exceptions.
Attr |= ParamAttr::NoUnwind;
Attrs.push_back(ParamAttrsWithIndex::get(0, Attr));
IntrinsicAttributes[id] = ParamAttrsList::get(Attrs);
return IntrinsicAttributes[id];
}
Function *Intrinsic::getDeclaration(Module *M, ID id, const Type **Tys,
unsigned numTys) {
// There can never be multiple globals with the same name of different types,
// because intrinsics must be a specific type.
Function *F =
cast<Function>(M->getOrInsertFunction(getName(id, Tys, numTys),
getType(id, Tys, numTys)));
F->setParamAttrs(getParamAttrs(id));
return F;
}
Value *IntrinsicInst::StripPointerCasts(Value *Ptr) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::BitCast) {
if (isa<PointerType>(CE->getOperand(0)->getType()))
return StripPointerCasts(CE->getOperand(0));
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
if (!CE->getOperand(i)->isNullValue())
return Ptr;
return StripPointerCasts(CE->getOperand(0));
}
return Ptr;
}
if (BitCastInst *CI = dyn_cast<BitCastInst>(Ptr)) {
if (isa<PointerType>(CI->getOperand(0)->getType()))
return StripPointerCasts(CI->getOperand(0));
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
if (GEP->hasAllZeroIndices())
return StripPointerCasts(GEP->getOperand(0));
}
return Ptr;
}
// vim: sw=2 ai