1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-30 07:22:55 +01:00
llvm-mirror/unittests/ExecutionEngine/MCJIT/MCJITMemoryManagerTest.cpp
Craig Topper b00824c629 [C++11] Use 'nullptr'.
llvm-svn: 210442
2014-06-08 22:29:17 +00:00

172 lines
4.8 KiB
C++

//===- MCJITMemoryManagerTest.cpp - Unit tests for the JIT memory manager -===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
TEST(MCJITMemoryManagerTest, BasicAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t *code1 = MemMgr->allocateCodeSection(256, 0, 1, "");
uint8_t *data1 = MemMgr->allocateDataSection(256, 0, 2, "", true);
uint8_t *code2 = MemMgr->allocateCodeSection(256, 0, 3, "");
uint8_t *data2 = MemMgr->allocateDataSection(256, 0, 4, "", false);
EXPECT_NE((uint8_t*)nullptr, code1);
EXPECT_NE((uint8_t*)nullptr, code2);
EXPECT_NE((uint8_t*)nullptr, data1);
EXPECT_NE((uint8_t*)nullptr, data2);
// Initialize the data
for (unsigned i = 0; i < 256; ++i) {
code1[i] = 1;
code2[i] = 2;
data1[i] = 3;
data2[i] = 4;
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 256; ++i) {
EXPECT_EQ(1, code1[i]);
EXPECT_EQ(2, code2[i]);
EXPECT_EQ(3, data1[i]);
EXPECT_EQ(4, data2[i]);
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, LargeAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t *code1 = MemMgr->allocateCodeSection(0x100000, 0, 1, "");
uint8_t *data1 = MemMgr->allocateDataSection(0x100000, 0, 2, "", true);
uint8_t *code2 = MemMgr->allocateCodeSection(0x100000, 0, 3, "");
uint8_t *data2 = MemMgr->allocateDataSection(0x100000, 0, 4, "", false);
EXPECT_NE((uint8_t*)nullptr, code1);
EXPECT_NE((uint8_t*)nullptr, code2);
EXPECT_NE((uint8_t*)nullptr, data1);
EXPECT_NE((uint8_t*)nullptr, data2);
// Initialize the data
for (unsigned i = 0; i < 0x100000; ++i) {
code1[i] = 1;
code2[i] = 2;
data1[i] = 3;
data2[i] = 4;
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 0x100000; ++i) {
EXPECT_EQ(1, code1[i]);
EXPECT_EQ(2, code2[i]);
EXPECT_EQ(3, data1[i]);
EXPECT_EQ(4, data2[i]);
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, ManyAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t* code[10000];
uint8_t* data[10000];
for (unsigned i = 0; i < 10000; ++i) {
const bool isReadOnly = i % 2 == 0;
code[i] = MemMgr->allocateCodeSection(32, 0, 1, "");
data[i] = MemMgr->allocateDataSection(32, 0, 2, "", isReadOnly);
for (unsigned j = 0; j < 32; j++) {
code[i][j] = 1 + (i % 254);
data[i][j] = 2 + (i % 254);
}
EXPECT_NE((uint8_t *)nullptr, code[i]);
EXPECT_NE((uint8_t *)nullptr, data[i]);
}
// Verify the data (this is checking for overlaps in the addresses)
for (unsigned i = 0; i < 10000; ++i) {
for (unsigned j = 0; j < 32;j++ ) {
uint8_t ExpectedCode = 1 + (i % 254);
uint8_t ExpectedData = 2 + (i % 254);
EXPECT_EQ(ExpectedCode, code[i][j]);
EXPECT_EQ(ExpectedData, data[i][j]);
}
}
std::string Error;
EXPECT_FALSE(MemMgr->finalizeMemory(&Error));
}
TEST(MCJITMemoryManagerTest, ManyVariedAllocations) {
std::unique_ptr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t* code[10000];
uint8_t* data[10000];
for (unsigned i = 0; i < 10000; ++i) {
uintptr_t CodeSize = i % 16 + 1;
uintptr_t DataSize = i % 8 + 1;
bool isReadOnly = i % 3 == 0;
unsigned Align = 8 << (i % 4);
code[i] = MemMgr->allocateCodeSection(CodeSize, Align, i, "");
data[i] = MemMgr->allocateDataSection(DataSize, Align, i + 10000, "",
isReadOnly);
for (unsigned j = 0; j < CodeSize; j++) {
code[i][j] = 1 + (i % 254);
}
for (unsigned j = 0; j < DataSize; j++) {
data[i][j] = 2 + (i % 254);
}
EXPECT_NE((uint8_t *)nullptr, code[i]);
EXPECT_NE((uint8_t *)nullptr, data[i]);
uintptr_t CodeAlign = Align ? (uintptr_t)code[i] % Align : 0;
uintptr_t DataAlign = Align ? (uintptr_t)data[i] % Align : 0;
EXPECT_EQ((uintptr_t)0, CodeAlign);
EXPECT_EQ((uintptr_t)0, DataAlign);
}
for (unsigned i = 0; i < 10000; ++i) {
uintptr_t CodeSize = i % 16 + 1;
uintptr_t DataSize = i % 8 + 1;
for (unsigned j = 0; j < CodeSize; j++) {
uint8_t ExpectedCode = 1 + (i % 254);
EXPECT_EQ(ExpectedCode, code[i][j]);
}
for (unsigned j = 0; j < DataSize; j++) {
uint8_t ExpectedData = 2 + (i % 254);
EXPECT_EQ(ExpectedData, data[i][j]);
}
}
}
} // Namespace