1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/Target/AArch64/AArch64InstrFormats.td

11356 lines
435 KiB
TableGen

//===- AArch64InstrFormats.td - AArch64 Instruction Formats --*- tblgen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Describe AArch64 instructions format here
//
// Format specifies the encoding used by the instruction. This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<2> val> {
bits<2> Value = val;
}
def PseudoFrm : Format<0>;
def NormalFrm : Format<1>; // Do we need any others?
// Enum describing whether an instruction is
// destructive in its first source operand.
class DestructiveInstTypeEnum<bits<4> val> {
bits<4> Value = val;
}
def NotDestructive : DestructiveInstTypeEnum<0>;
// Destructive in its first operand and can be MOVPRFX'd, but has no other
// special properties.
def DestructiveOther : DestructiveInstTypeEnum<1>;
def DestructiveUnary : DestructiveInstTypeEnum<2>;
def DestructiveBinaryImm : DestructiveInstTypeEnum<3>;
def DestructiveBinaryShImmUnpred : DestructiveInstTypeEnum<4>;
def DestructiveBinary : DestructiveInstTypeEnum<5>;
def DestructiveBinaryComm : DestructiveInstTypeEnum<6>;
def DestructiveBinaryCommWithRev : DestructiveInstTypeEnum<7>;
def DestructiveTernaryCommWithRev : DestructiveInstTypeEnum<8>;
def DestructiveUnaryPassthru : DestructiveInstTypeEnum<9>;
class FalseLanesEnum<bits<2> val> {
bits<2> Value = val;
}
def FalseLanesNone : FalseLanesEnum<0>;
def FalseLanesZero : FalseLanesEnum<1>;
def FalseLanesUndef : FalseLanesEnum<2>;
// AArch64 Instruction Format
class AArch64Inst<Format f, string cstr> : Instruction {
field bits<32> Inst; // Instruction encoding.
// Mask of bits that cause an encoding to be UNPREDICTABLE.
// If a bit is set, then if the corresponding bit in the
// target encoding differs from its value in the "Inst" field,
// the instruction is UNPREDICTABLE (SoftFail in abstract parlance).
field bits<32> Unpredictable = 0;
// SoftFail is the generic name for this field, but we alias it so
// as to make it more obvious what it means in ARM-land.
field bits<32> SoftFail = Unpredictable;
let Namespace = "AArch64";
Format F = f;
bits<2> Form = F.Value;
// Defaults
bit isWhile = 0;
bit isPTestLike = 0;
FalseLanesEnum FalseLanes = FalseLanesNone;
DestructiveInstTypeEnum DestructiveInstType = NotDestructive;
ElementSizeEnum ElementSize = ElementSizeNone;
let TSFlags{10} = isPTestLike;
let TSFlags{9} = isWhile;
let TSFlags{8-7} = FalseLanes.Value;
let TSFlags{6-3} = DestructiveInstType.Value;
let TSFlags{2-0} = ElementSize.Value;
let Pattern = [];
let Constraints = cstr;
}
class InstSubst<string Asm, dag Result, bit EmitPriority = 0>
: InstAlias<Asm, Result, EmitPriority>, Requires<[UseNegativeImmediates]>;
// Pseudo instructions (don't have encoding information)
class Pseudo<dag oops, dag iops, list<dag> pattern, string cstr = "">
: AArch64Inst<PseudoFrm, cstr> {
dag OutOperandList = oops;
dag InOperandList = iops;
let Pattern = pattern;
let isCodeGenOnly = 1;
let isPseudo = 1;
}
// Real instructions (have encoding information)
class EncodedI<string cstr, list<dag> pattern> : AArch64Inst<NormalFrm, cstr> {
let Pattern = pattern;
let Size = 4;
}
// Normal instructions
class I<dag oops, dag iops, string asm, string operands, string cstr,
list<dag> pattern>
: EncodedI<cstr, pattern> {
dag OutOperandList = oops;
dag InOperandList = iops;
let AsmString = !strconcat(asm, operands);
}
class TriOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$MHS, node:$RHS), res>;
class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
class UnOpFrag<dag res> : PatFrag<(ops node:$LHS), res>;
// Helper fragment for an extract of the high portion of a 128-bit vector.
def extract_high_v16i8 :
UnOpFrag<(extract_subvector (v16i8 node:$LHS), (i64 8))>;
def extract_high_v8i16 :
UnOpFrag<(extract_subvector (v8i16 node:$LHS), (i64 4))>;
def extract_high_v4i32 :
UnOpFrag<(extract_subvector (v4i32 node:$LHS), (i64 2))>;
def extract_high_v2i64 :
UnOpFrag<(extract_subvector (v2i64 node:$LHS), (i64 1))>;
//===----------------------------------------------------------------------===//
// Asm Operand Classes.
//
// Shifter operand for arithmetic shifted encodings.
def ShifterOperand : AsmOperandClass {
let Name = "Shifter";
}
// Shifter operand for mov immediate encodings.
def MovImm32ShifterOperand : AsmOperandClass {
let SuperClasses = [ShifterOperand];
let Name = "MovImm32Shifter";
let RenderMethod = "addShifterOperands";
let DiagnosticType = "InvalidMovImm32Shift";
}
def MovImm64ShifterOperand : AsmOperandClass {
let SuperClasses = [ShifterOperand];
let Name = "MovImm64Shifter";
let RenderMethod = "addShifterOperands";
let DiagnosticType = "InvalidMovImm64Shift";
}
// Shifter operand for arithmetic register shifted encodings.
class ArithmeticShifterOperand<int width> : AsmOperandClass {
let SuperClasses = [ShifterOperand];
let Name = "ArithmeticShifter" # width;
let PredicateMethod = "isArithmeticShifter<" # width # ">";
let RenderMethod = "addShifterOperands";
let DiagnosticType = "AddSubRegShift" # width;
}
def ArithmeticShifterOperand32 : ArithmeticShifterOperand<32>;
def ArithmeticShifterOperand64 : ArithmeticShifterOperand<64>;
// Shifter operand for logical register shifted encodings.
class LogicalShifterOperand<int width> : AsmOperandClass {
let SuperClasses = [ShifterOperand];
let Name = "LogicalShifter" # width;
let PredicateMethod = "isLogicalShifter<" # width # ">";
let RenderMethod = "addShifterOperands";
let DiagnosticType = "AddSubRegShift" # width;
}
def LogicalShifterOperand32 : LogicalShifterOperand<32>;
def LogicalShifterOperand64 : LogicalShifterOperand<64>;
// Shifter operand for logical vector 128/64-bit shifted encodings.
def LogicalVecShifterOperand : AsmOperandClass {
let SuperClasses = [ShifterOperand];
let Name = "LogicalVecShifter";
let RenderMethod = "addShifterOperands";
}
def LogicalVecHalfWordShifterOperand : AsmOperandClass {
let SuperClasses = [LogicalVecShifterOperand];
let Name = "LogicalVecHalfWordShifter";
let RenderMethod = "addShifterOperands";
}
// The "MSL" shifter on the vector MOVI instruction.
def MoveVecShifterOperand : AsmOperandClass {
let SuperClasses = [ShifterOperand];
let Name = "MoveVecShifter";
let RenderMethod = "addShifterOperands";
}
// Extend operand for arithmetic encodings.
def ExtendOperand : AsmOperandClass {
let Name = "Extend";
let DiagnosticType = "AddSubRegExtendLarge";
}
def ExtendOperand64 : AsmOperandClass {
let SuperClasses = [ExtendOperand];
let Name = "Extend64";
let DiagnosticType = "AddSubRegExtendSmall";
}
// 'extend' that's a lsl of a 64-bit register.
def ExtendOperandLSL64 : AsmOperandClass {
let SuperClasses = [ExtendOperand];
let Name = "ExtendLSL64";
let RenderMethod = "addExtend64Operands";
let DiagnosticType = "AddSubRegExtendLarge";
}
// 8-bit floating-point immediate encodings.
def FPImmOperand : AsmOperandClass {
let Name = "FPImm";
let ParserMethod = "tryParseFPImm<true>";
let DiagnosticType = "InvalidFPImm";
}
def CondCode : AsmOperandClass {
let Name = "CondCode";
let DiagnosticType = "InvalidCondCode";
}
// A 32-bit register pasrsed as 64-bit
def GPR32as64Operand : AsmOperandClass {
let Name = "GPR32as64";
let ParserMethod =
"tryParseGPROperand<false, RegConstraintEqualityTy::EqualsSubReg>";
}
def GPR32as64 : RegisterOperand<GPR32> {
let ParserMatchClass = GPR32as64Operand;
}
// A 64-bit register pasrsed as 32-bit
def GPR64as32Operand : AsmOperandClass {
let Name = "GPR64as32";
let ParserMethod =
"tryParseGPROperand<false, RegConstraintEqualityTy::EqualsSuperReg>";
}
def GPR64as32 : RegisterOperand<GPR64, "printGPR64as32"> {
let ParserMatchClass = GPR64as32Operand;
}
// 8-bit immediate for AdvSIMD where 64-bit values of the form:
// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
// are encoded as the eight bit value 'abcdefgh'.
def SIMDImmType10Operand : AsmOperandClass { let Name = "SIMDImmType10"; }
class UImmScaledMemoryIndexed<int Width, int Scale> : AsmOperandClass {
let Name = "UImm" # Width # "s" # Scale;
let DiagnosticType = "InvalidMemoryIndexed" # Scale # "UImm" # Width;
let RenderMethod = "addImmScaledOperands<" # Scale # ">";
let PredicateMethod = "isUImmScaled<" # Width # ", " # Scale # ">";
}
class SImmScaledMemoryIndexed<int Width, int Scale> : AsmOperandClass {
let Name = "SImm" # Width # "s" # Scale;
let DiagnosticType = "InvalidMemoryIndexed" # Scale # "SImm" # Width;
let RenderMethod = "addImmScaledOperands<" # Scale # ">";
let PredicateMethod = "isSImmScaled<" # Width # ", " # Scale # ">";
}
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// ADR[P] instruction labels.
def AdrpOperand : AsmOperandClass {
let Name = "AdrpLabel";
let ParserMethod = "tryParseAdrpLabel";
let DiagnosticType = "InvalidLabel";
}
def adrplabel : Operand<i64> {
let EncoderMethod = "getAdrLabelOpValue";
let PrintMethod = "printAdrpLabel";
let ParserMatchClass = AdrpOperand;
let OperandType = "OPERAND_PCREL";
}
def AdrOperand : AsmOperandClass {
let Name = "AdrLabel";
let ParserMethod = "tryParseAdrLabel";
let DiagnosticType = "InvalidLabel";
}
def adrlabel : Operand<i64> {
let EncoderMethod = "getAdrLabelOpValue";
let ParserMatchClass = AdrOperand;
}
class SImmOperand<int width> : AsmOperandClass {
let Name = "SImm" # width;
let DiagnosticType = "InvalidMemoryIndexedSImm" # width;
let RenderMethod = "addImmOperands";
let PredicateMethod = "isSImm<" # width # ">";
}
class AsmImmRange<int Low, int High> : AsmOperandClass {
let Name = "Imm" # Low # "_" # High;
let DiagnosticType = "InvalidImm" # Low # "_" # High;
let RenderMethod = "addImmOperands";
let PredicateMethod = "isImmInRange<" # Low # "," # High # ">";
}
// Authenticated loads for v8.3 can have scaled 10-bit immediate offsets.
def SImm10s8Operand : SImmScaledMemoryIndexed<10, 8>;
def simm10Scaled : Operand<i64> {
let ParserMatchClass = SImm10s8Operand;
let DecoderMethod = "DecodeSImm<10>";
let PrintMethod = "printImmScale<8>";
}
def simm9s16 : Operand<i64> {
let ParserMatchClass = SImmScaledMemoryIndexed<9, 16>;
let DecoderMethod = "DecodeSImm<9>";
let PrintMethod = "printImmScale<16>";
}
// uimm6 predicate - True if the immediate is in the range [0, 63].
def UImm6Operand : AsmOperandClass {
let Name = "UImm6";
let DiagnosticType = "InvalidImm0_63";
}
def uimm6 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm < 64; }]> {
let ParserMatchClass = UImm6Operand;
}
def uimm16 : Operand<i16>, ImmLeaf<i16, [{return Imm >= 0 && Imm < 65536;}]>{
let ParserMatchClass = AsmImmRange<0, 65535>;
}
def SImm9Operand : SImmOperand<9>;
def simm9 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= -256 && Imm < 256; }]> {
let ParserMatchClass = SImm9Operand;
let DecoderMethod = "DecodeSImm<9>";
}
def SImm8Operand : SImmOperand<8>;
def simm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= -128 && Imm < 128; }]> {
let ParserMatchClass = SImm8Operand;
let DecoderMethod = "DecodeSImm<8>";
}
def SImm6Operand : SImmOperand<6>;
def simm6_32b : Operand<i32>, ImmLeaf<i32, [{ return Imm >= -32 && Imm < 32; }]> {
let ParserMatchClass = SImm6Operand;
let DecoderMethod = "DecodeSImm<6>";
}
def SImm5Operand : SImmOperand<5>;
def simm5_64b : Operand<i64>, ImmLeaf<i64, [{ return Imm >= -16 && Imm < 16; }]> {
let ParserMatchClass = SImm5Operand;
let DecoderMethod = "DecodeSImm<5>";
}
def simm5_32b : Operand<i32>, ImmLeaf<i32, [{ return Imm >= -16 && Imm < 16; }]> {
let ParserMatchClass = SImm5Operand;
let DecoderMethod = "DecodeSImm<5>";
}
def simm5_8b : Operand<i32>, ImmLeaf<i32, [{ return (int8_t)Imm >= -16 && (int8_t)Imm < 16; }]> {
let ParserMatchClass = SImm5Operand;
let DecoderMethod = "DecodeSImm<5>";
let PrintMethod = "printSImm<8>";
}
def simm5_16b : Operand<i32>, ImmLeaf<i32, [{ return (int16_t)Imm >= -16 && (int16_t)Imm < 16; }]> {
let ParserMatchClass = SImm5Operand;
let DecoderMethod = "DecodeSImm<5>";
let PrintMethod = "printSImm<16>";
}
// simm7sN predicate - True if the immediate is a multiple of N in the range
// [-64 * N, 63 * N].
def SImm7s4Operand : SImmScaledMemoryIndexed<7, 4>;
def SImm7s8Operand : SImmScaledMemoryIndexed<7, 8>;
def SImm7s16Operand : SImmScaledMemoryIndexed<7, 16>;
def simm7s4 : Operand<i32> {
let ParserMatchClass = SImm7s4Operand;
let PrintMethod = "printImmScale<4>";
}
def simm7s8 : Operand<i32> {
let ParserMatchClass = SImm7s8Operand;
let PrintMethod = "printImmScale<8>";
}
def simm7s16 : Operand<i32> {
let ParserMatchClass = SImm7s16Operand;
let PrintMethod = "printImmScale<16>";
}
def am_sve_fi : ComplexPattern<i64, 2, "SelectAddrModeFrameIndexSVE", []>;
def am_indexed7s8 : ComplexPattern<i64, 2, "SelectAddrModeIndexed7S8", []>;
def am_indexed7s16 : ComplexPattern<i64, 2, "SelectAddrModeIndexed7S16", []>;
def am_indexed7s32 : ComplexPattern<i64, 2, "SelectAddrModeIndexed7S32", []>;
def am_indexed7s64 : ComplexPattern<i64, 2, "SelectAddrModeIndexed7S64", []>;
def am_indexed7s128 : ComplexPattern<i64, 2, "SelectAddrModeIndexed7S128", []>;
def am_indexedu6s128 : ComplexPattern<i64, 2, "SelectAddrModeIndexedU6S128", []>;
def am_indexeds9s128 : ComplexPattern<i64, 2, "SelectAddrModeIndexedS9S128", []>;
def UImmS1XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i64);
}]>;
def UImmS2XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() / 2, SDLoc(N), MVT::i64);
}]>;
def UImmS4XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() / 4, SDLoc(N), MVT::i64);
}]>;
def UImmS8XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() / 8, SDLoc(N), MVT::i64);
}]>;
// uimm5sN predicate - True if the immediate is a multiple of N in the range
// [0 * N, 32 * N].
def UImm5s2Operand : UImmScaledMemoryIndexed<5, 2>;
def UImm5s4Operand : UImmScaledMemoryIndexed<5, 4>;
def UImm5s8Operand : UImmScaledMemoryIndexed<5, 8>;
def uimm5s2 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >= 0 && Imm < (32*2) && ((Imm % 2) == 0); }],
UImmS2XForm> {
let ParserMatchClass = UImm5s2Operand;
let PrintMethod = "printImmScale<2>";
}
def uimm5s4 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >= 0 && Imm < (32*4) && ((Imm % 4) == 0); }],
UImmS4XForm> {
let ParserMatchClass = UImm5s4Operand;
let PrintMethod = "printImmScale<4>";
}
def uimm5s8 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >= 0 && Imm < (32*8) && ((Imm % 8) == 0); }],
UImmS8XForm> {
let ParserMatchClass = UImm5s8Operand;
let PrintMethod = "printImmScale<8>";
}
// tuimm5sN predicate - similiar to uimm5sN, but use TImmLeaf (TargetConstant)
// instead of ImmLeaf (Constant)
def tuimm5s2 : Operand<i64>, TImmLeaf<i64,
[{ return Imm >= 0 && Imm < (32*2) && ((Imm % 2) == 0); }],
UImmS2XForm> {
let ParserMatchClass = UImm5s2Operand;
let PrintMethod = "printImmScale<2>";
}
def tuimm5s4 : Operand<i64>, TImmLeaf<i64,
[{ return Imm >= 0 && Imm < (32*4) && ((Imm % 4) == 0); }],
UImmS4XForm> {
let ParserMatchClass = UImm5s4Operand;
let PrintMethod = "printImmScale<4>";
}
def tuimm5s8 : Operand<i64>, TImmLeaf<i64,
[{ return Imm >= 0 && Imm < (32*8) && ((Imm % 8) == 0); }],
UImmS8XForm> {
let ParserMatchClass = UImm5s8Operand;
let PrintMethod = "printImmScale<8>";
}
// uimm6sN predicate - True if the immediate is a multiple of N in the range
// [0 * N, 64 * N].
def UImm6s1Operand : UImmScaledMemoryIndexed<6, 1>;
def UImm6s2Operand : UImmScaledMemoryIndexed<6, 2>;
def UImm6s4Operand : UImmScaledMemoryIndexed<6, 4>;
def UImm6s8Operand : UImmScaledMemoryIndexed<6, 8>;
def UImm6s16Operand : UImmScaledMemoryIndexed<6, 16>;
def uimm6s1 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm < 64; }]> {
let ParserMatchClass = UImm6s1Operand;
}
def uimm6s2 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >= 0 && Imm < (64*2) && ((Imm % 2) == 0); }]> {
let PrintMethod = "printImmScale<2>";
let ParserMatchClass = UImm6s2Operand;
}
def uimm6s4 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >= 0 && Imm < (64*4) && ((Imm % 4) == 0); }]> {
let PrintMethod = "printImmScale<4>";
let ParserMatchClass = UImm6s4Operand;
}
def uimm6s8 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >= 0 && Imm < (64*8) && ((Imm % 8) == 0); }]> {
let PrintMethod = "printImmScale<8>";
let ParserMatchClass = UImm6s8Operand;
}
def uimm6s16 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >= 0 && Imm < (64*16) && ((Imm % 16) == 0); }]> {
let PrintMethod = "printImmScale<16>";
let ParserMatchClass = UImm6s16Operand;
}
def SImmS2XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() / 2, SDLoc(N), MVT::i64);
}]>;
def SImmS3XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() / 3, SDLoc(N), MVT::i64);
}]>;
def SImmS4XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() / 4, SDLoc(N), MVT::i64);
}]>;
def SImmS16XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() / 16, SDLoc(N), MVT::i64);
}]>;
def SImmS32XForm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() / 32, SDLoc(N), MVT::i64);
}]>;
// simm6sN predicate - True if the immediate is a multiple of N in the range
// [-32 * N, 31 * N].
def SImm6s1Operand : SImmScaledMemoryIndexed<6, 1>;
def simm6s1 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= -32 && Imm < 32; }]> {
let ParserMatchClass = SImm6s1Operand;
let DecoderMethod = "DecodeSImm<6>";
}
// simm4sN predicate - True if the immediate is a multiple of N in the range
// [ -8* N, 7 * N].
def SImm4s1Operand : SImmScaledMemoryIndexed<4, 1>;
def SImm4s2Operand : SImmScaledMemoryIndexed<4, 2>;
def SImm4s3Operand : SImmScaledMemoryIndexed<4, 3>;
def SImm4s4Operand : SImmScaledMemoryIndexed<4, 4>;
def SImm4s16Operand : SImmScaledMemoryIndexed<4, 16>;
def SImm4s32Operand : SImmScaledMemoryIndexed<4, 32>;
def simm4s1 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >=-8 && Imm <= 7; }]> {
let ParserMatchClass = SImm4s1Operand;
let DecoderMethod = "DecodeSImm<4>";
}
def simm4s2 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >=-16 && Imm <= 14 && (Imm % 2) == 0x0; }], SImmS2XForm> {
let PrintMethod = "printImmScale<2>";
let ParserMatchClass = SImm4s2Operand;
let DecoderMethod = "DecodeSImm<4>";
}
def simm4s3 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >=-24 && Imm <= 21 && (Imm % 3) == 0x0; }], SImmS3XForm> {
let PrintMethod = "printImmScale<3>";
let ParserMatchClass = SImm4s3Operand;
let DecoderMethod = "DecodeSImm<4>";
}
def simm4s4 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >=-32 && Imm <= 28 && (Imm % 4) == 0x0; }], SImmS4XForm> {
let PrintMethod = "printImmScale<4>";
let ParserMatchClass = SImm4s4Operand;
let DecoderMethod = "DecodeSImm<4>";
}
def simm4s16 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >=-128 && Imm <= 112 && (Imm % 16) == 0x0; }], SImmS16XForm> {
let PrintMethod = "printImmScale<16>";
let ParserMatchClass = SImm4s16Operand;
let DecoderMethod = "DecodeSImm<4>";
}
def simm4s32 : Operand<i64>, ImmLeaf<i64,
[{ return Imm >=-256 && Imm <= 224 && (Imm % 32) == 0x0; }], SImmS32XForm> {
let PrintMethod = "printImmScale<32>";
let ParserMatchClass = SImm4s32Operand;
let DecoderMethod = "DecodeSImm<4>";
}
def Imm1_8Operand : AsmImmRange<1, 8>;
def Imm1_16Operand : AsmImmRange<1, 16>;
def Imm1_32Operand : AsmImmRange<1, 32>;
def Imm1_64Operand : AsmImmRange<1, 64>;
class BranchTarget<int N> : AsmOperandClass {
let Name = "BranchTarget" # N;
let DiagnosticType = "InvalidLabel";
let PredicateMethod = "isBranchTarget<" # N # ">";
}
class PCRelLabel<int N> : BranchTarget<N> {
let Name = "PCRelLabel" # N;
}
def BranchTarget14Operand : BranchTarget<14>;
def BranchTarget26Operand : BranchTarget<26>;
def PCRelLabel19Operand : PCRelLabel<19>;
def MovWSymbolG3AsmOperand : AsmOperandClass {
let Name = "MovWSymbolG3";
let RenderMethod = "addImmOperands";
}
def movw_symbol_g3 : Operand<i32> {
let ParserMatchClass = MovWSymbolG3AsmOperand;
}
def MovWSymbolG2AsmOperand : AsmOperandClass {
let Name = "MovWSymbolG2";
let RenderMethod = "addImmOperands";
}
def movw_symbol_g2 : Operand<i32> {
let ParserMatchClass = MovWSymbolG2AsmOperand;
}
def MovWSymbolG1AsmOperand : AsmOperandClass {
let Name = "MovWSymbolG1";
let RenderMethod = "addImmOperands";
}
def movw_symbol_g1 : Operand<i32> {
let ParserMatchClass = MovWSymbolG1AsmOperand;
}
def MovWSymbolG0AsmOperand : AsmOperandClass {
let Name = "MovWSymbolG0";
let RenderMethod = "addImmOperands";
}
def movw_symbol_g0 : Operand<i32> {
let ParserMatchClass = MovWSymbolG0AsmOperand;
}
class fixedpoint_i32<ValueType FloatVT>
: Operand<FloatVT>,
ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm, ld]> {
let EncoderMethod = "getFixedPointScaleOpValue";
let DecoderMethod = "DecodeFixedPointScaleImm32";
let ParserMatchClass = Imm1_32Operand;
}
class fixedpoint_i64<ValueType FloatVT>
: Operand<FloatVT>,
ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm, ld]> {
let EncoderMethod = "getFixedPointScaleOpValue";
let DecoderMethod = "DecodeFixedPointScaleImm64";
let ParserMatchClass = Imm1_64Operand;
}
def fixedpoint_f16_i32 : fixedpoint_i32<f16>;
def fixedpoint_f32_i32 : fixedpoint_i32<f32>;
def fixedpoint_f64_i32 : fixedpoint_i32<f64>;
def fixedpoint_f16_i64 : fixedpoint_i64<f16>;
def fixedpoint_f32_i64 : fixedpoint_i64<f32>;
def fixedpoint_f64_i64 : fixedpoint_i64<f64>;
def vecshiftR8 : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 9);
}]> {
let EncoderMethod = "getVecShiftR8OpValue";
let DecoderMethod = "DecodeVecShiftR8Imm";
let ParserMatchClass = Imm1_8Operand;
}
def vecshiftR16 : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 17);
}]> {
let EncoderMethod = "getVecShiftR16OpValue";
let DecoderMethod = "DecodeVecShiftR16Imm";
let ParserMatchClass = Imm1_16Operand;
}
def vecshiftR16Narrow : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 9);
}]> {
let EncoderMethod = "getVecShiftR16OpValue";
let DecoderMethod = "DecodeVecShiftR16ImmNarrow";
let ParserMatchClass = Imm1_8Operand;
}
def vecshiftR32 : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 33);
}]> {
let EncoderMethod = "getVecShiftR32OpValue";
let DecoderMethod = "DecodeVecShiftR32Imm";
let ParserMatchClass = Imm1_32Operand;
}
def vecshiftR32Narrow : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 17);
}]> {
let EncoderMethod = "getVecShiftR32OpValue";
let DecoderMethod = "DecodeVecShiftR32ImmNarrow";
let ParserMatchClass = Imm1_16Operand;
}
def vecshiftR64 : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 65);
}]> {
let EncoderMethod = "getVecShiftR64OpValue";
let DecoderMethod = "DecodeVecShiftR64Imm";
let ParserMatchClass = Imm1_64Operand;
}
def vecshiftR64Narrow : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 33);
}]> {
let EncoderMethod = "getVecShiftR64OpValue";
let DecoderMethod = "DecodeVecShiftR64ImmNarrow";
let ParserMatchClass = Imm1_32Operand;
}
// Same as vecshiftR#N, but use TargetConstant (TimmLeaf) instead of Constant
// (ImmLeaf)
def tvecshiftR8 : Operand<i32>, TImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 9);
}]> {
let EncoderMethod = "getVecShiftR8OpValue";
let DecoderMethod = "DecodeVecShiftR8Imm";
let ParserMatchClass = Imm1_8Operand;
}
def tvecshiftR16 : Operand<i32>, TImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 17);
}]> {
let EncoderMethod = "getVecShiftR16OpValue";
let DecoderMethod = "DecodeVecShiftR16Imm";
let ParserMatchClass = Imm1_16Operand;
}
def tvecshiftR32 : Operand<i32>, TImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 33);
}]> {
let EncoderMethod = "getVecShiftR32OpValue";
let DecoderMethod = "DecodeVecShiftR32Imm";
let ParserMatchClass = Imm1_32Operand;
}
def tvecshiftR64 : Operand<i32>, TImmLeaf<i32, [{
return (((uint32_t)Imm) > 0) && (((uint32_t)Imm) < 65);
}]> {
let EncoderMethod = "getVecShiftR64OpValue";
let DecoderMethod = "DecodeVecShiftR64Imm";
let ParserMatchClass = Imm1_64Operand;
}
def Imm0_1Operand : AsmImmRange<0, 1>;
def Imm0_3Operand : AsmImmRange<0, 3>;
def Imm0_7Operand : AsmImmRange<0, 7>;
def Imm0_15Operand : AsmImmRange<0, 15>;
def Imm0_31Operand : AsmImmRange<0, 31>;
def Imm0_63Operand : AsmImmRange<0, 63>;
def vecshiftL8 : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) < 8);
}]> {
let EncoderMethod = "getVecShiftL8OpValue";
let DecoderMethod = "DecodeVecShiftL8Imm";
let ParserMatchClass = Imm0_7Operand;
}
def vecshiftL16 : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) < 16);
}]> {
let EncoderMethod = "getVecShiftL16OpValue";
let DecoderMethod = "DecodeVecShiftL16Imm";
let ParserMatchClass = Imm0_15Operand;
}
def vecshiftL32 : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) < 32);
}]> {
let EncoderMethod = "getVecShiftL32OpValue";
let DecoderMethod = "DecodeVecShiftL32Imm";
let ParserMatchClass = Imm0_31Operand;
}
def vecshiftL64 : Operand<i32>, ImmLeaf<i32, [{
return (((uint32_t)Imm) < 64);
}]> {
let EncoderMethod = "getVecShiftL64OpValue";
let DecoderMethod = "DecodeVecShiftL64Imm";
let ParserMatchClass = Imm0_63Operand;
}
// Same as vecshiftL#N, but use TargetConstant (TimmLeaf) instead of Constant
// (ImmLeaf)
def tvecshiftL8 : Operand<i32>, TImmLeaf<i32, [{
return (((uint32_t)Imm) < 8);
}]> {
let EncoderMethod = "getVecShiftL8OpValue";
let DecoderMethod = "DecodeVecShiftL8Imm";
let ParserMatchClass = Imm0_7Operand;
}
def tvecshiftL16 : Operand<i32>, TImmLeaf<i32, [{
return (((uint32_t)Imm) < 16);
}]> {
let EncoderMethod = "getVecShiftL16OpValue";
let DecoderMethod = "DecodeVecShiftL16Imm";
let ParserMatchClass = Imm0_15Operand;
}
def tvecshiftL32 : Operand<i32>, TImmLeaf<i32, [{
return (((uint32_t)Imm) < 32);
}]> {
let EncoderMethod = "getVecShiftL32OpValue";
let DecoderMethod = "DecodeVecShiftL32Imm";
let ParserMatchClass = Imm0_31Operand;
}
def tvecshiftL64 : Operand<i32>, TImmLeaf<i32, [{
return (((uint32_t)Imm) < 64);
}]> {
let EncoderMethod = "getVecShiftL64OpValue";
let DecoderMethod = "DecodeVecShiftL64Imm";
let ParserMatchClass = Imm0_63Operand;
}
// Crazy immediate formats used by 32-bit and 64-bit logical immediate
// instructions for splatting repeating bit patterns across the immediate.
def logical_imm32_XFORM : SDNodeXForm<imm, [{
uint64_t enc = AArch64_AM::encodeLogicalImmediate(N->getZExtValue(), 32);
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
}]>;
def logical_imm64_XFORM : SDNodeXForm<imm, [{
uint64_t enc = AArch64_AM::encodeLogicalImmediate(N->getZExtValue(), 64);
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
}]>;
def gi_logical_imm32_XFORM : GICustomOperandRenderer<"renderLogicalImm32">,
GISDNodeXFormEquiv<logical_imm32_XFORM>;
def gi_logical_imm64_XFORM : GICustomOperandRenderer<"renderLogicalImm64">,
GISDNodeXFormEquiv<logical_imm64_XFORM>;
let DiagnosticType = "LogicalSecondSource" in {
def LogicalImm32Operand : AsmOperandClass {
let Name = "LogicalImm32";
let PredicateMethod = "isLogicalImm<int32_t>";
let RenderMethod = "addLogicalImmOperands<int32_t>";
}
def LogicalImm64Operand : AsmOperandClass {
let Name = "LogicalImm64";
let PredicateMethod = "isLogicalImm<int64_t>";
let RenderMethod = "addLogicalImmOperands<int64_t>";
}
def LogicalImm32NotOperand : AsmOperandClass {
let Name = "LogicalImm32Not";
let PredicateMethod = "isLogicalImm<int32_t>";
let RenderMethod = "addLogicalImmNotOperands<int32_t>";
}
def LogicalImm64NotOperand : AsmOperandClass {
let Name = "LogicalImm64Not";
let PredicateMethod = "isLogicalImm<int64_t>";
let RenderMethod = "addLogicalImmNotOperands<int64_t>";
}
}
def logical_imm32 : Operand<i32>, IntImmLeaf<i32, [{
return AArch64_AM::isLogicalImmediate(Imm.getZExtValue(), 32);
}], logical_imm32_XFORM> {
let PrintMethod = "printLogicalImm<int32_t>";
let ParserMatchClass = LogicalImm32Operand;
}
def logical_imm64 : Operand<i64>, IntImmLeaf<i64, [{
return AArch64_AM::isLogicalImmediate(Imm.getZExtValue(), 64);
}], logical_imm64_XFORM> {
let PrintMethod = "printLogicalImm<int64_t>";
let ParserMatchClass = LogicalImm64Operand;
}
def logical_imm32_not : Operand<i32> {
let ParserMatchClass = LogicalImm32NotOperand;
}
def logical_imm64_not : Operand<i64> {
let ParserMatchClass = LogicalImm64NotOperand;
}
// iXX_imm0_65535 predicates - True if the immediate is in the range [0,65535].
let ParserMatchClass = AsmImmRange<0, 65535>, PrintMethod = "printImmHex" in {
def i32_imm0_65535 : Operand<i32>, TImmLeaf<i32, [{
return ((uint32_t)Imm) < 65536;
}]>;
def i64_imm0_65535 : Operand<i64>, TImmLeaf<i64, [{
return ((uint64_t)Imm) < 65536;
}]>;
}
// imm0_255 predicate - True if the immediate is in the range [0,255].
def Imm0_255Operand : AsmImmRange<0,255>;
def imm0_255 : Operand<i32>, ImmLeaf<i32, [{
return ((uint32_t)Imm) < 256;
}]> {
let ParserMatchClass = Imm0_255Operand;
let PrintMethod = "printImm";
}
// imm0_127 predicate - True if the immediate is in the range [0,127]
def Imm0_127Operand : AsmImmRange<0, 127>;
def imm0_127 : Operand<i32>, ImmLeaf<i32, [{
return ((uint32_t)Imm) < 128;
}]> {
let ParserMatchClass = Imm0_127Operand;
let PrintMethod = "printImm";
}
def imm0_127_64b : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 128;
}]> {
let ParserMatchClass = Imm0_127Operand;
let PrintMethod = "printImm";
}
// NOTE: These imm0_N operands have to be of type i64 because i64 is the size
// for all shift-amounts.
// imm0_63 predicate - True if the immediate is in the range [0,63]
def imm0_63 : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 64;
}]> {
let ParserMatchClass = Imm0_63Operand;
}
def timm0_63 : Operand<i64>, TImmLeaf<i64, [{
return ((uint64_t)Imm) < 64;
}]> {
let ParserMatchClass = Imm0_63Operand;
}
// imm0_31 predicate - True if the immediate is in the range [0,31]
def imm0_31 : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 32;
}]> {
let ParserMatchClass = Imm0_31Operand;
}
// timm0_31 predicate - same ass imm0_31, but use TargetConstant (TimmLeaf)
// instead of Constant (ImmLeaf)
def timm0_31 : Operand<i64>, TImmLeaf<i64, [{
return ((uint64_t)Imm) < 32;
}]> {
let ParserMatchClass = Imm0_31Operand;
}
// True if the 32-bit immediate is in the range [0,31]
def imm32_0_31 : Operand<i32>, ImmLeaf<i32, [{
return ((uint64_t)Imm) < 32;
}]> {
let ParserMatchClass = Imm0_31Operand;
}
// imm0_1 predicate - True if the immediate is in the range [0,1]
def imm0_1 : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 2;
}]> {
let ParserMatchClass = Imm0_1Operand;
}
// timm0_1 - as above, but use TargetConstant (TImmLeaf)
def timm0_1 : Operand<i64>, TImmLeaf<i64, [{
return ((uint64_t)Imm) < 2;
}]> {
let ParserMatchClass = Imm0_1Operand;
}
// imm0_15 predicate - True if the immediate is in the range [0,15]
def imm0_15 : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 16;
}]> {
let ParserMatchClass = Imm0_15Operand;
}
// imm0_7 predicate - True if the immediate is in the range [0,7]
def imm0_7 : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 8;
}]> {
let ParserMatchClass = Imm0_7Operand;
}
// imm0_3 predicate - True if the immediate is in the range [0,3]
def imm0_3 : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 4;
}]> {
let ParserMatchClass = Imm0_3Operand;
}
// imm32_0_7 predicate - True if the 32-bit immediate is in the range [0,7]
def imm32_0_7 : Operand<i32>, TImmLeaf<i32, [{
return ((uint32_t)Imm) < 8;
}]> {
let ParserMatchClass = Imm0_7Operand;
}
// imm32_0_15 predicate - True if the 32-bit immediate is in the range [0,15]
def imm32_0_15 : Operand<i32>, ImmLeaf<i32, [{
return ((uint32_t)Imm) < 16;
}]> {
let ParserMatchClass = Imm0_15Operand;
}
// An arithmetic shifter operand:
// {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr
// {5-0} - imm6
class arith_shift<ValueType Ty, int width> : Operand<Ty> {
let PrintMethod = "printShifter";
let ParserMatchClass = !cast<AsmOperandClass>(
"ArithmeticShifterOperand" # width);
}
def arith_shift32 : arith_shift<i32, 32>;
def arith_shift64 : arith_shift<i64, 64>;
class arith_shifted_reg<ValueType Ty, RegisterClass regclass, int width>
: Operand<Ty>,
ComplexPattern<Ty, 2, "SelectArithShiftedRegister", []> {
let PrintMethod = "printShiftedRegister";
let MIOperandInfo = (ops regclass, !cast<Operand>("arith_shift" # width));
}
def arith_shifted_reg32 : arith_shifted_reg<i32, GPR32, 32>;
def arith_shifted_reg64 : arith_shifted_reg<i64, GPR64, 64>;
def gi_arith_shifted_reg32 :
GIComplexOperandMatcher<s32, "selectArithShiftedRegister">,
GIComplexPatternEquiv<arith_shifted_reg32>;
def gi_arith_shifted_reg64 :
GIComplexOperandMatcher<s64, "selectArithShiftedRegister">,
GIComplexPatternEquiv<arith_shifted_reg64>;
// An arithmetic shifter operand:
// {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr, 11 = ror
// {5-0} - imm6
class logical_shift<int width> : Operand<i32> {
let PrintMethod = "printShifter";
let ParserMatchClass = !cast<AsmOperandClass>(
"LogicalShifterOperand" # width);
}
def logical_shift32 : logical_shift<32>;
def logical_shift64 : logical_shift<64>;
class logical_shifted_reg<ValueType Ty, RegisterClass regclass, Operand shiftop>
: Operand<Ty>,
ComplexPattern<Ty, 2, "SelectLogicalShiftedRegister", []> {
let PrintMethod = "printShiftedRegister";
let MIOperandInfo = (ops regclass, shiftop);
}
def logical_shifted_reg32 : logical_shifted_reg<i32, GPR32, logical_shift32>;
def logical_shifted_reg64 : logical_shifted_reg<i64, GPR64, logical_shift64>;
def gi_logical_shifted_reg32 :
GIComplexOperandMatcher<s32, "selectLogicalShiftedRegister">,
GIComplexPatternEquiv<logical_shifted_reg32>;
def gi_logical_shifted_reg64 :
GIComplexOperandMatcher<s64, "selectLogicalShiftedRegister">,
GIComplexPatternEquiv<logical_shifted_reg64>;
// A logical vector shifter operand:
// {7-6} - shift type: 00 = lsl
// {5-0} - imm6: #0, #8, #16, or #24
def logical_vec_shift : Operand<i32> {
let PrintMethod = "printShifter";
let EncoderMethod = "getVecShifterOpValue";
let ParserMatchClass = LogicalVecShifterOperand;
}
// A logical vector half-word shifter operand:
// {7-6} - shift type: 00 = lsl
// {5-0} - imm6: #0 or #8
def logical_vec_hw_shift : Operand<i32> {
let PrintMethod = "printShifter";
let EncoderMethod = "getVecShifterOpValue";
let ParserMatchClass = LogicalVecHalfWordShifterOperand;
}
// A vector move shifter operand:
// {0} - imm1: #8 or #16
def move_vec_shift : Operand<i32> {
let PrintMethod = "printShifter";
let EncoderMethod = "getMoveVecShifterOpValue";
let ParserMatchClass = MoveVecShifterOperand;
}
let DiagnosticType = "AddSubSecondSource" in {
def AddSubImmOperand : AsmOperandClass {
let Name = "AddSubImm";
let ParserMethod = "tryParseImmWithOptionalShift";
let RenderMethod = "addImmWithOptionalShiftOperands<12>";
}
def AddSubImmNegOperand : AsmOperandClass {
let Name = "AddSubImmNeg";
let ParserMethod = "tryParseImmWithOptionalShift";
let RenderMethod = "addImmNegWithOptionalShiftOperands<12>";
}
}
// An ADD/SUB immediate shifter operand:
// second operand:
// {7-6} - shift type: 00 = lsl
// {5-0} - imm6: #0 or #12
class addsub_shifted_imm<ValueType Ty>
: Operand<Ty>, ComplexPattern<Ty, 2, "SelectArithImmed", [imm]> {
let PrintMethod = "printAddSubImm";
let EncoderMethod = "getAddSubImmOpValue";
let ParserMatchClass = AddSubImmOperand;
let MIOperandInfo = (ops i32imm, i32imm);
}
class addsub_shifted_imm_neg<ValueType Ty>
: Operand<Ty> {
let EncoderMethod = "getAddSubImmOpValue";
let ParserMatchClass = AddSubImmNegOperand;
let MIOperandInfo = (ops i32imm, i32imm);
}
def addsub_shifted_imm32 : addsub_shifted_imm<i32>;
def addsub_shifted_imm64 : addsub_shifted_imm<i64>;
def addsub_shifted_imm32_neg : addsub_shifted_imm_neg<i32>;
def addsub_shifted_imm64_neg : addsub_shifted_imm_neg<i64>;
def gi_addsub_shifted_imm32 :
GIComplexOperandMatcher<s32, "selectArithImmed">,
GIComplexPatternEquiv<addsub_shifted_imm32>;
def gi_addsub_shifted_imm64 :
GIComplexOperandMatcher<s64, "selectArithImmed">,
GIComplexPatternEquiv<addsub_shifted_imm64>;
class neg_addsub_shifted_imm<ValueType Ty>
: Operand<Ty>, ComplexPattern<Ty, 2, "SelectNegArithImmed", [imm]> {
let PrintMethod = "printAddSubImm";
let EncoderMethod = "getAddSubImmOpValue";
let ParserMatchClass = AddSubImmOperand;
let MIOperandInfo = (ops i32imm, i32imm);
}
def neg_addsub_shifted_imm32 : neg_addsub_shifted_imm<i32>;
def neg_addsub_shifted_imm64 : neg_addsub_shifted_imm<i64>;
def gi_neg_addsub_shifted_imm32 :
GIComplexOperandMatcher<s32, "selectNegArithImmed">,
GIComplexPatternEquiv<neg_addsub_shifted_imm32>;
def gi_neg_addsub_shifted_imm64 :
GIComplexOperandMatcher<s64, "selectNegArithImmed">,
GIComplexPatternEquiv<neg_addsub_shifted_imm64>;
// An extend operand:
// {5-3} - extend type
// {2-0} - imm3
def arith_extend : Operand<i32> {
let PrintMethod = "printArithExtend";
let ParserMatchClass = ExtendOperand;
}
def arith_extend64 : Operand<i32> {
let PrintMethod = "printArithExtend";
let ParserMatchClass = ExtendOperand64;
}
// 'extend' that's a lsl of a 64-bit register.
def arith_extendlsl64 : Operand<i32> {
let PrintMethod = "printArithExtend";
let ParserMatchClass = ExtendOperandLSL64;
}
class arith_extended_reg32<ValueType Ty> : Operand<Ty>,
ComplexPattern<Ty, 2, "SelectArithExtendedRegister", []> {
let PrintMethod = "printExtendedRegister";
let MIOperandInfo = (ops GPR32, arith_extend);
}
class arith_extended_reg32to64<ValueType Ty> : Operand<Ty>,
ComplexPattern<Ty, 2, "SelectArithExtendedRegister", []> {
let PrintMethod = "printExtendedRegister";
let MIOperandInfo = (ops GPR32, arith_extend64);
}
def arith_extended_reg32_i32 : arith_extended_reg32<i32>;
def gi_arith_extended_reg32_i32 :
GIComplexOperandMatcher<s32, "selectArithExtendedRegister">,
GIComplexPatternEquiv<arith_extended_reg32_i32>;
def arith_extended_reg32_i64 : arith_extended_reg32<i64>;
def gi_arith_extended_reg32_i64 :
GIComplexOperandMatcher<s64, "selectArithExtendedRegister">,
GIComplexPatternEquiv<arith_extended_reg32_i64>;
def arith_extended_reg32to64_i64 : arith_extended_reg32to64<i64>;
def gi_arith_extended_reg32to64_i64 :
GIComplexOperandMatcher<s64, "selectArithExtendedRegister">,
GIComplexPatternEquiv<arith_extended_reg32to64_i64>;
// Floating-point immediate.
def fpimm16XForm : SDNodeXForm<fpimm, [{
APFloat InVal = N->getValueAPF();
uint32_t enc = AArch64_AM::getFP16Imm(InVal);
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
}]>;
def fpimm32XForm : SDNodeXForm<fpimm, [{
APFloat InVal = N->getValueAPF();
uint32_t enc = AArch64_AM::getFP32Imm(InVal);
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
}]>;
def fpimm64XForm : SDNodeXForm<fpimm, [{
APFloat InVal = N->getValueAPF();
uint32_t enc = AArch64_AM::getFP64Imm(InVal);
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
}]>;
def fpimm16 : Operand<f16>,
FPImmLeaf<f16, [{
return AArch64_AM::getFP16Imm(Imm) != -1;
}], fpimm16XForm> {
let ParserMatchClass = FPImmOperand;
let PrintMethod = "printFPImmOperand";
}
def fpimm32 : Operand<f32>,
FPImmLeaf<f32, [{
return AArch64_AM::getFP32Imm(Imm) != -1;
}], fpimm32XForm> {
let ParserMatchClass = FPImmOperand;
let PrintMethod = "printFPImmOperand";
}
def fpimm64 : Operand<f64>,
FPImmLeaf<f64, [{
return AArch64_AM::getFP64Imm(Imm) != -1;
}], fpimm64XForm> {
let ParserMatchClass = FPImmOperand;
let PrintMethod = "printFPImmOperand";
}
def fpimm8 : Operand<i32> {
let ParserMatchClass = FPImmOperand;
let PrintMethod = "printFPImmOperand";
}
def fpimm0 : FPImmLeaf<fAny, [{
return Imm.isExactlyValue(+0.0);
}]>;
def gi_fpimm16 : GICustomOperandRenderer<"renderFPImm16">,
GISDNodeXFormEquiv<fpimm16XForm>;
def gi_fpimm32 : GICustomOperandRenderer<"renderFPImm32">,
GISDNodeXFormEquiv<fpimm32XForm>;
def gi_fpimm64 : GICustomOperandRenderer<"renderFPImm64">,
GISDNodeXFormEquiv<fpimm64XForm>;
// Vector lane operands
class AsmVectorIndex<int Min, int Max, string NamePrefix=""> : AsmOperandClass {
let Name = NamePrefix # "IndexRange" # Min # "_" # Max;
let DiagnosticType = "Invalid" # Name;
let PredicateMethod = "isVectorIndex<" # Min # ", " # Max # ">";
let RenderMethod = "addVectorIndexOperands";
}
class AsmVectorIndexOpnd<ValueType ty, AsmOperandClass mc>
: Operand<ty> {
let ParserMatchClass = mc;
let PrintMethod = "printVectorIndex";
}
multiclass VectorIndex<ValueType ty, AsmOperandClass mc, code pred> {
def "" : AsmVectorIndexOpnd<ty, mc>, ImmLeaf<ty, pred>;
def _timm : AsmVectorIndexOpnd<ty, mc>, TImmLeaf<ty, pred>;
}
def VectorIndex1Operand : AsmVectorIndex<1, 1>;
def VectorIndexBOperand : AsmVectorIndex<0, 15>;
def VectorIndexHOperand : AsmVectorIndex<0, 7>;
def VectorIndexSOperand : AsmVectorIndex<0, 3>;
def VectorIndexDOperand : AsmVectorIndex<0, 1>;
defm VectorIndex1 : VectorIndex<i64, VectorIndex1Operand,
[{ return ((uint64_t)Imm) == 1; }]>;
defm VectorIndexB : VectorIndex<i64, VectorIndexBOperand,
[{ return ((uint64_t)Imm) < 16; }]>;
defm VectorIndexH : VectorIndex<i64, VectorIndexHOperand,
[{ return ((uint64_t)Imm) < 8; }]>;
defm VectorIndexS : VectorIndex<i64, VectorIndexSOperand,
[{ return ((uint64_t)Imm) < 4; }]>;
defm VectorIndexD : VectorIndex<i64, VectorIndexDOperand,
[{ return ((uint64_t)Imm) < 2; }]>;
defm VectorIndex132b : VectorIndex<i32, VectorIndex1Operand,
[{ return ((uint64_t)Imm) == 1; }]>;
defm VectorIndexB32b : VectorIndex<i32, VectorIndexBOperand,
[{ return ((uint64_t)Imm) < 16; }]>;
defm VectorIndexH32b : VectorIndex<i32, VectorIndexHOperand,
[{ return ((uint64_t)Imm) < 8; }]>;
defm VectorIndexS32b : VectorIndex<i32, VectorIndexSOperand,
[{ return ((uint64_t)Imm) < 4; }]>;
defm VectorIndexD32b : VectorIndex<i32, VectorIndexDOperand,
[{ return ((uint64_t)Imm) < 2; }]>;
def SVEVectorIndexExtDupBOperand : AsmVectorIndex<0, 63, "SVE">;
def SVEVectorIndexExtDupHOperand : AsmVectorIndex<0, 31, "SVE">;
def SVEVectorIndexExtDupSOperand : AsmVectorIndex<0, 15, "SVE">;
def SVEVectorIndexExtDupDOperand : AsmVectorIndex<0, 7, "SVE">;
def SVEVectorIndexExtDupQOperand : AsmVectorIndex<0, 3, "SVE">;
defm sve_elm_idx_extdup_b
: VectorIndex<i64, SVEVectorIndexExtDupBOperand,
[{ return ((uint64_t)Imm) < 64; }]>;
defm sve_elm_idx_extdup_h
: VectorIndex<i64, SVEVectorIndexExtDupHOperand,
[{ return ((uint64_t)Imm) < 32; }]>;
defm sve_elm_idx_extdup_s
: VectorIndex<i64, SVEVectorIndexExtDupSOperand,
[{ return ((uint64_t)Imm) < 16; }]>;
defm sve_elm_idx_extdup_d
: VectorIndex<i64, SVEVectorIndexExtDupDOperand,
[{ return ((uint64_t)Imm) < 8; }]>;
defm sve_elm_idx_extdup_q
: VectorIndex<i64, SVEVectorIndexExtDupQOperand,
[{ return ((uint64_t)Imm) < 4; }]>;
// 8-bit immediate for AdvSIMD where 64-bit values of the form:
// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
// are encoded as the eight bit value 'abcdefgh'.
def simdimmtype10 : Operand<i32>,
FPImmLeaf<f64, [{
return AArch64_AM::isAdvSIMDModImmType10(
Imm.bitcastToAPInt().getZExtValue());
}], SDNodeXForm<fpimm, [{
APFloat InVal = N->getValueAPF();
uint32_t enc = AArch64_AM::encodeAdvSIMDModImmType10(N->getValueAPF()
.bitcastToAPInt()
.getZExtValue());
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i32);
}]>> {
let ParserMatchClass = SIMDImmType10Operand;
let PrintMethod = "printSIMDType10Operand";
}
//---
// System management
//---
// Base encoding for system instruction operands.
let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
class BaseSystemI<bit L, dag oops, dag iops, string asm, string operands,
list<dag> pattern = []>
: I<oops, iops, asm, operands, "", pattern> {
let Inst{31-22} = 0b1101010100;
let Inst{21} = L;
}
// System instructions which do not have an Rt register.
class SimpleSystemI<bit L, dag iops, string asm, string operands,
list<dag> pattern = []>
: BaseSystemI<L, (outs), iops, asm, operands, pattern> {
let Inst{4-0} = 0b11111;
}
// System instructions which have an Rt register.
class RtSystemI<bit L, dag oops, dag iops, string asm, string operands,
list<dag> pattern = []>
: BaseSystemI<L, oops, iops, asm, operands, pattern>,
Sched<[WriteSys]> {
bits<5> Rt;
let Inst{4-0} = Rt;
}
// System instructions for transactional memory extension
class TMBaseSystemI<bit L, bits<4> CRm, bits<3> op2, dag oops, dag iops,
string asm, string operands, list<dag> pattern>
: BaseSystemI<L, oops, iops, asm, operands, pattern>,
Sched<[WriteSys]> {
let Inst{20-12} = 0b000110011;
let Inst{11-8} = CRm;
let Inst{7-5} = op2;
let DecoderMethod = "";
let mayLoad = 1;
let mayStore = 1;
}
// System instructions for transactional memory - single input operand
class TMSystemI<bits<4> CRm, string asm, list<dag> pattern>
: TMBaseSystemI<0b1, CRm, 0b011,
(outs GPR64:$Rt), (ins), asm, "\t$Rt", pattern> {
bits<5> Rt;
let Inst{4-0} = Rt;
}
// System instructions that pass a register argument
// This class assumes the register is for input rather than output.
class RegInputSystemI<bits<4> CRm, bits<3> Op2, string asm,
list<dag> pattern = []>
: RtSystemI<0, (outs), (ins GPR64:$Rt), asm, "\t$Rt", pattern> {
let Inst{20-12} = 0b000110001;
let Inst{11-8} = CRm;
let Inst{7-5} = Op2;
}
// System instructions for transactional memory - no operand
class TMSystemINoOperand<bits<4> CRm, string asm, list<dag> pattern>
: TMBaseSystemI<0b0, CRm, 0b011, (outs), (ins), asm, "", pattern> {
let Inst{4-0} = 0b11111;
}
// System instructions for exit from transactions
class TMSystemException<bits<3> op1, string asm, list<dag> pattern>
: I<(outs), (ins i64_imm0_65535:$imm), asm, "\t$imm", "", pattern>,
Sched<[WriteSys]> {
bits<16> imm;
let Inst{31-24} = 0b11010100;
let Inst{23-21} = op1;
let Inst{20-5} = imm;
let Inst{4-0} = 0b00000;
}
// Hint instructions that take both a CRm and a 3-bit immediate.
// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
// model patterns with sufficiently fine granularity
let mayStore = 1, mayLoad = 1, hasSideEffects = 1 in
class HintI<string mnemonic>
: SimpleSystemI<0, (ins imm0_127:$imm), mnemonic#"\t$imm", "",
[(int_aarch64_hint imm0_127:$imm)]>,
Sched<[WriteHint]> {
bits <7> imm;
let Inst{20-12} = 0b000110010;
let Inst{11-5} = imm;
}
// System instructions taking a single literal operand which encodes into
// CRm. op2 differentiates the opcodes.
def BarrierAsmOperand : AsmOperandClass {
let Name = "Barrier";
let ParserMethod = "tryParseBarrierOperand";
}
def barrier_op : Operand<i32> {
let PrintMethod = "printBarrierOption";
let ParserMatchClass = BarrierAsmOperand;
}
def BarriernXSAsmOperand : AsmOperandClass {
let Name = "BarriernXS";
let ParserMethod = "tryParseBarriernXSOperand";
}
def barrier_nxs_op : Operand<i32> {
let PrintMethod = "printBarriernXSOption";
let ParserMatchClass = BarriernXSAsmOperand;
}
class CRmSystemI<Operand crmtype, bits<3> opc, string asm,
list<dag> pattern = []>
: SimpleSystemI<0, (ins crmtype:$CRm), asm, "\t$CRm", pattern>,
Sched<[WriteBarrier]> {
bits<4> CRm;
let Inst{20-12} = 0b000110011;
let Inst{11-8} = CRm;
let Inst{7-5} = opc;
}
class SystemNoOperands<bits<3> op2, string asm, list<dag> pattern = []>
: SimpleSystemI<0, (ins), asm, "", pattern>,
Sched<[]> {
bits<4> CRm;
let CRm = 0b0011;
let Inst{31-12} = 0b11010101000000110010;
let Inst{11-8} = CRm;
let Inst{7-5} = op2;
let Inst{4-0} = 0b11111;
}
// MRS/MSR system instructions. These have different operand classes because
// a different subset of registers can be accessed through each instruction.
def MRSSystemRegisterOperand : AsmOperandClass {
let Name = "MRSSystemRegister";
let ParserMethod = "tryParseSysReg";
let DiagnosticType = "MRS";
}
// concatenation of op0, op1, CRn, CRm, op2. 16-bit immediate.
def mrs_sysreg_op : Operand<i32> {
let ParserMatchClass = MRSSystemRegisterOperand;
let DecoderMethod = "DecodeMRSSystemRegister";
let PrintMethod = "printMRSSystemRegister";
}
def MSRSystemRegisterOperand : AsmOperandClass {
let Name = "MSRSystemRegister";
let ParserMethod = "tryParseSysReg";
let DiagnosticType = "MSR";
}
def msr_sysreg_op : Operand<i32> {
let ParserMatchClass = MSRSystemRegisterOperand;
let DecoderMethod = "DecodeMSRSystemRegister";
let PrintMethod = "printMSRSystemRegister";
}
def PSBHintOperand : AsmOperandClass {
let Name = "PSBHint";
let ParserMethod = "tryParsePSBHint";
}
def psbhint_op : Operand<i32> {
let ParserMatchClass = PSBHintOperand;
let PrintMethod = "printPSBHintOp";
let MCOperandPredicate = [{
// Check, if operand is valid, to fix exhaustive aliasing in disassembly.
// "psb" is an alias to "hint" only for certain values of CRm:Op2 fields.
if (!MCOp.isImm())
return false;
return AArch64PSBHint::lookupPSBByEncoding(MCOp.getImm()) != nullptr;
}];
}
def BTIHintOperand : AsmOperandClass {
let Name = "BTIHint";
let ParserMethod = "tryParseBTIHint";
}
def btihint_op : Operand<i32> {
let ParserMatchClass = BTIHintOperand;
let PrintMethod = "printBTIHintOp";
let MCOperandPredicate = [{
// "bti" is an alias to "hint" only for certain values of CRm:Op2 fields.
if (!MCOp.isImm())
return false;
return AArch64BTIHint::lookupBTIByEncoding(MCOp.getImm() ^ 32) != nullptr;
}];
}
class MRSI : RtSystemI<1, (outs GPR64:$Rt), (ins mrs_sysreg_op:$systemreg),
"mrs", "\t$Rt, $systemreg"> {
bits<16> systemreg;
let Inst{20-5} = systemreg;
let DecoderNamespace = "Fallback";
// The MRS is set as a NZCV setting instruction. Not all MRS instructions
// require doing this. The alternative was to explicitly model each one, but
// it feels like it is unnecessary because it seems there are no negative
// consequences setting these flags for all.
let Defs = [NZCV];
}
// FIXME: Some of these def NZCV, others don't. Best way to model that?
// Explicitly modeling each of the system register as a register class
// would do it, but feels like overkill at this point.
class MSRI : RtSystemI<0, (outs), (ins msr_sysreg_op:$systemreg, GPR64:$Rt),
"msr", "\t$systemreg, $Rt"> {
bits<16> systemreg;
let Inst{20-5} = systemreg;
let DecoderNamespace = "Fallback";
}
def SystemPStateFieldWithImm0_15Operand : AsmOperandClass {
let Name = "SystemPStateFieldWithImm0_15";
let ParserMethod = "tryParseSysReg";
}
def pstatefield4_op : Operand<i32> {
let ParserMatchClass = SystemPStateFieldWithImm0_15Operand;
let PrintMethod = "printSystemPStateField";
}
// Instructions to modify PSTATE, no input reg
let Defs = [NZCV] in
class PstateWriteSimple<dag iops, string asm, string operands>
: SimpleSystemI<0, iops, asm, operands> {
let Inst{20-19} = 0b00;
let Inst{15-12} = 0b0100;
}
class MSRpstateImm0_15
: PstateWriteSimple<(ins pstatefield4_op:$pstatefield, imm0_15:$imm), "msr",
"\t$pstatefield, $imm">,
Sched<[WriteSys]> {
bits<6> pstatefield;
bits<4> imm;
let Inst{18-16} = pstatefield{5-3};
let Inst{11-8} = imm;
let Inst{7-5} = pstatefield{2-0};
let DecoderMethod = "DecodeSystemPStateInstruction";
// MSRpstateI aliases with MSRI. When the MSRpstateI decoder method returns
// Fail the decoder should attempt to decode the instruction as MSRI.
let hasCompleteDecoder = 0;
}
def SystemPStateFieldWithImm0_1Operand : AsmOperandClass {
let Name = "SystemPStateFieldWithImm0_1";
let ParserMethod = "tryParseSysReg";
}
def pstatefield1_op : Operand<i32> {
let ParserMatchClass = SystemPStateFieldWithImm0_1Operand;
let PrintMethod = "printSystemPStateField";
}
class MSRpstateImm0_1
: PstateWriteSimple<(ins pstatefield1_op:$pstatefield, imm0_1:$imm), "msr",
"\t$pstatefield, $imm">,
Sched<[WriteSys]> {
bits<6> pstatefield;
bit imm;
let Inst{18-16} = pstatefield{5-3};
let Inst{11-9} = 0b000;
let Inst{8} = imm;
let Inst{7-5} = pstatefield{2-0};
let DecoderMethod = "DecodeSystemPStateInstruction";
// MSRpstateI aliases with MSRI. When the MSRpstateI decoder method returns
// Fail the decoder should attempt to decode the instruction as MSRI.
let hasCompleteDecoder = 0;
}
// SYS and SYSL generic system instructions.
def SysCRAsmOperand : AsmOperandClass {
let Name = "SysCR";
let ParserMethod = "tryParseSysCROperand";
}
def sys_cr_op : Operand<i32> {
let PrintMethod = "printSysCROperand";
let ParserMatchClass = SysCRAsmOperand;
}
class SystemXtI<bit L, string asm>
: RtSystemI<L, (outs),
(ins imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2, GPR64:$Rt),
asm, "\t$op1, $Cn, $Cm, $op2, $Rt"> {
bits<3> op1;
bits<4> Cn;
bits<4> Cm;
bits<3> op2;
let Inst{20-19} = 0b01;
let Inst{18-16} = op1;
let Inst{15-12} = Cn;
let Inst{11-8} = Cm;
let Inst{7-5} = op2;
}
class SystemLXtI<bit L, string asm>
: RtSystemI<L, (outs),
(ins GPR64:$Rt, imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2),
asm, "\t$Rt, $op1, $Cn, $Cm, $op2"> {
bits<3> op1;
bits<4> Cn;
bits<4> Cm;
bits<3> op2;
let Inst{20-19} = 0b01;
let Inst{18-16} = op1;
let Inst{15-12} = Cn;
let Inst{11-8} = Cm;
let Inst{7-5} = op2;
}
// Branch (register) instructions:
//
// case opc of
// 0001 blr
// 0000 br
// 0101 dret
// 0100 eret
// 0010 ret
// otherwise UNDEFINED
class BaseBranchReg<bits<4> opc, dag oops, dag iops, string asm,
string operands, list<dag> pattern>
: I<oops, iops, asm, operands, "", pattern>, Sched<[WriteBrReg]> {
let Inst{31-25} = 0b1101011;
let Inst{24-21} = opc;
let Inst{20-16} = 0b11111;
let Inst{15-10} = 0b000000;
let Inst{4-0} = 0b00000;
}
class BranchReg<bits<4> opc, string asm, list<dag> pattern>
: BaseBranchReg<opc, (outs), (ins GPR64:$Rn), asm, "\t$Rn", pattern> {
bits<5> Rn;
let Inst{9-5} = Rn;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 1, isReturn = 1 in
class SpecialReturn<bits<4> opc, string asm>
: BaseBranchReg<opc, (outs), (ins), asm, "", []> {
let Inst{9-5} = 0b11111;
}
let mayLoad = 1 in
class RCPCLoad<bits<2> sz, string asm, RegisterClass RC>
: I<(outs RC:$Rt), (ins GPR64sp0:$Rn), asm, "\t$Rt, [$Rn]", "", []>,
Sched<[]> {
bits<5> Rn;
bits<5> Rt;
let Inst{31-30} = sz;
let Inst{29-10} = 0b11100010111111110000;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
}
class AuthBase<bits<1> M, dag oops, dag iops, string asm, string operands,
list<dag> pattern>
: I<oops, iops, asm, operands, "", pattern>, Sched<[]> {
let isAuthenticated = 1;
let Inst{31-25} = 0b1101011;
let Inst{20-11} = 0b1111100001;
let Inst{10} = M;
let Inst{4-0} = 0b11111;
}
class AuthBranchTwoOperands<bits<1> op, bits<1> M, string asm>
: AuthBase<M, (outs), (ins GPR64:$Rn, GPR64sp:$Rm), asm, "\t$Rn, $Rm", []> {
bits<5> Rn;
bits<5> Rm;
let Inst{24-22} = 0b100;
let Inst{21} = op;
let Inst{9-5} = Rn;
let Inst{4-0} = Rm;
}
class AuthOneOperand<bits<3> opc, bits<1> M, string asm>
: AuthBase<M, (outs), (ins GPR64:$Rn), asm, "\t$Rn", []> {
bits<5> Rn;
let Inst{24} = 0;
let Inst{23-21} = opc;
let Inst{9-5} = Rn;
}
let Uses = [LR,SP] in
class AuthReturn<bits<3> op, bits<1> M, string asm>
: AuthBase<M, (outs), (ins), asm, "", []> {
let Inst{24} = 0;
let Inst{23-21} = op;
let Inst{9-0} = 0b1111111111;
}
let mayLoad = 1 in
class BaseAuthLoad<bit M, bit W, dag oops, dag iops, string asm,
string operands, string cstr, Operand opr>
: I<oops, iops, asm, operands, cstr, []>, Sched<[]> {
bits<10> offset;
bits<5> Rn;
bits<5> Rt;
let isAuthenticated = 1;
let Inst{31-24} = 0b11111000;
let Inst{23} = M;
let Inst{22} = offset{9};
let Inst{21} = 1;
let Inst{20-12} = offset{8-0};
let Inst{11} = W;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodeAuthLoadInstruction";
}
multiclass AuthLoad<bit M, string asm, Operand opr> {
def indexed : BaseAuthLoad<M, 0, (outs GPR64:$Rt),
(ins GPR64sp:$Rn, opr:$offset),
asm, "\t$Rt, [$Rn, $offset]", "", opr>;
def writeback : BaseAuthLoad<M, 1, (outs GPR64sp:$wback, GPR64:$Rt),
(ins GPR64sp:$Rn, opr:$offset),
asm, "\t$Rt, [$Rn, $offset]!",
"$Rn = $wback,@earlyclobber $wback", opr>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "indexed") GPR64:$Rt, GPR64sp:$Rn, 0)>;
def : InstAlias<asm # "\t$Rt, [$wback]!",
(!cast<Instruction>(NAME # "writeback") GPR64sp:$wback, GPR64:$Rt, 0), 0>;
}
//---
// Conditional branch instruction.
//---
// Condition code.
// 4-bit immediate. Pretty-printed as <cc>
def ccode : Operand<i32> {
let PrintMethod = "printCondCode";
let ParserMatchClass = CondCode;
}
def inv_ccode : Operand<i32> {
// AL and NV are invalid in the aliases which use inv_ccode
let PrintMethod = "printInverseCondCode";
let ParserMatchClass = CondCode;
let MCOperandPredicate = [{
return MCOp.isImm() &&
MCOp.getImm() != AArch64CC::AL &&
MCOp.getImm() != AArch64CC::NV;
}];
}
// Conditional branch target. 19-bit immediate. The low two bits of the target
// offset are implied zero and so are not part of the immediate.
def am_brcond : Operand<OtherVT> {
let EncoderMethod = "getCondBranchTargetOpValue";
let DecoderMethod = "DecodePCRelLabel19";
let PrintMethod = "printAlignedLabel";
let ParserMatchClass = PCRelLabel19Operand;
let OperandType = "OPERAND_PCREL";
}
class BranchCond : I<(outs), (ins ccode:$cond, am_brcond:$target),
"b", ".$cond\t$target", "",
[(AArch64brcond bb:$target, imm:$cond, NZCV)]>,
Sched<[WriteBr]> {
let isBranch = 1;
let isTerminator = 1;
let Uses = [NZCV];
bits<4> cond;
bits<19> target;
let Inst{31-24} = 0b01010100;
let Inst{23-5} = target;
let Inst{4} = 0;
let Inst{3-0} = cond;
}
//---
// Compare-and-branch instructions.
//---
class BaseCmpBranch<RegisterClass regtype, bit op, string asm, SDNode node>
: I<(outs), (ins regtype:$Rt, am_brcond:$target),
asm, "\t$Rt, $target", "",
[(node regtype:$Rt, bb:$target)]>,
Sched<[WriteBr]> {
let isBranch = 1;
let isTerminator = 1;
bits<5> Rt;
bits<19> target;
let Inst{30-25} = 0b011010;
let Inst{24} = op;
let Inst{23-5} = target;
let Inst{4-0} = Rt;
}
multiclass CmpBranch<bit op, string asm, SDNode node> {
def W : BaseCmpBranch<GPR32, op, asm, node> {
let Inst{31} = 0;
}
def X : BaseCmpBranch<GPR64, op, asm, node> {
let Inst{31} = 1;
}
}
//---
// Test-bit-and-branch instructions.
//---
// Test-and-branch target. 14-bit sign-extended immediate. The low two bits of
// the target offset are implied zero and so are not part of the immediate.
def am_tbrcond : Operand<OtherVT> {
let EncoderMethod = "getTestBranchTargetOpValue";
let PrintMethod = "printAlignedLabel";
let ParserMatchClass = BranchTarget14Operand;
let OperandType = "OPERAND_PCREL";
}
// AsmOperand classes to emit (or not) special diagnostics
def TBZImm0_31Operand : AsmOperandClass {
let Name = "TBZImm0_31";
let PredicateMethod = "isImmInRange<0,31>";
let RenderMethod = "addImmOperands";
}
def TBZImm32_63Operand : AsmOperandClass {
let Name = "Imm32_63";
let PredicateMethod = "isImmInRange<32,63>";
let DiagnosticType = "InvalidImm0_63";
let RenderMethod = "addImmOperands";
}
class tbz_imm0_31<AsmOperandClass matcher> : Operand<i64>, ImmLeaf<i64, [{
return (((uint32_t)Imm) < 32);
}]> {
let ParserMatchClass = matcher;
}
def tbz_imm0_31_diag : tbz_imm0_31<Imm0_31Operand>;
def tbz_imm0_31_nodiag : tbz_imm0_31<TBZImm0_31Operand>;
def tbz_imm32_63 : Operand<i64>, ImmLeaf<i64, [{
return (((uint32_t)Imm) > 31) && (((uint32_t)Imm) < 64);
}]> {
let ParserMatchClass = TBZImm32_63Operand;
}
class BaseTestBranch<RegisterClass regtype, Operand immtype,
bit op, string asm, SDNode node>
: I<(outs), (ins regtype:$Rt, immtype:$bit_off, am_tbrcond:$target),
asm, "\t$Rt, $bit_off, $target", "",
[(node regtype:$Rt, immtype:$bit_off, bb:$target)]>,
Sched<[WriteBr]> {
let isBranch = 1;
let isTerminator = 1;
bits<5> Rt;
bits<6> bit_off;
bits<14> target;
let Inst{30-25} = 0b011011;
let Inst{24} = op;
let Inst{23-19} = bit_off{4-0};
let Inst{18-5} = target;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodeTestAndBranch";
}
multiclass TestBranch<bit op, string asm, SDNode node> {
def W : BaseTestBranch<GPR32, tbz_imm0_31_diag, op, asm, node> {
let Inst{31} = 0;
}
def X : BaseTestBranch<GPR64, tbz_imm32_63, op, asm, node> {
let Inst{31} = 1;
}
// Alias X-reg with 0-31 imm to W-Reg.
def : InstAlias<asm # "\t$Rd, $imm, $target",
(!cast<Instruction>(NAME#"W") GPR32as64:$Rd,
tbz_imm0_31_nodiag:$imm, am_tbrcond:$target), 0>;
def : Pat<(node GPR64:$Rn, tbz_imm0_31_diag:$imm, bb:$target),
(!cast<Instruction>(NAME#"W") (EXTRACT_SUBREG GPR64:$Rn, sub_32),
tbz_imm0_31_diag:$imm, bb:$target)>;
}
//---
// Unconditional branch (immediate) instructions.
//---
def am_b_target : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
let PrintMethod = "printAlignedLabel";
let ParserMatchClass = BranchTarget26Operand;
let OperandType = "OPERAND_PCREL";
}
def am_bl_target : Operand<i64> {
let EncoderMethod = "getBranchTargetOpValue";
let PrintMethod = "printAlignedLabel";
let ParserMatchClass = BranchTarget26Operand;
let OperandType = "OPERAND_PCREL";
}
class BImm<bit op, dag iops, string asm, list<dag> pattern>
: I<(outs), iops, asm, "\t$addr", "", pattern>, Sched<[WriteBr]> {
bits<26> addr;
let Inst{31} = op;
let Inst{30-26} = 0b00101;
let Inst{25-0} = addr;
let DecoderMethod = "DecodeUnconditionalBranch";
}
class BranchImm<bit op, string asm, list<dag> pattern>
: BImm<op, (ins am_b_target:$addr), asm, pattern>;
class CallImm<bit op, string asm, list<dag> pattern>
: BImm<op, (ins am_bl_target:$addr), asm, pattern>;
//---
// Basic one-operand data processing instructions.
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseOneOperandData<bits<3> opc, RegisterClass regtype, string asm,
SDPatternOperator node>
: I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn", "",
[(set regtype:$Rd, (node regtype:$Rn))]>,
Sched<[WriteI, ReadI]> {
bits<5> Rd;
bits<5> Rn;
let Inst{30-13} = 0b101101011000000000;
let Inst{12-10} = opc;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
multiclass OneOperandData<bits<3> opc, string asm,
SDPatternOperator node = null_frag> {
def Wr : BaseOneOperandData<opc, GPR32, asm, node> {
let Inst{31} = 0;
}
def Xr : BaseOneOperandData<opc, GPR64, asm, node> {
let Inst{31} = 1;
}
}
class OneWRegData<bits<3> opc, string asm, SDPatternOperator node>
: BaseOneOperandData<opc, GPR32, asm, node> {
let Inst{31} = 0;
}
class OneXRegData<bits<3> opc, string asm, SDPatternOperator node>
: BaseOneOperandData<opc, GPR64, asm, node> {
let Inst{31} = 1;
}
class SignAuthOneData<bits<3> opcode_prefix, bits<2> opcode, string asm>
: I<(outs GPR64:$Rd), (ins GPR64:$src, GPR64sp:$Rn), asm, "\t$Rd, $Rn",
"$Rd = $src",
[]>,
Sched<[WriteI, ReadI]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-15} = 0b11011010110000010;
let Inst{14-12} = opcode_prefix;
let Inst{11-10} = opcode;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class SignAuthZero<bits<3> opcode_prefix, bits<2> opcode, string asm>
: I<(outs GPR64:$Rd), (ins GPR64:$src), asm, "\t$Rd", "$Rd = $src",
[]>, Sched<[]> {
bits<5> Rd;
let Inst{31-15} = 0b11011010110000010;
let Inst{14-12} = opcode_prefix;
let Inst{11-10} = opcode;
let Inst{9-5} = 0b11111;
let Inst{4-0} = Rd;
}
class SignAuthTwoOperand<bits<4> opc, string asm,
SDPatternOperator OpNode>
: I<(outs GPR64:$Rd), (ins GPR64:$Rn, GPR64sp:$Rm),
asm, "\t$Rd, $Rn, $Rm", "",
[(set GPR64:$Rd, (OpNode GPR64:$Rn, GPR64sp:$Rm))]>,
Sched<[WriteI, ReadI, ReadI]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31-21} = 0b10011010110;
let Inst{20-16} = Rm;
let Inst{15-14} = 0b00;
let Inst{13-10} = opc;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class ClearAuth<bits<1> data, string asm>
: I<(outs GPR64:$Rd), (ins GPR64:$Rn), asm, "\t$Rd", "$Rd = $Rn", []>, Sched<[]> {
bits<5> Rd;
let Inst{31-11} = 0b110110101100000101000;
let Inst{10} = data;
let Inst{9-5} = 0b11111;
let Inst{4-0} = Rd;
}
// Base class for the Armv8.4-A 8 and 16-bit flag manipulation instructions
class BaseFlagManipulation<bit sf, bit sz, dag iops, string asm, string ops>
: I<(outs), iops, asm, ops, "", []>,
Sched<[WriteI, ReadI, ReadI]> {
let Uses = [NZCV];
let Defs = [NZCV];
bits<5> Rn;
let Inst{31} = sf;
let Inst{30-15} = 0b0111010000000000;
let Inst{14} = sz;
let Inst{13-10} = 0b0010;
let Inst{9-5} = Rn;
let Inst{4-0} = 0b01101;
}
class FlagRotate<dag iops, string asm, string ops>
: BaseFlagManipulation<0b1, 0b0, iops, asm, ops> {
bits<6> imm;
bits<4> mask;
let Inst{20-15} = imm;
let Inst{13-10} = 0b0001;
let Inst{4} = 0b0;
let Inst{3-0} = mask;
}
//---
// Basic two-operand data processing instructions.
//---
class BaseBaseAddSubCarry<bit isSub, RegisterClass regtype, string asm,
list<dag> pattern>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
asm, "\t$Rd, $Rn, $Rm", "", pattern>,
Sched<[WriteI, ReadI, ReadI]> {
let Uses = [NZCV];
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{30} = isSub;
let Inst{28-21} = 0b11010000;
let Inst{20-16} = Rm;
let Inst{15-10} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class BaseAddSubCarry<bit isSub, RegisterClass regtype, string asm,
SDNode OpNode>
: BaseBaseAddSubCarry<isSub, regtype, asm,
[(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm, NZCV))]>;
class BaseAddSubCarrySetFlags<bit isSub, RegisterClass regtype, string asm,
SDNode OpNode>
: BaseBaseAddSubCarry<isSub, regtype, asm,
[(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm, NZCV)),
(implicit NZCV)]> {
let Defs = [NZCV];
}
multiclass AddSubCarry<bit isSub, string asm, string asm_setflags,
SDNode OpNode, SDNode OpNode_setflags> {
def Wr : BaseAddSubCarry<isSub, GPR32, asm, OpNode> {
let Inst{31} = 0;
let Inst{29} = 0;
}
def Xr : BaseAddSubCarry<isSub, GPR64, asm, OpNode> {
let Inst{31} = 1;
let Inst{29} = 0;
}
// Sets flags.
def SWr : BaseAddSubCarrySetFlags<isSub, GPR32, asm_setflags,
OpNode_setflags> {
let Inst{31} = 0;
let Inst{29} = 1;
}
def SXr : BaseAddSubCarrySetFlags<isSub, GPR64, asm_setflags,
OpNode_setflags> {
let Inst{31} = 1;
let Inst{29} = 1;
}
}
class BaseTwoOperand<bits<4> opc, RegisterClass regtype, string asm,
SDPatternOperator OpNode,
RegisterClass in1regtype = regtype,
RegisterClass in2regtype = regtype>
: I<(outs regtype:$Rd), (ins in1regtype:$Rn, in2regtype:$Rm),
asm, "\t$Rd, $Rn, $Rm", "",
[(set regtype:$Rd, (OpNode in1regtype:$Rn, in2regtype:$Rm))]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{30-21} = 0b0011010110;
let Inst{20-16} = Rm;
let Inst{15-14} = 0b00;
let Inst{13-10} = opc;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class BaseDiv<bit isSigned, RegisterClass regtype, string asm,
SDPatternOperator OpNode>
: BaseTwoOperand<{0,0,1,?}, regtype, asm, OpNode> {
let Inst{10} = isSigned;
}
multiclass Div<bit isSigned, string asm, SDPatternOperator OpNode> {
def Wr : BaseDiv<isSigned, GPR32, asm, OpNode>,
Sched<[WriteID32, ReadID, ReadID]> {
let Inst{31} = 0;
}
def Xr : BaseDiv<isSigned, GPR64, asm, OpNode>,
Sched<[WriteID64, ReadID, ReadID]> {
let Inst{31} = 1;
}
}
class BaseShift<bits<2> shift_type, RegisterClass regtype, string asm,
SDPatternOperator OpNode = null_frag>
: BaseTwoOperand<{1,0,?,?}, regtype, asm, OpNode>,
Sched<[WriteIS, ReadI]> {
let Inst{11-10} = shift_type;
}
multiclass Shift<bits<2> shift_type, string asm, SDNode OpNode> {
def Wr : BaseShift<shift_type, GPR32, asm> {
let Inst{31} = 0;
}
def Xr : BaseShift<shift_type, GPR64, asm, OpNode> {
let Inst{31} = 1;
}
def : Pat<(i32 (OpNode GPR32:$Rn, i64:$Rm)),
(!cast<Instruction>(NAME # "Wr") GPR32:$Rn,
(EXTRACT_SUBREG i64:$Rm, sub_32))>;
def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (zext GPR32:$Rm)))),
(!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (anyext GPR32:$Rm)))),
(!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (sext GPR32:$Rm)))),
(!cast<Instruction>(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(i64 (OpNode GPR64:$Rn, (i64 (sext GPR32:$Rm)))),
(!cast<Instruction>(NAME # "Xr") GPR64:$Rn,
(SUBREG_TO_REG (i32 0), GPR32:$Rm, sub_32))>;
def : Pat<(i64 (OpNode GPR64:$Rn, (i64 (zext GPR32:$Rm)))),
(!cast<Instruction>(NAME # "Xr") GPR64:$Rn,
(SUBREG_TO_REG (i32 0), GPR32:$Rm, sub_32))>;
}
class ShiftAlias<string asm, Instruction inst, RegisterClass regtype>
: InstAlias<asm#"\t$dst, $src1, $src2",
(inst regtype:$dst, regtype:$src1, regtype:$src2), 0>;
class BaseMulAccum<bit isSub, bits<3> opc, RegisterClass multype,
RegisterClass addtype, string asm,
list<dag> pattern>
: I<(outs addtype:$Rd), (ins multype:$Rn, multype:$Rm, addtype:$Ra),
asm, "\t$Rd, $Rn, $Rm, $Ra", "", pattern> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<5> Ra;
let Inst{30-24} = 0b0011011;
let Inst{23-21} = opc;
let Inst{20-16} = Rm;
let Inst{15} = isSub;
let Inst{14-10} = Ra;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass MulAccum<bit isSub, string asm, SDNode AccNode> {
// MADD/MSUB generation is decided by MachineCombiner.cpp
def Wrrr : BaseMulAccum<isSub, 0b000, GPR32, GPR32, asm,
[/*(set GPR32:$Rd, (AccNode GPR32:$Ra, (mul GPR32:$Rn, GPR32:$Rm)))*/]>,
Sched<[WriteIM32, ReadIM, ReadIM, ReadIMA]> {
let Inst{31} = 0;
}
def Xrrr : BaseMulAccum<isSub, 0b000, GPR64, GPR64, asm,
[/*(set GPR64:$Rd, (AccNode GPR64:$Ra, (mul GPR64:$Rn, GPR64:$Rm)))*/]>,
Sched<[WriteIM64, ReadIM, ReadIM, ReadIMA]> {
let Inst{31} = 1;
}
}
class WideMulAccum<bit isSub, bits<3> opc, string asm,
SDNode AccNode, SDNode ExtNode>
: BaseMulAccum<isSub, opc, GPR32, GPR64, asm,
[(set GPR64:$Rd, (AccNode GPR64:$Ra,
(mul (ExtNode GPR32:$Rn), (ExtNode GPR32:$Rm))))]>,
Sched<[WriteIM32, ReadIM, ReadIM, ReadIMA]> {
let Inst{31} = 1;
}
class MulHi<bits<3> opc, string asm, SDNode OpNode>
: I<(outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm),
asm, "\t$Rd, $Rn, $Rm", "",
[(set GPR64:$Rd, (OpNode GPR64:$Rn, GPR64:$Rm))]>,
Sched<[WriteIM64, ReadIM, ReadIM]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31-24} = 0b10011011;
let Inst{23-21} = opc;
let Inst{20-16} = Rm;
let Inst{15} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
// The Ra field of SMULH and UMULH is unused: it should be assembled as 31
// (i.e. all bits 1) but is ignored by the processor.
let PostEncoderMethod = "fixMulHigh";
}
class MulAccumWAlias<string asm, Instruction inst>
: InstAlias<asm#"\t$dst, $src1, $src2",
(inst GPR32:$dst, GPR32:$src1, GPR32:$src2, WZR)>;
class MulAccumXAlias<string asm, Instruction inst>
: InstAlias<asm#"\t$dst, $src1, $src2",
(inst GPR64:$dst, GPR64:$src1, GPR64:$src2, XZR)>;
class WideMulAccumAlias<string asm, Instruction inst>
: InstAlias<asm#"\t$dst, $src1, $src2",
(inst GPR64:$dst, GPR32:$src1, GPR32:$src2, XZR)>;
class BaseCRC32<bit sf, bits<2> sz, bit C, RegisterClass StreamReg,
SDPatternOperator OpNode, string asm>
: I<(outs GPR32:$Rd), (ins GPR32:$Rn, StreamReg:$Rm),
asm, "\t$Rd, $Rn, $Rm", "",
[(set GPR32:$Rd, (OpNode GPR32:$Rn, StreamReg:$Rm))]>,
Sched<[WriteISReg, ReadI, ReadISReg]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31} = sf;
let Inst{30-21} = 0b0011010110;
let Inst{20-16} = Rm;
let Inst{15-13} = 0b010;
let Inst{12} = C;
let Inst{11-10} = sz;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
let Predicates = [HasCRC];
}
//---
// Address generation.
//---
class ADRI<bit page, string asm, Operand adr, list<dag> pattern>
: I<(outs GPR64:$Xd), (ins adr:$label), asm, "\t$Xd, $label", "",
pattern>,
Sched<[WriteI]> {
bits<5> Xd;
bits<21> label;
let Inst{31} = page;
let Inst{30-29} = label{1-0};
let Inst{28-24} = 0b10000;
let Inst{23-5} = label{20-2};
let Inst{4-0} = Xd;
let DecoderMethod = "DecodeAdrInstruction";
}
//---
// Move immediate.
//---
def movimm32_imm : Operand<i32> {
let ParserMatchClass = AsmImmRange<0, 65535>;
let EncoderMethod = "getMoveWideImmOpValue";
let PrintMethod = "printImm";
}
def movimm32_shift : Operand<i32> {
let PrintMethod = "printShifter";
let ParserMatchClass = MovImm32ShifterOperand;
}
def movimm64_shift : Operand<i32> {
let PrintMethod = "printShifter";
let ParserMatchClass = MovImm64ShifterOperand;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseMoveImmediate<bits<2> opc, RegisterClass regtype, Operand shifter,
string asm>
: I<(outs regtype:$Rd), (ins movimm32_imm:$imm, shifter:$shift),
asm, "\t$Rd, $imm$shift", "", []>,
Sched<[WriteImm]> {
bits<5> Rd;
bits<16> imm;
bits<6> shift;
let Inst{30-29} = opc;
let Inst{28-23} = 0b100101;
let Inst{22-21} = shift{5-4};
let Inst{20-5} = imm;
let Inst{4-0} = Rd;
let DecoderMethod = "DecodeMoveImmInstruction";
}
multiclass MoveImmediate<bits<2> opc, string asm> {
def Wi : BaseMoveImmediate<opc, GPR32, movimm32_shift, asm> {
let Inst{31} = 0;
}
def Xi : BaseMoveImmediate<opc, GPR64, movimm64_shift, asm> {
let Inst{31} = 1;
}
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseInsertImmediate<bits<2> opc, RegisterClass regtype, Operand shifter,
string asm>
: I<(outs regtype:$Rd),
(ins regtype:$src, movimm32_imm:$imm, shifter:$shift),
asm, "\t$Rd, $imm$shift", "$src = $Rd", []>,
Sched<[WriteI, ReadI]> {
bits<5> Rd;
bits<16> imm;
bits<6> shift;
let Inst{30-29} = opc;
let Inst{28-23} = 0b100101;
let Inst{22-21} = shift{5-4};
let Inst{20-5} = imm;
let Inst{4-0} = Rd;
let DecoderMethod = "DecodeMoveImmInstruction";
}
multiclass InsertImmediate<bits<2> opc, string asm> {
def Wi : BaseInsertImmediate<opc, GPR32, movimm32_shift, asm> {
let Inst{31} = 0;
}
def Xi : BaseInsertImmediate<opc, GPR64, movimm64_shift, asm> {
let Inst{31} = 1;
}
}
//---
// Add/Subtract
//---
class BaseAddSubImm<bit isSub, bit setFlags, RegisterClass dstRegtype,
string asm_inst, string asm_ops,
dag inputs, dag pattern>
: I<(outs dstRegtype:$Rd), inputs, asm_inst, asm_ops, "", [pattern]>,
Sched<[WriteI, ReadI]> {
bits<5> Rd;
bits<5> Rn;
let Inst{30} = isSub;
let Inst{29} = setFlags;
let Inst{28-24} = 0b10001;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class AddSubImmShift<bit isSub, bit setFlags, RegisterClass dstRegtype,
RegisterClass srcRegtype, addsub_shifted_imm immtype,
string asm_inst, SDPatternOperator OpNode>
: BaseAddSubImm<isSub, setFlags, dstRegtype, asm_inst, "\t$Rd, $Rn, $imm",
(ins srcRegtype:$Rn, immtype:$imm),
(set dstRegtype:$Rd, (OpNode srcRegtype:$Rn, immtype:$imm))> {
bits<14> imm;
let Inst{23-22} = imm{13-12}; // '00' => lsl #0, '01' => lsl #12
let Inst{21-10} = imm{11-0};
let DecoderMethod = "DecodeAddSubImmShift";
}
class BaseAddSubRegPseudo<RegisterClass regtype,
SDPatternOperator OpNode>
: Pseudo<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
[(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]>,
Sched<[WriteI, ReadI, ReadI]>;
class BaseAddSubSReg<bit isSub, bit setFlags, RegisterClass regtype,
arith_shifted_reg shifted_regtype, string asm,
SDPatternOperator OpNode>
: I<(outs regtype:$Rd), (ins regtype:$Rn, shifted_regtype:$Rm),
asm, "\t$Rd, $Rn, $Rm", "",
[(set regtype:$Rd, (OpNode regtype:$Rn, shifted_regtype:$Rm))]>,
Sched<[WriteISReg, ReadI, ReadISReg]> {
// The operands are in order to match the 'addr' MI operands, so we
// don't need an encoder method and by-name matching. Just use the default
// in-order handling. Since we're using by-order, make sure the names
// do not match.
bits<5> dst;
bits<5> src1;
bits<5> src2;
bits<8> shift;
let Inst{30} = isSub;
let Inst{29} = setFlags;
let Inst{28-24} = 0b01011;
let Inst{23-22} = shift{7-6};
let Inst{21} = 0;
let Inst{20-16} = src2;
let Inst{15-10} = shift{5-0};
let Inst{9-5} = src1;
let Inst{4-0} = dst;
let DecoderMethod = "DecodeThreeAddrSRegInstruction";
}
class BaseAddSubEReg<bit isSub, bit setFlags, RegisterClass dstRegtype,
RegisterClass src1Regtype, Operand src2Regtype,
string asm, SDPatternOperator OpNode>
: I<(outs dstRegtype:$R1),
(ins src1Regtype:$R2, src2Regtype:$R3),
asm, "\t$R1, $R2, $R3", "",
[(set dstRegtype:$R1, (OpNode src1Regtype:$R2, src2Regtype:$R3))]>,
Sched<[WriteIEReg, ReadI, ReadIEReg]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<6> ext;
let Inst{30} = isSub;
let Inst{29} = setFlags;
let Inst{28-24} = 0b01011;
let Inst{23-21} = 0b001;
let Inst{20-16} = Rm;
let Inst{15-13} = ext{5-3};
let Inst{12-10} = ext{2-0};
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
let DecoderMethod = "DecodeAddSubERegInstruction";
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseAddSubEReg64<bit isSub, bit setFlags, RegisterClass dstRegtype,
RegisterClass src1Regtype, RegisterClass src2Regtype,
Operand ext_op, string asm>
: I<(outs dstRegtype:$Rd),
(ins src1Regtype:$Rn, src2Regtype:$Rm, ext_op:$ext),
asm, "\t$Rd, $Rn, $Rm$ext", "", []>,
Sched<[WriteIEReg, ReadI, ReadIEReg]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<6> ext;
let Inst{30} = isSub;
let Inst{29} = setFlags;
let Inst{28-24} = 0b01011;
let Inst{23-21} = 0b001;
let Inst{20-16} = Rm;
let Inst{15} = ext{5};
let Inst{12-10} = ext{2-0};
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
let DecoderMethod = "DecodeAddSubERegInstruction";
}
// Aliases for register+register add/subtract.
class AddSubRegAlias<string asm, Instruction inst, RegisterClass dstRegtype,
RegisterClass src1Regtype, RegisterClass src2Regtype,
int shiftExt>
: InstAlias<asm#"\t$dst, $src1, $src2",
(inst dstRegtype:$dst, src1Regtype:$src1, src2Regtype:$src2,
shiftExt)>;
multiclass AddSub<bit isSub, string mnemonic, string alias,
SDPatternOperator OpNode = null_frag> {
let hasSideEffects = 0, isReMaterializable = 1, isAsCheapAsAMove = 1 in {
// Add/Subtract immediate
// Increase the weight of the immediate variant to try to match it before
// the extended register variant.
// We used to match the register variant before the immediate when the
// register argument could be implicitly zero-extended.
let AddedComplexity = 6 in
def Wri : AddSubImmShift<isSub, 0, GPR32sp, GPR32sp, addsub_shifted_imm32,
mnemonic, OpNode> {
let Inst{31} = 0;
}
let AddedComplexity = 6 in
def Xri : AddSubImmShift<isSub, 0, GPR64sp, GPR64sp, addsub_shifted_imm64,
mnemonic, OpNode> {
let Inst{31} = 1;
}
// Add/Subtract register - Only used for CodeGen
def Wrr : BaseAddSubRegPseudo<GPR32, OpNode>;
def Xrr : BaseAddSubRegPseudo<GPR64, OpNode>;
// Add/Subtract shifted register
def Wrs : BaseAddSubSReg<isSub, 0, GPR32, arith_shifted_reg32, mnemonic,
OpNode> {
let Inst{31} = 0;
}
def Xrs : BaseAddSubSReg<isSub, 0, GPR64, arith_shifted_reg64, mnemonic,
OpNode> {
let Inst{31} = 1;
}
}
// Add/Subtract extended register
let AddedComplexity = 1, hasSideEffects = 0 in {
def Wrx : BaseAddSubEReg<isSub, 0, GPR32sp, GPR32sp,
arith_extended_reg32_i32, mnemonic, OpNode> {
let Inst{31} = 0;
}
def Xrx : BaseAddSubEReg<isSub, 0, GPR64sp, GPR64sp,
arith_extended_reg32to64_i64, mnemonic, OpNode> {
let Inst{31} = 1;
}
}
def Xrx64 : BaseAddSubEReg64<isSub, 0, GPR64sp, GPR64sp, GPR64,
arith_extendlsl64, mnemonic> {
// UXTX and SXTX only.
let Inst{14-13} = 0b11;
let Inst{31} = 1;
}
// add Rd, Rb, -imm -> sub Rd, Rn, imm
def : InstSubst<alias#"\t$Rd, $Rn, $imm",
(!cast<Instruction>(NAME # "Wri") GPR32sp:$Rd, GPR32sp:$Rn,
addsub_shifted_imm32_neg:$imm), 0>;
def : InstSubst<alias#"\t$Rd, $Rn, $imm",
(!cast<Instruction>(NAME # "Xri") GPR64sp:$Rd, GPR64sp:$Rn,
addsub_shifted_imm64_neg:$imm), 0>;
// Register/register aliases with no shift when SP is not used.
def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrs"),
GPR32, GPR32, GPR32, 0>;
def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrs"),
GPR64, GPR64, GPR64, 0>;
// Register/register aliases with no shift when either the destination or
// first source register is SP.
def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"),
GPR32sponly, GPR32sp, GPR32, 16>; // UXTW #0
def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"),
GPR32sp, GPR32sponly, GPR32, 16>; // UXTW #0
def : AddSubRegAlias<mnemonic,
!cast<Instruction>(NAME#"Xrx64"),
GPR64sponly, GPR64sp, GPR64, 24>; // UXTX #0
def : AddSubRegAlias<mnemonic,
!cast<Instruction>(NAME#"Xrx64"),
GPR64sp, GPR64sponly, GPR64, 24>; // UXTX #0
}
multiclass AddSubS<bit isSub, string mnemonic, SDNode OpNode, string cmp,
string alias, string cmpAlias> {
let isCompare = 1, Defs = [NZCV] in {
// Add/Subtract immediate
def Wri : AddSubImmShift<isSub, 1, GPR32, GPR32sp, addsub_shifted_imm32,
mnemonic, OpNode> {
let Inst{31} = 0;
}
def Xri : AddSubImmShift<isSub, 1, GPR64, GPR64sp, addsub_shifted_imm64,
mnemonic, OpNode> {
let Inst{31} = 1;
}
// Add/Subtract register
def Wrr : BaseAddSubRegPseudo<GPR32, OpNode>;
def Xrr : BaseAddSubRegPseudo<GPR64, OpNode>;
// Add/Subtract shifted register
def Wrs : BaseAddSubSReg<isSub, 1, GPR32, arith_shifted_reg32, mnemonic,
OpNode> {
let Inst{31} = 0;
}
def Xrs : BaseAddSubSReg<isSub, 1, GPR64, arith_shifted_reg64, mnemonic,
OpNode> {
let Inst{31} = 1;
}
// Add/Subtract extended register
let AddedComplexity = 1 in {
def Wrx : BaseAddSubEReg<isSub, 1, GPR32, GPR32sp,
arith_extended_reg32_i32, mnemonic, OpNode> {
let Inst{31} = 0;
}
def Xrx : BaseAddSubEReg<isSub, 1, GPR64, GPR64sp,
arith_extended_reg32_i64, mnemonic, OpNode> {
let Inst{31} = 1;
}
}
def Xrx64 : BaseAddSubEReg64<isSub, 1, GPR64, GPR64sp, GPR64,
arith_extendlsl64, mnemonic> {
// UXTX and SXTX only.
let Inst{14-13} = 0b11;
let Inst{31} = 1;
}
} // Defs = [NZCV]
// Support negative immediates, e.g. adds Rd, Rn, -imm -> subs Rd, Rn, imm
def : InstSubst<alias#"\t$Rd, $Rn, $imm",
(!cast<Instruction>(NAME # "Wri") GPR32:$Rd, GPR32sp:$Rn,
addsub_shifted_imm32_neg:$imm), 0>;
def : InstSubst<alias#"\t$Rd, $Rn, $imm",
(!cast<Instruction>(NAME # "Xri") GPR64:$Rd, GPR64sp:$Rn,
addsub_shifted_imm64_neg:$imm), 0>;
// Compare aliases
def : InstAlias<cmp#"\t$src, $imm", (!cast<Instruction>(NAME#"Wri")
WZR, GPR32sp:$src, addsub_shifted_imm32:$imm), 5>;
def : InstAlias<cmp#"\t$src, $imm", (!cast<Instruction>(NAME#"Xri")
XZR, GPR64sp:$src, addsub_shifted_imm64:$imm), 5>;
def : InstAlias<cmp#"\t$src1, $src2$sh", (!cast<Instruction>(NAME#"Wrx")
WZR, GPR32sp:$src1, GPR32:$src2, arith_extend:$sh), 4>;
def : InstAlias<cmp#"\t$src1, $src2$sh", (!cast<Instruction>(NAME#"Xrx")
XZR, GPR64sp:$src1, GPR32:$src2, arith_extend:$sh), 4>;
def : InstAlias<cmp#"\t$src1, $src2$sh", (!cast<Instruction>(NAME#"Xrx64")
XZR, GPR64sp:$src1, GPR64:$src2, arith_extendlsl64:$sh), 4>;
def : InstAlias<cmp#"\t$src1, $src2$sh", (!cast<Instruction>(NAME#"Wrs")
WZR, GPR32:$src1, GPR32:$src2, arith_shift32:$sh), 4>;
def : InstAlias<cmp#"\t$src1, $src2$sh", (!cast<Instruction>(NAME#"Xrs")
XZR, GPR64:$src1, GPR64:$src2, arith_shift64:$sh), 4>;
// Support negative immediates, e.g. cmp Rn, -imm -> cmn Rn, imm
def : InstSubst<cmpAlias#"\t$src, $imm", (!cast<Instruction>(NAME#"Wri")
WZR, GPR32sp:$src, addsub_shifted_imm32_neg:$imm), 0>;
def : InstSubst<cmpAlias#"\t$src, $imm", (!cast<Instruction>(NAME#"Xri")
XZR, GPR64sp:$src, addsub_shifted_imm64_neg:$imm), 0>;
// Compare shorthands
def : InstAlias<cmp#"\t$src1, $src2", (!cast<Instruction>(NAME#"Wrs")
WZR, GPR32:$src1, GPR32:$src2, 0), 5>;
def : InstAlias<cmp#"\t$src1, $src2", (!cast<Instruction>(NAME#"Xrs")
XZR, GPR64:$src1, GPR64:$src2, 0), 5>;
def : InstAlias<cmp#"\t$src1, $src2", (!cast<Instruction>(NAME#"Wrx")
WZR, GPR32sponly:$src1, GPR32:$src2, 16), 5>;
def : InstAlias<cmp#"\t$src1, $src2", (!cast<Instruction>(NAME#"Xrx64")
XZR, GPR64sponly:$src1, GPR64:$src2, 24), 5>;
// Register/register aliases with no shift when SP is not used.
def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrs"),
GPR32, GPR32, GPR32, 0>;
def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Xrs"),
GPR64, GPR64, GPR64, 0>;
// Register/register aliases with no shift when the first source register
// is SP.
def : AddSubRegAlias<mnemonic, !cast<Instruction>(NAME#"Wrx"),
GPR32, GPR32sponly, GPR32, 16>; // UXTW #0
def : AddSubRegAlias<mnemonic,
!cast<Instruction>(NAME#"Xrx64"),
GPR64, GPR64sponly, GPR64, 24>; // UXTX #0
}
class AddSubG<bit isSub, string asm_inst, SDPatternOperator OpNode>
: BaseAddSubImm<
isSub, 0, GPR64sp, asm_inst, "\t$Rd, $Rn, $imm6, $imm4",
(ins GPR64sp:$Rn, uimm6s16:$imm6, imm0_15:$imm4),
(set GPR64sp:$Rd, (OpNode GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4))> {
bits<6> imm6;
bits<4> imm4;
let Inst{31} = 1;
let Inst{23-22} = 0b10;
let Inst{21-16} = imm6;
let Inst{15-14} = 0b00;
let Inst{13-10} = imm4;
let Unpredictable{15-14} = 0b11;
}
class SUBP<bit setsFlags, string asm_instr, SDPatternOperator OpNode>
: BaseTwoOperand<0b0000, GPR64, asm_instr, OpNode, GPR64sp, GPR64sp> {
let Inst{31} = 1;
let Inst{29} = setsFlags;
}
//---
// Extract
//---
def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisPtrTy<3>]>;
def AArch64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>;
class BaseExtractImm<RegisterClass regtype, Operand imm_type, string asm,
list<dag> patterns>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, imm_type:$imm),
asm, "\t$Rd, $Rn, $Rm, $imm", "", patterns>,
Sched<[WriteExtr, ReadExtrHi]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<6> imm;
let Inst{30-23} = 0b00100111;
let Inst{21} = 0;
let Inst{20-16} = Rm;
let Inst{15-10} = imm;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass ExtractImm<string asm> {
def Wrri : BaseExtractImm<GPR32, imm0_31, asm,
[(set GPR32:$Rd,
(AArch64Extr GPR32:$Rn, GPR32:$Rm, imm0_31:$imm))]> {
let Inst{31} = 0;
let Inst{22} = 0;
// imm<5> must be zero.
let imm{5} = 0;
}
def Xrri : BaseExtractImm<GPR64, imm0_63, asm,
[(set GPR64:$Rd,
(AArch64Extr GPR64:$Rn, GPR64:$Rm, imm0_63:$imm))]> {
let Inst{31} = 1;
let Inst{22} = 1;
}
}
//---
// Bitfield
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseBitfieldImm<bits<2> opc,
RegisterClass regtype, Operand imm_type, string asm>
: I<(outs regtype:$Rd), (ins regtype:$Rn, imm_type:$immr, imm_type:$imms),
asm, "\t$Rd, $Rn, $immr, $imms", "", []>,
Sched<[WriteIS, ReadI]> {
bits<5> Rd;
bits<5> Rn;
bits<6> immr;
bits<6> imms;
let Inst{30-29} = opc;
let Inst{28-23} = 0b100110;
let Inst{21-16} = immr;
let Inst{15-10} = imms;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass BitfieldImm<bits<2> opc, string asm> {
def Wri : BaseBitfieldImm<opc, GPR32, imm0_31, asm> {
let Inst{31} = 0;
let Inst{22} = 0;
// imms<5> and immr<5> must be zero, else ReservedValue().
let Inst{21} = 0;
let Inst{15} = 0;
}
def Xri : BaseBitfieldImm<opc, GPR64, imm0_63, asm> {
let Inst{31} = 1;
let Inst{22} = 1;
}
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseBitfieldImmWith2RegArgs<bits<2> opc,
RegisterClass regtype, Operand imm_type, string asm>
: I<(outs regtype:$Rd), (ins regtype:$src, regtype:$Rn, imm_type:$immr,
imm_type:$imms),
asm, "\t$Rd, $Rn, $immr, $imms", "$src = $Rd", []>,
Sched<[WriteIS, ReadI]> {
bits<5> Rd;
bits<5> Rn;
bits<6> immr;
bits<6> imms;
let Inst{30-29} = opc;
let Inst{28-23} = 0b100110;
let Inst{21-16} = immr;
let Inst{15-10} = imms;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass BitfieldImmWith2RegArgs<bits<2> opc, string asm> {
def Wri : BaseBitfieldImmWith2RegArgs<opc, GPR32, imm0_31, asm> {
let Inst{31} = 0;
let Inst{22} = 0;
// imms<5> and immr<5> must be zero, else ReservedValue().
let Inst{21} = 0;
let Inst{15} = 0;
}
def Xri : BaseBitfieldImmWith2RegArgs<opc, GPR64, imm0_63, asm> {
let Inst{31} = 1;
let Inst{22} = 1;
}
}
//---
// Logical
//---
// Logical (immediate)
class BaseLogicalImm<bits<2> opc, RegisterClass dregtype,
RegisterClass sregtype, Operand imm_type, string asm,
list<dag> pattern>
: I<(outs dregtype:$Rd), (ins sregtype:$Rn, imm_type:$imm),
asm, "\t$Rd, $Rn, $imm", "", pattern>,
Sched<[WriteI, ReadI]> {
bits<5> Rd;
bits<5> Rn;
bits<13> imm;
let Inst{30-29} = opc;
let Inst{28-23} = 0b100100;
let Inst{22} = imm{12};
let Inst{21-16} = imm{11-6};
let Inst{15-10} = imm{5-0};
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
let DecoderMethod = "DecodeLogicalImmInstruction";
}
// Logical (shifted register)
class BaseLogicalSReg<bits<2> opc, bit N, RegisterClass regtype,
logical_shifted_reg shifted_regtype, string asm,
list<dag> pattern>
: I<(outs regtype:$Rd), (ins regtype:$Rn, shifted_regtype:$Rm),
asm, "\t$Rd, $Rn, $Rm", "", pattern>,
Sched<[WriteISReg, ReadI, ReadISReg]> {
// The operands are in order to match the 'addr' MI operands, so we
// don't need an encoder method and by-name matching. Just use the default
// in-order handling. Since we're using by-order, make sure the names
// do not match.
bits<5> dst;
bits<5> src1;
bits<5> src2;
bits<8> shift;
let Inst{30-29} = opc;
let Inst{28-24} = 0b01010;
let Inst{23-22} = shift{7-6};
let Inst{21} = N;
let Inst{20-16} = src2;
let Inst{15-10} = shift{5-0};
let Inst{9-5} = src1;
let Inst{4-0} = dst;
let DecoderMethod = "DecodeThreeAddrSRegInstruction";
}
// Aliases for register+register logical instructions.
class LogicalRegAlias<string asm, Instruction inst, RegisterClass regtype>
: InstAlias<asm#"\t$dst, $src1, $src2",
(inst regtype:$dst, regtype:$src1, regtype:$src2, 0)>;
multiclass LogicalImm<bits<2> opc, string mnemonic, SDNode OpNode,
string Alias> {
let AddedComplexity = 6, isReMaterializable = 1, isAsCheapAsAMove = 1 in
def Wri : BaseLogicalImm<opc, GPR32sp, GPR32, logical_imm32, mnemonic,
[(set GPR32sp:$Rd, (OpNode GPR32:$Rn,
logical_imm32:$imm))]> {
let Inst{31} = 0;
let Inst{22} = 0; // 64-bit version has an additional bit of immediate.
}
let AddedComplexity = 6, isReMaterializable = 1, isAsCheapAsAMove = 1 in
def Xri : BaseLogicalImm<opc, GPR64sp, GPR64, logical_imm64, mnemonic,
[(set GPR64sp:$Rd, (OpNode GPR64:$Rn,
logical_imm64:$imm))]> {
let Inst{31} = 1;
}
def : InstSubst<Alias # "\t$Rd, $Rn, $imm",
(!cast<Instruction>(NAME # "Wri") GPR32sp:$Rd, GPR32:$Rn,
logical_imm32_not:$imm), 0>;
def : InstSubst<Alias # "\t$Rd, $Rn, $imm",
(!cast<Instruction>(NAME # "Xri") GPR64sp:$Rd, GPR64:$Rn,
logical_imm64_not:$imm), 0>;
}
multiclass LogicalImmS<bits<2> opc, string mnemonic, SDNode OpNode,
string Alias> {
let isCompare = 1, Defs = [NZCV] in {
def Wri : BaseLogicalImm<opc, GPR32, GPR32, logical_imm32, mnemonic,
[(set GPR32:$Rd, (OpNode GPR32:$Rn, logical_imm32:$imm))]> {
let Inst{31} = 0;
let Inst{22} = 0; // 64-bit version has an additional bit of immediate.
}
def Xri : BaseLogicalImm<opc, GPR64, GPR64, logical_imm64, mnemonic,
[(set GPR64:$Rd, (OpNode GPR64:$Rn, logical_imm64:$imm))]> {
let Inst{31} = 1;
}
} // end Defs = [NZCV]
def : InstSubst<Alias # "\t$Rd, $Rn, $imm",
(!cast<Instruction>(NAME # "Wri") GPR32:$Rd, GPR32:$Rn,
logical_imm32_not:$imm), 0>;
def : InstSubst<Alias # "\t$Rd, $Rn, $imm",
(!cast<Instruction>(NAME # "Xri") GPR64:$Rd, GPR64:$Rn,
logical_imm64_not:$imm), 0>;
}
class BaseLogicalRegPseudo<RegisterClass regtype, SDPatternOperator OpNode>
: Pseudo<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
[(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]>,
Sched<[WriteI, ReadI, ReadI]>;
// Split from LogicalImm as not all instructions have both.
multiclass LogicalReg<bits<2> opc, bit N, string mnemonic,
SDPatternOperator OpNode> {
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def Wrr : BaseLogicalRegPseudo<GPR32, OpNode>;
def Xrr : BaseLogicalRegPseudo<GPR64, OpNode>;
}
def Wrs : BaseLogicalSReg<opc, N, GPR32, logical_shifted_reg32, mnemonic,
[(set GPR32:$Rd, (OpNode GPR32:$Rn,
logical_shifted_reg32:$Rm))]> {
let Inst{31} = 0;
}
def Xrs : BaseLogicalSReg<opc, N, GPR64, logical_shifted_reg64, mnemonic,
[(set GPR64:$Rd, (OpNode GPR64:$Rn,
logical_shifted_reg64:$Rm))]> {
let Inst{31} = 1;
}
def : LogicalRegAlias<mnemonic,
!cast<Instruction>(NAME#"Wrs"), GPR32>;
def : LogicalRegAlias<mnemonic,
!cast<Instruction>(NAME#"Xrs"), GPR64>;
}
// Split from LogicalReg to allow setting NZCV Defs
multiclass LogicalRegS<bits<2> opc, bit N, string mnemonic,
SDPatternOperator OpNode = null_frag> {
let Defs = [NZCV], mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
def Wrr : BaseLogicalRegPseudo<GPR32, OpNode>;
def Xrr : BaseLogicalRegPseudo<GPR64, OpNode>;
def Wrs : BaseLogicalSReg<opc, N, GPR32, logical_shifted_reg32, mnemonic,
[(set GPR32:$Rd, (OpNode GPR32:$Rn, logical_shifted_reg32:$Rm))]> {
let Inst{31} = 0;
}
def Xrs : BaseLogicalSReg<opc, N, GPR64, logical_shifted_reg64, mnemonic,
[(set GPR64:$Rd, (OpNode GPR64:$Rn, logical_shifted_reg64:$Rm))]> {
let Inst{31} = 1;
}
} // Defs = [NZCV]
def : LogicalRegAlias<mnemonic,
!cast<Instruction>(NAME#"Wrs"), GPR32>;
def : LogicalRegAlias<mnemonic,
!cast<Instruction>(NAME#"Xrs"), GPR64>;
}
//---
// Conditionally set flags
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseCondComparisonImm<bit op, RegisterClass regtype, ImmLeaf immtype,
string mnemonic, SDNode OpNode>
: I<(outs), (ins regtype:$Rn, immtype:$imm, imm32_0_15:$nzcv, ccode:$cond),
mnemonic, "\t$Rn, $imm, $nzcv, $cond", "",
[(set NZCV, (OpNode regtype:$Rn, immtype:$imm, (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]>,
Sched<[WriteI, ReadI]> {
let Uses = [NZCV];
let Defs = [NZCV];
bits<5> Rn;
bits<5> imm;
bits<4> nzcv;
bits<4> cond;
let Inst{30} = op;
let Inst{29-21} = 0b111010010;
let Inst{20-16} = imm;
let Inst{15-12} = cond;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4} = 0b0;
let Inst{3-0} = nzcv;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseCondComparisonReg<bit op, RegisterClass regtype, string mnemonic,
SDNode OpNode>
: I<(outs), (ins regtype:$Rn, regtype:$Rm, imm32_0_15:$nzcv, ccode:$cond),
mnemonic, "\t$Rn, $Rm, $nzcv, $cond", "",
[(set NZCV, (OpNode regtype:$Rn, regtype:$Rm, (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]>,
Sched<[WriteI, ReadI, ReadI]> {
let Uses = [NZCV];
let Defs = [NZCV];
bits<5> Rn;
bits<5> Rm;
bits<4> nzcv;
bits<4> cond;
let Inst{30} = op;
let Inst{29-21} = 0b111010010;
let Inst{20-16} = Rm;
let Inst{15-12} = cond;
let Inst{11-10} = 0b00;
let Inst{9-5} = Rn;
let Inst{4} = 0b0;
let Inst{3-0} = nzcv;
}
multiclass CondComparison<bit op, string mnemonic, SDNode OpNode> {
// immediate operand variants
def Wi : BaseCondComparisonImm<op, GPR32, imm32_0_31, mnemonic, OpNode> {
let Inst{31} = 0;
}
def Xi : BaseCondComparisonImm<op, GPR64, imm0_31, mnemonic, OpNode> {
let Inst{31} = 1;
}
// register operand variants
def Wr : BaseCondComparisonReg<op, GPR32, mnemonic, OpNode> {
let Inst{31} = 0;
}
def Xr : BaseCondComparisonReg<op, GPR64, mnemonic, OpNode> {
let Inst{31} = 1;
}
}
//---
// Conditional select
//---
class BaseCondSelect<bit op, bits<2> op2, RegisterClass regtype, string asm>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond),
asm, "\t$Rd, $Rn, $Rm, $cond", "",
[(set regtype:$Rd,
(AArch64csel regtype:$Rn, regtype:$Rm, (i32 imm:$cond), NZCV))]>,
Sched<[WriteI, ReadI, ReadI]> {
let Uses = [NZCV];
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<4> cond;
let Inst{30} = op;
let Inst{29-21} = 0b011010100;
let Inst{20-16} = Rm;
let Inst{15-12} = cond;
let Inst{11-10} = op2;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass CondSelect<bit op, bits<2> op2, string asm> {
def Wr : BaseCondSelect<op, op2, GPR32, asm> {
let Inst{31} = 0;
}
def Xr : BaseCondSelect<op, op2, GPR64, asm> {
let Inst{31} = 1;
}
}
class BaseCondSelectOp<bit op, bits<2> op2, RegisterClass regtype, string asm,
PatFrag frag>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond),
asm, "\t$Rd, $Rn, $Rm, $cond", "",
[(set regtype:$Rd,
(AArch64csel regtype:$Rn, (frag regtype:$Rm),
(i32 imm:$cond), NZCV))]>,
Sched<[WriteI, ReadI, ReadI]> {
let Uses = [NZCV];
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<4> cond;
let Inst{30} = op;
let Inst{29-21} = 0b011010100;
let Inst{20-16} = Rm;
let Inst{15-12} = cond;
let Inst{11-10} = op2;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
def inv_cond_XFORM : SDNodeXForm<imm, [{
AArch64CC::CondCode CC = static_cast<AArch64CC::CondCode>(N->getZExtValue());
return CurDAG->getTargetConstant(AArch64CC::getInvertedCondCode(CC), SDLoc(N),
MVT::i32);
}]>;
multiclass CondSelectOp<bit op, bits<2> op2, string asm, PatFrag frag> {
def Wr : BaseCondSelectOp<op, op2, GPR32, asm, frag> {
let Inst{31} = 0;
}
def Xr : BaseCondSelectOp<op, op2, GPR64, asm, frag> {
let Inst{31} = 1;
}
def : Pat<(AArch64csel (frag GPR32:$Rm), GPR32:$Rn, (i32 imm:$cond), NZCV),
(!cast<Instruction>(NAME # Wr) GPR32:$Rn, GPR32:$Rm,
(inv_cond_XFORM imm:$cond))>;
def : Pat<(AArch64csel (frag GPR64:$Rm), GPR64:$Rn, (i32 imm:$cond), NZCV),
(!cast<Instruction>(NAME # Xr) GPR64:$Rn, GPR64:$Rm,
(inv_cond_XFORM imm:$cond))>;
}
//---
// Special Mask Value
//---
def maski8_or_more : Operand<i32>,
ImmLeaf<i32, [{ return (Imm & 0xff) == 0xff; }]> {
}
def maski16_or_more : Operand<i32>,
ImmLeaf<i32, [{ return (Imm & 0xffff) == 0xffff; }]> {
}
//---
// Load/store
//---
// (unsigned immediate)
// Indexed for 8-bit registers. offset is in range [0,4095].
def am_indexed8 : ComplexPattern<i64, 2, "SelectAddrModeIndexed8", []>;
def am_indexed16 : ComplexPattern<i64, 2, "SelectAddrModeIndexed16", []>;
def am_indexed32 : ComplexPattern<i64, 2, "SelectAddrModeIndexed32", []>;
def am_indexed64 : ComplexPattern<i64, 2, "SelectAddrModeIndexed64", []>;
def am_indexed128 : ComplexPattern<i64, 2, "SelectAddrModeIndexed128", []>;
// (unsigned immediate)
// Indexed for 8-bit registers. offset is in range [0,63].
def am_indexed8_6b : ComplexPattern<i64, 2, "SelectAddrModeIndexedUImm<1,63>", []>;
def am_indexed16_6b : ComplexPattern<i64, 2, "SelectAddrModeIndexedUImm<2,63>", []>;
def am_indexed32_6b : ComplexPattern<i64, 2, "SelectAddrModeIndexedUImm<4,63>", []>;
def am_indexed64_6b : ComplexPattern<i64, 2, "SelectAddrModeIndexedUImm<8,63>", []>;
def gi_am_indexed8 :
GIComplexOperandMatcher<s64, "selectAddrModeIndexed<8>">,
GIComplexPatternEquiv<am_indexed8>;
def gi_am_indexed16 :
GIComplexOperandMatcher<s64, "selectAddrModeIndexed<16>">,
GIComplexPatternEquiv<am_indexed16>;
def gi_am_indexed32 :
GIComplexOperandMatcher<s64, "selectAddrModeIndexed<32>">,
GIComplexPatternEquiv<am_indexed32>;
def gi_am_indexed64 :
GIComplexOperandMatcher<s64, "selectAddrModeIndexed<64>">,
GIComplexPatternEquiv<am_indexed64>;
def gi_am_indexed128 :
GIComplexOperandMatcher<s64, "selectAddrModeIndexed<128>">,
GIComplexPatternEquiv<am_indexed128>;
class UImm12OffsetOperand<int Scale> : AsmOperandClass {
let Name = "UImm12Offset" # Scale;
let RenderMethod = "addUImm12OffsetOperands<" # Scale # ">";
let PredicateMethod = "isUImm12Offset<" # Scale # ">";
let DiagnosticType = "InvalidMemoryIndexed" # Scale;
}
def UImm12OffsetScale1Operand : UImm12OffsetOperand<1>;
def UImm12OffsetScale2Operand : UImm12OffsetOperand<2>;
def UImm12OffsetScale4Operand : UImm12OffsetOperand<4>;
def UImm12OffsetScale8Operand : UImm12OffsetOperand<8>;
def UImm12OffsetScale16Operand : UImm12OffsetOperand<16>;
class uimm12_scaled<int Scale> : Operand<i64> {
let ParserMatchClass
= !cast<AsmOperandClass>("UImm12OffsetScale" # Scale # "Operand");
let EncoderMethod
= "getLdStUImm12OpValue<AArch64::fixup_aarch64_ldst_imm12_scale" # Scale # ">";
let PrintMethod = "printUImm12Offset<" # Scale # ">";
}
def uimm12s1 : uimm12_scaled<1>;
def uimm12s2 : uimm12_scaled<2>;
def uimm12s4 : uimm12_scaled<4>;
def uimm12s8 : uimm12_scaled<8>;
def uimm12s16 : uimm12_scaled<16>;
class BaseLoadStoreUI<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
string asm, list<dag> pattern>
: I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", pattern> {
bits<5> Rt;
bits<5> Rn;
bits<12> offset;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b01;
let Inst{23-22} = opc;
let Inst{21-10} = offset;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodeUnsignedLdStInstruction";
}
multiclass LoadUI<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
Operand indextype, string asm, list<dag> pattern> {
let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
def ui : BaseLoadStoreUI<sz, V, opc, (outs regtype:$Rt),
(ins GPR64sp:$Rn, indextype:$offset),
asm, pattern>,
Sched<[WriteLD]>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "ui") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
multiclass StoreUI<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
Operand indextype, string asm, list<dag> pattern> {
let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
def ui : BaseLoadStoreUI<sz, V, opc, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, indextype:$offset),
asm, pattern>,
Sched<[WriteST]>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "ui") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
// Same as StoreUI, but take a RegisterOperand. This is used by GlobalISel to
// substitute zero-registers automatically.
//
// TODO: Roll out zero-register subtitution to GPR32/GPR64 and fold this back
// into StoreUI.
multiclass StoreUIz<bits<2> sz, bit V, bits<2> opc, RegisterOperand regtype,
Operand indextype, string asm, list<dag> pattern> {
let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
def ui : BaseLoadStoreUI<sz, V, opc, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, indextype:$offset),
asm, pattern>,
Sched<[WriteST]>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "ui") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
def PrefetchOperand : AsmOperandClass {
let Name = "Prefetch";
let ParserMethod = "tryParsePrefetch";
}
def prfop : Operand<i32> {
let PrintMethod = "printPrefetchOp";
let ParserMatchClass = PrefetchOperand;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
class PrefetchUI<bits<2> sz, bit V, bits<2> opc, string asm, list<dag> pat>
: BaseLoadStoreUI<sz, V, opc,
(outs), (ins prfop:$Rt, GPR64sp:$Rn, uimm12s8:$offset),
asm, pat>,
Sched<[WriteLD]>;
//---
// Load literal
//---
// Load literal address: 19-bit immediate. The low two bits of the target
// offset are implied zero and so are not part of the immediate.
def am_ldrlit : Operand<iPTR> {
let EncoderMethod = "getLoadLiteralOpValue";
let DecoderMethod = "DecodePCRelLabel19";
let PrintMethod = "printAlignedLabel";
let ParserMatchClass = PCRelLabel19Operand;
let OperandType = "OPERAND_PCREL";
}
let mayLoad = 1, mayStore = 0, hasSideEffects = 0, AddedComplexity = 20 in
class LoadLiteral<bits<2> opc, bit V, RegisterOperand regtype, string asm, list<dag> pat>
: I<(outs regtype:$Rt), (ins am_ldrlit:$label),
asm, "\t$Rt, $label", "", pat>,
Sched<[WriteLD]> {
bits<5> Rt;
bits<19> label;
let Inst{31-30} = opc;
let Inst{29-27} = 0b011;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-5} = label;
let Inst{4-0} = Rt;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
class PrefetchLiteral<bits<2> opc, bit V, string asm, list<dag> pat>
: I<(outs), (ins prfop:$Rt, am_ldrlit:$label),
asm, "\t$Rt, $label", "", pat>,
Sched<[WriteLD]> {
bits<5> Rt;
bits<19> label;
let Inst{31-30} = opc;
let Inst{29-27} = 0b011;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-5} = label;
let Inst{4-0} = Rt;
}
//---
// Load/store register offset
//---
def ro_Xindexed8 : ComplexPattern<i64, 4, "SelectAddrModeXRO<8>", []>;
def ro_Xindexed16 : ComplexPattern<i64, 4, "SelectAddrModeXRO<16>", []>;
def ro_Xindexed32 : ComplexPattern<i64, 4, "SelectAddrModeXRO<32>", []>;
def ro_Xindexed64 : ComplexPattern<i64, 4, "SelectAddrModeXRO<64>", []>;
def ro_Xindexed128 : ComplexPattern<i64, 4, "SelectAddrModeXRO<128>", []>;
def gi_ro_Xindexed8 :
GIComplexOperandMatcher<s64, "selectAddrModeXRO<8>">,
GIComplexPatternEquiv<ro_Xindexed8>;
def gi_ro_Xindexed16 :
GIComplexOperandMatcher<s64, "selectAddrModeXRO<16>">,
GIComplexPatternEquiv<ro_Xindexed16>;
def gi_ro_Xindexed32 :
GIComplexOperandMatcher<s64, "selectAddrModeXRO<32>">,
GIComplexPatternEquiv<ro_Xindexed32>;
def gi_ro_Xindexed64 :
GIComplexOperandMatcher<s64, "selectAddrModeXRO<64>">,
GIComplexPatternEquiv<ro_Xindexed64>;
def gi_ro_Xindexed128 :
GIComplexOperandMatcher<s64, "selectAddrModeXRO<128>">,
GIComplexPatternEquiv<ro_Xindexed128>;
def ro_Windexed8 : ComplexPattern<i64, 4, "SelectAddrModeWRO<8>", []>;
def ro_Windexed16 : ComplexPattern<i64, 4, "SelectAddrModeWRO<16>", []>;
def ro_Windexed32 : ComplexPattern<i64, 4, "SelectAddrModeWRO<32>", []>;
def ro_Windexed64 : ComplexPattern<i64, 4, "SelectAddrModeWRO<64>", []>;
def ro_Windexed128 : ComplexPattern<i64, 4, "SelectAddrModeWRO<128>", []>;
def gi_ro_Windexed8 :
GIComplexOperandMatcher<s64, "selectAddrModeWRO<8>">,
GIComplexPatternEquiv<ro_Windexed8>;
def gi_ro_Windexed16 :
GIComplexOperandMatcher<s64, "selectAddrModeWRO<16>">,
GIComplexPatternEquiv<ro_Windexed16>;
def gi_ro_Windexed32 :
GIComplexOperandMatcher<s64, "selectAddrModeWRO<32>">,
GIComplexPatternEquiv<ro_Windexed32>;
def gi_ro_Windexed64 :
GIComplexOperandMatcher<s64, "selectAddrModeWRO<64>">,
GIComplexPatternEquiv<ro_Windexed64>;
def gi_ro_Windexed128 :
GIComplexOperandMatcher<s64, "selectAddrModeWRO<128>">,
GIComplexPatternEquiv<ro_Windexed128>;
class MemExtendOperand<string Reg, int Width> : AsmOperandClass {
let Name = "Mem" # Reg # "Extend" # Width;
let PredicateMethod = "isMem" # Reg # "Extend<" # Width # ">";
let RenderMethod = "addMemExtendOperands";
let DiagnosticType = "InvalidMemory" # Reg # "Extend" # Width;
}
def MemWExtend8Operand : MemExtendOperand<"W", 8> {
// The address "[x0, x1, lsl #0]" actually maps to the variant which performs
// the trivial shift.
let RenderMethod = "addMemExtend8Operands";
}
def MemWExtend16Operand : MemExtendOperand<"W", 16>;
def MemWExtend32Operand : MemExtendOperand<"W", 32>;
def MemWExtend64Operand : MemExtendOperand<"W", 64>;
def MemWExtend128Operand : MemExtendOperand<"W", 128>;
def MemXExtend8Operand : MemExtendOperand<"X", 8> {
// The address "[x0, x1, lsl #0]" actually maps to the variant which performs
// the trivial shift.
let RenderMethod = "addMemExtend8Operands";
}
def MemXExtend16Operand : MemExtendOperand<"X", 16>;
def MemXExtend32Operand : MemExtendOperand<"X", 32>;
def MemXExtend64Operand : MemExtendOperand<"X", 64>;
def MemXExtend128Operand : MemExtendOperand<"X", 128>;
class ro_extend<AsmOperandClass ParserClass, string Reg, int Width>
: Operand<i32> {
let ParserMatchClass = ParserClass;
let PrintMethod = "printMemExtend<'" # Reg # "', " # Width # ">";
let DecoderMethod = "DecodeMemExtend";
let EncoderMethod = "getMemExtendOpValue";
let MIOperandInfo = (ops i32imm:$signed, i32imm:$doshift);
}
def ro_Wextend8 : ro_extend<MemWExtend8Operand, "w", 8>;
def ro_Wextend16 : ro_extend<MemWExtend16Operand, "w", 16>;
def ro_Wextend32 : ro_extend<MemWExtend32Operand, "w", 32>;
def ro_Wextend64 : ro_extend<MemWExtend64Operand, "w", 64>;
def ro_Wextend128 : ro_extend<MemWExtend128Operand, "w", 128>;
def ro_Xextend8 : ro_extend<MemXExtend8Operand, "x", 8>;
def ro_Xextend16 : ro_extend<MemXExtend16Operand, "x", 16>;
def ro_Xextend32 : ro_extend<MemXExtend32Operand, "x", 32>;
def ro_Xextend64 : ro_extend<MemXExtend64Operand, "x", 64>;
def ro_Xextend128 : ro_extend<MemXExtend128Operand, "x", 128>;
class ROAddrMode<ComplexPattern windex, ComplexPattern xindex,
Operand wextend, Operand xextend> {
// CodeGen-level pattern covering the entire addressing mode.
ComplexPattern Wpat = windex;
ComplexPattern Xpat = xindex;
// Asm-level Operand covering the valid "uxtw #3" style syntax.
Operand Wext = wextend;
Operand Xext = xextend;
}
def ro8 : ROAddrMode<ro_Windexed8, ro_Xindexed8, ro_Wextend8, ro_Xextend8>;
def ro16 : ROAddrMode<ro_Windexed16, ro_Xindexed16, ro_Wextend16, ro_Xextend16>;
def ro32 : ROAddrMode<ro_Windexed32, ro_Xindexed32, ro_Wextend32, ro_Xextend32>;
def ro64 : ROAddrMode<ro_Windexed64, ro_Xindexed64, ro_Wextend64, ro_Xextend64>;
def ro128 : ROAddrMode<ro_Windexed128, ro_Xindexed128, ro_Wextend128,
ro_Xextend128>;
class LoadStore8RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, dag ins, dag outs, list<dag> pat>
: I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
bits<5> Rt;
bits<5> Rn;
bits<5> Rm;
bits<2> extend;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15} = extend{1}; // sign extend Rm?
let Inst{14} = 1;
let Inst{12} = extend{0}; // do shift?
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
}
class ROInstAlias<string asm, DAGOperand regtype, Instruction INST>
: InstAlias<asm # "\t$Rt, [$Rn, $Rm]",
(INST regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, 0, 0)>;
multiclass Load8RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator loadop> {
let AddedComplexity = 10 in
def roW : LoadStore8RO<sz, V, opc, regtype, asm,
(outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend8:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10 in
def roX : LoadStore8RO<sz, V, opc, regtype, asm,
(outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend8:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
multiclass Store8RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator storeop> {
let AddedComplexity = 10 in
def roW : LoadStore8RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
[(storeop (Ty regtype:$Rt),
(ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend8:$extend))]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10 in
def roX : LoadStore8RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
[(storeop (Ty regtype:$Rt),
(ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend8:$extend))]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
class LoadStore16RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, dag ins, dag outs, list<dag> pat>
: I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
bits<5> Rt;
bits<5> Rn;
bits<5> Rm;
bits<2> extend;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15} = extend{1}; // sign extend Rm?
let Inst{14} = 1;
let Inst{12} = extend{0}; // do shift?
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
}
multiclass Load16RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator loadop> {
let AddedComplexity = 10 in
def roW : LoadStore16RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend16:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10 in
def roX : LoadStore16RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend16:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
multiclass Store16RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator storeop> {
let AddedComplexity = 10 in
def roW : LoadStore16RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend),
[(storeop (Ty regtype:$Rt),
(ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend16:$extend))]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10 in
def roX : LoadStore16RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend),
[(storeop (Ty regtype:$Rt),
(ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend16:$extend))]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
class LoadStore32RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, dag ins, dag outs, list<dag> pat>
: I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
bits<5> Rt;
bits<5> Rn;
bits<5> Rm;
bits<2> extend;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15} = extend{1}; // sign extend Rm?
let Inst{14} = 1;
let Inst{12} = extend{0}; // do shift?
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
}
multiclass Load32RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator loadop> {
let AddedComplexity = 10 in
def roW : LoadStore32RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend32:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10 in
def roX : LoadStore32RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend32:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
multiclass Store32RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator storeop> {
let AddedComplexity = 10 in
def roW : LoadStore32RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend),
[(storeop (Ty regtype:$Rt),
(ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend32:$extend))]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10 in
def roX : LoadStore32RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend),
[(storeop (Ty regtype:$Rt),
(ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend32:$extend))]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
class LoadStore64RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, dag ins, dag outs, list<dag> pat>
: I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
bits<5> Rt;
bits<5> Rn;
bits<5> Rm;
bits<2> extend;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15} = extend{1}; // sign extend Rm?
let Inst{14} = 1;
let Inst{12} = extend{0}; // do shift?
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
}
multiclass Load64RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator loadop> {
let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
def roW : LoadStore64RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend64:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
def roX : LoadStore64RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend64:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
multiclass Store64RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator storeop> {
let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
def roW : LoadStore64RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend),
[(storeop (Ty regtype:$Rt),
(ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend64:$extend))]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10, mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
def roX : LoadStore64RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend),
[(storeop (Ty regtype:$Rt),
(ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend64:$extend))]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
class LoadStore128RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, dag ins, dag outs, list<dag> pat>
: I<ins, outs, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat> {
bits<5> Rt;
bits<5> Rn;
bits<5> Rm;
bits<2> extend;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15} = extend{1}; // sign extend Rm?
let Inst{14} = 1;
let Inst{12} = extend{0}; // do shift?
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
}
multiclass Load128RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator loadop> {
let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
def roW : LoadStore128RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend128:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let AddedComplexity = 10, mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
def roX : LoadStore128RO<sz, V, opc, regtype, asm, (outs regtype:$Rt),
(ins GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend),
[(set (Ty regtype:$Rt),
(loadop (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend128:$extend)))]>,
Sched<[WriteLDIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
multiclass Store128RO<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, ValueType Ty, SDPatternOperator storeop> {
let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
def roW : LoadStore128RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend),
[]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b0;
}
let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
def roX : LoadStore128RO<sz, V, opc, regtype, asm, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend128:$extend),
[]>,
Sched<[WriteSTIdx, ReadAdrBase]> {
let Inst{13} = 0b1;
}
def : ROInstAlias<asm, regtype, !cast<Instruction>(NAME # "roX")>;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
class BasePrefetchRO<bits<2> sz, bit V, bits<2> opc, dag outs, dag ins,
string asm, list<dag> pat>
: I<outs, ins, asm, "\t$Rt, [$Rn, $Rm, $extend]", "", pat>,
Sched<[WriteLD]> {
bits<5> Rt;
bits<5> Rn;
bits<5> Rm;
bits<2> extend;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15} = extend{1}; // sign extend Rm?
let Inst{14} = 1;
let Inst{12} = extend{0}; // do shift?
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
}
multiclass PrefetchRO<bits<2> sz, bit V, bits<2> opc, string asm> {
def roW : BasePrefetchRO<sz, V, opc, (outs),
(ins prfop:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend),
asm, [(AArch64Prefetch imm:$Rt,
(ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend64:$extend))]> {
let Inst{13} = 0b0;
}
def roX : BasePrefetchRO<sz, V, opc, (outs),
(ins prfop:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend),
asm, [(AArch64Prefetch imm:$Rt,
(ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend64:$extend))]> {
let Inst{13} = 0b1;
}
def : InstAlias<"prfm $Rt, [$Rn, $Rm]",
(!cast<Instruction>(NAME # "roX") prfop:$Rt,
GPR64sp:$Rn, GPR64:$Rm, 0, 0)>;
}
//---
// Load/store unscaled immediate
//---
def am_unscaled8 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled8", []>;
def am_unscaled16 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled16", []>;
def am_unscaled32 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled32", []>;
def am_unscaled64 : ComplexPattern<i64, 2, "SelectAddrModeUnscaled64", []>;
def am_unscaled128 :ComplexPattern<i64, 2, "SelectAddrModeUnscaled128", []>;
def gi_am_unscaled8 :
GIComplexOperandMatcher<s64, "selectAddrModeUnscaled8">,
GIComplexPatternEquiv<am_unscaled8>;
def gi_am_unscaled16 :
GIComplexOperandMatcher<s64, "selectAddrModeUnscaled16">,
GIComplexPatternEquiv<am_unscaled16>;
def gi_am_unscaled32 :
GIComplexOperandMatcher<s64, "selectAddrModeUnscaled32">,
GIComplexPatternEquiv<am_unscaled32>;
def gi_am_unscaled64 :
GIComplexOperandMatcher<s64, "selectAddrModeUnscaled64">,
GIComplexPatternEquiv<am_unscaled64>;
def gi_am_unscaled128 :
GIComplexOperandMatcher<s64, "selectAddrModeUnscaled128">,
GIComplexPatternEquiv<am_unscaled128>;
class BaseLoadStoreUnscale<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
string asm, list<dag> pattern>
: I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", pattern> {
bits<5> Rt;
bits<5> Rn;
bits<9> offset;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 0;
let Inst{20-12} = offset;
let Inst{11-10} = 0b00;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodeSignedLdStInstruction";
}
// Armv8.4 LDAPR & STLR with Immediate Offset instruction
multiclass BaseLoadUnscaleV84<string asm, bits<2> sz, bits<2> opc,
DAGOperand regtype > {
def i : BaseLoadStoreUnscale<sz, 0, opc, (outs regtype:$Rt),
(ins GPR64sp:$Rn, simm9:$offset), asm, []>,
Sched<[WriteST]> {
let Inst{29} = 0;
let Inst{24} = 1;
}
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
multiclass BaseStoreUnscaleV84<string asm, bits<2> sz, bits<2> opc,
DAGOperand regtype > {
def i : BaseLoadStoreUnscale<sz, 0, opc, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
asm, []>,
Sched<[WriteST]> {
let Inst{29} = 0;
let Inst{24} = 1;
}
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
multiclass LoadUnscaled<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, list<dag> pattern> {
let AddedComplexity = 1 in // try this before LoadUI
def i : BaseLoadStoreUnscale<sz, V, opc, (outs regtype:$Rt),
(ins GPR64sp:$Rn, simm9:$offset), asm, pattern>,
Sched<[WriteLD]>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
multiclass StoreUnscaled<bits<2> sz, bit V, bits<2> opc, DAGOperand regtype,
string asm, list<dag> pattern> {
let AddedComplexity = 1 in // try this before StoreUI
def i : BaseLoadStoreUnscale<sz, V, opc, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
asm, pattern>,
Sched<[WriteST]>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
multiclass PrefetchUnscaled<bits<2> sz, bit V, bits<2> opc, string asm,
list<dag> pat> {
let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
def i : BaseLoadStoreUnscale<sz, V, opc, (outs),
(ins prfop:$Rt, GPR64sp:$Rn, simm9:$offset),
asm, pat>,
Sched<[WriteLD]>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "i") prfop:$Rt, GPR64sp:$Rn, 0)>;
}
//---
// Load/store unscaled immediate, unprivileged
//---
class BaseLoadStoreUnprivileged<bits<2> sz, bit V, bits<2> opc,
dag oops, dag iops, string asm>
: I<oops, iops, asm, "\t$Rt, [$Rn, $offset]", "", []> {
bits<5> Rt;
bits<5> Rn;
bits<9> offset;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 0;
let Inst{20-12} = offset;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodeSignedLdStInstruction";
}
multiclass LoadUnprivileged<bits<2> sz, bit V, bits<2> opc,
RegisterClass regtype, string asm> {
let mayStore = 0, mayLoad = 1, hasSideEffects = 0 in
def i : BaseLoadStoreUnprivileged<sz, V, opc, (outs regtype:$Rt),
(ins GPR64sp:$Rn, simm9:$offset), asm>,
Sched<[WriteLD]>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
multiclass StoreUnprivileged<bits<2> sz, bit V, bits<2> opc,
RegisterClass regtype, string asm> {
let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in
def i : BaseLoadStoreUnprivileged<sz, V, opc, (outs),
(ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
asm>,
Sched<[WriteST]>;
def : InstAlias<asm # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, GPR64sp:$Rn, 0)>;
}
//---
// Load/store pre-indexed
//---
class BaseLoadStorePreIdx<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
string asm, string cstr, list<dag> pat>
: I<oops, iops, asm, "\t$Rt, [$Rn, $offset]!", cstr, pat> {
bits<5> Rt;
bits<5> Rn;
bits<9> offset;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0;
let Inst{23-22} = opc;
let Inst{21} = 0;
let Inst{20-12} = offset;
let Inst{11-10} = 0b11;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodeSignedLdStInstruction";
}
let hasSideEffects = 0 in {
let mayStore = 0, mayLoad = 1 in
class LoadPreIdx<bits<2> sz, bit V, bits<2> opc, RegisterOperand regtype,
string asm>
: BaseLoadStorePreIdx<sz, V, opc,
(outs GPR64sp:$wback, regtype:$Rt),
(ins GPR64sp:$Rn, simm9:$offset), asm,
"$Rn = $wback,@earlyclobber $wback", []>,
Sched<[WriteAdr, WriteLD]>;
let mayStore = 1, mayLoad = 0 in
class StorePreIdx<bits<2> sz, bit V, bits<2> opc, RegisterOperand regtype,
string asm, SDPatternOperator storeop, ValueType Ty>
: BaseLoadStorePreIdx<sz, V, opc,
(outs GPR64sp:$wback),
(ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
asm, "$Rn = $wback,@earlyclobber $wback",
[(set GPR64sp:$wback,
(storeop (Ty regtype:$Rt), GPR64sp:$Rn, simm9:$offset))]>,
Sched<[WriteAdr, WriteST]>;
} // hasSideEffects = 0
//---
// Load/store post-indexed
//---
class BaseLoadStorePostIdx<bits<2> sz, bit V, bits<2> opc, dag oops, dag iops,
string asm, string cstr, list<dag> pat>
: I<oops, iops, asm, "\t$Rt, [$Rn], $offset", cstr, pat> {
bits<5> Rt;
bits<5> Rn;
bits<9> offset;
let Inst{31-30} = sz;
let Inst{29-27} = 0b111;
let Inst{26} = V;
let Inst{25-24} = 0b00;
let Inst{23-22} = opc;
let Inst{21} = 0b0;
let Inst{20-12} = offset;
let Inst{11-10} = 0b01;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodeSignedLdStInstruction";
}
let hasSideEffects = 0 in {
let mayStore = 0, mayLoad = 1 in
class LoadPostIdx<bits<2> sz, bit V, bits<2> opc, RegisterOperand regtype,
string asm>
: BaseLoadStorePostIdx<sz, V, opc,
(outs GPR64sp:$wback, regtype:$Rt),
(ins GPR64sp:$Rn, simm9:$offset),
asm, "$Rn = $wback,@earlyclobber $wback", []>,
Sched<[WriteAdr, WriteLD]>;
let mayStore = 1, mayLoad = 0 in
class StorePostIdx<bits<2> sz, bit V, bits<2> opc, RegisterOperand regtype,
string asm, SDPatternOperator storeop, ValueType Ty>
: BaseLoadStorePostIdx<sz, V, opc,
(outs GPR64sp:$wback),
(ins regtype:$Rt, GPR64sp:$Rn, simm9:$offset),
asm, "$Rn = $wback,@earlyclobber $wback",
[(set GPR64sp:$wback,
(storeop (Ty regtype:$Rt), GPR64sp:$Rn, simm9:$offset))]>,
Sched<[WriteAdr, WriteST]>;
} // hasSideEffects = 0
//---
// Load/store pair
//---
// (indexed, offset)
class BaseLoadStorePairOffset<bits<2> opc, bit V, bit L, dag oops, dag iops,
string asm>
: I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]", "", []> {
bits<5> Rt;
bits<5> Rt2;
bits<5> Rn;
bits<7> offset;
let Inst{31-30} = opc;
let Inst{29-27} = 0b101;
let Inst{26} = V;
let Inst{25-23} = 0b010;
let Inst{22} = L;
let Inst{21-15} = offset;
let Inst{14-10} = Rt2;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodePairLdStInstruction";
}
multiclass LoadPairOffset<bits<2> opc, bit V, RegisterOperand regtype,
Operand indextype, string asm> {
let hasSideEffects = 0, mayStore = 0, mayLoad = 1 in
def i : BaseLoadStorePairOffset<opc, V, 1,
(outs regtype:$Rt, regtype:$Rt2),
(ins GPR64sp:$Rn, indextype:$offset), asm>,
Sched<[WriteLD, WriteLDHi]>;
def : InstAlias<asm # "\t$Rt, $Rt2, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2,
GPR64sp:$Rn, 0)>;
}
multiclass StorePairOffset<bits<2> opc, bit V, RegisterOperand regtype,
Operand indextype, string asm> {
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
def i : BaseLoadStorePairOffset<opc, V, 0, (outs),
(ins regtype:$Rt, regtype:$Rt2,
GPR64sp:$Rn, indextype:$offset),
asm>,
Sched<[WriteSTP]>;
def : InstAlias<asm # "\t$Rt, $Rt2, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2,
GPR64sp:$Rn, 0)>;
}
// (pre-indexed)
class BaseLoadStorePairPreIdx<bits<2> opc, bit V, bit L, dag oops, dag iops,
string asm>
: I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]!", "$Rn = $wback,@earlyclobber $wback", []> {
bits<5> Rt;
bits<5> Rt2;
bits<5> Rn;
bits<7> offset;
let Inst{31-30} = opc;
let Inst{29-27} = 0b101;
let Inst{26} = V;
let Inst{25-23} = 0b011;
let Inst{22} = L;
let Inst{21-15} = offset;
let Inst{14-10} = Rt2;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodePairLdStInstruction";
}
let hasSideEffects = 0 in {
let mayStore = 0, mayLoad = 1 in
class LoadPairPreIdx<bits<2> opc, bit V, RegisterOperand regtype,
Operand indextype, string asm>
: BaseLoadStorePairPreIdx<opc, V, 1,
(outs GPR64sp:$wback, regtype:$Rt, regtype:$Rt2),
(ins GPR64sp:$Rn, indextype:$offset), asm>,
Sched<[WriteAdr, WriteLD, WriteLDHi]>;
let mayStore = 1, mayLoad = 0 in
class StorePairPreIdx<bits<2> opc, bit V, RegisterOperand regtype,
Operand indextype, string asm>
: BaseLoadStorePairPreIdx<opc, V, 0, (outs GPR64sp:$wback),
(ins regtype:$Rt, regtype:$Rt2,
GPR64sp:$Rn, indextype:$offset),
asm>,
Sched<[WriteAdr, WriteSTP]>;
} // hasSideEffects = 0
// (post-indexed)
class BaseLoadStorePairPostIdx<bits<2> opc, bit V, bit L, dag oops, dag iops,
string asm>
: I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn], $offset", "$Rn = $wback,@earlyclobber $wback", []> {
bits<5> Rt;
bits<5> Rt2;
bits<5> Rn;
bits<7> offset;
let Inst{31-30} = opc;
let Inst{29-27} = 0b101;
let Inst{26} = V;
let Inst{25-23} = 0b001;
let Inst{22} = L;
let Inst{21-15} = offset;
let Inst{14-10} = Rt2;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodePairLdStInstruction";
}
let hasSideEffects = 0 in {
let mayStore = 0, mayLoad = 1 in
class LoadPairPostIdx<bits<2> opc, bit V, RegisterOperand regtype,
Operand idxtype, string asm>
: BaseLoadStorePairPostIdx<opc, V, 1,
(outs GPR64sp:$wback, regtype:$Rt, regtype:$Rt2),
(ins GPR64sp:$Rn, idxtype:$offset), asm>,
Sched<[WriteAdr, WriteLD, WriteLDHi]>;
let mayStore = 1, mayLoad = 0 in
class StorePairPostIdx<bits<2> opc, bit V, RegisterOperand regtype,
Operand idxtype, string asm>
: BaseLoadStorePairPostIdx<opc, V, 0, (outs GPR64sp:$wback),
(ins regtype:$Rt, regtype:$Rt2,
GPR64sp:$Rn, idxtype:$offset),
asm>,
Sched<[WriteAdr, WriteSTP]>;
} // hasSideEffects = 0
// (no-allocate)
class BaseLoadStorePairNoAlloc<bits<2> opc, bit V, bit L, dag oops, dag iops,
string asm>
: I<oops, iops, asm, "\t$Rt, $Rt2, [$Rn, $offset]", "", []> {
bits<5> Rt;
bits<5> Rt2;
bits<5> Rn;
bits<7> offset;
let Inst{31-30} = opc;
let Inst{29-27} = 0b101;
let Inst{26} = V;
let Inst{25-23} = 0b000;
let Inst{22} = L;
let Inst{21-15} = offset;
let Inst{14-10} = Rt2;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let DecoderMethod = "DecodePairLdStInstruction";
}
multiclass LoadPairNoAlloc<bits<2> opc, bit V, DAGOperand regtype,
Operand indextype, string asm> {
let hasSideEffects = 0, mayStore = 0, mayLoad = 1 in
def i : BaseLoadStorePairNoAlloc<opc, V, 1,
(outs regtype:$Rt, regtype:$Rt2),
(ins GPR64sp:$Rn, indextype:$offset), asm>,
Sched<[WriteLD, WriteLDHi]>;
def : InstAlias<asm # "\t$Rt, $Rt2, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2,
GPR64sp:$Rn, 0)>;
}
multiclass StorePairNoAlloc<bits<2> opc, bit V, DAGOperand regtype,
Operand indextype, string asm> {
let hasSideEffects = 0, mayStore = 1, mayLoad = 0 in
def i : BaseLoadStorePairNoAlloc<opc, V, 0, (outs),
(ins regtype:$Rt, regtype:$Rt2,
GPR64sp:$Rn, indextype:$offset),
asm>,
Sched<[WriteSTP]>;
def : InstAlias<asm # "\t$Rt, $Rt2, [$Rn]",
(!cast<Instruction>(NAME # "i") regtype:$Rt, regtype:$Rt2,
GPR64sp:$Rn, 0)>;
}
//---
// Load/store exclusive
//---
// True exclusive operations write to and/or read from the system's exclusive
// monitors, which as far as a compiler is concerned can be modelled as a
// random shared memory address. Hence LoadExclusive mayStore.
//
// Since these instructions have the undefined register bits set to 1 in
// their canonical form, we need a post encoder method to set those bits
// to 1 when encoding these instructions. We do this using the
// fixLoadStoreExclusive function. This function has template parameters:
//
// fixLoadStoreExclusive<int hasRs, int hasRt2>
//
// hasRs indicates that the instruction uses the Rs field, so we won't set
// it to 1 (and the same for Rt2). We don't need template parameters for
// the other register fields since Rt and Rn are always used.
//
let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in
class BaseLoadStoreExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0,
dag oops, dag iops, string asm, string operands>
: I<oops, iops, asm, operands, "", []> {
let Inst{31-30} = sz;
let Inst{29-24} = 0b001000;
let Inst{23} = o2;
let Inst{22} = L;
let Inst{21} = o1;
let Inst{15} = o0;
let DecoderMethod = "DecodeExclusiveLdStInstruction";
}
// Neither Rs nor Rt2 operands.
class LoadStoreExclusiveSimple<bits<2> sz, bit o2, bit L, bit o1, bit o0,
dag oops, dag iops, string asm, string operands>
: BaseLoadStoreExclusive<sz, o2, L, o1, o0, oops, iops, asm, operands> {
bits<5> Rt;
bits<5> Rn;
let Inst{20-16} = 0b11111;
let Unpredictable{20-16} = 0b11111;
let Inst{14-10} = 0b11111;
let Unpredictable{14-10} = 0b11111;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
}
// Simple load acquires don't set the exclusive monitor
let mayLoad = 1, mayStore = 0 in
class LoadAcquire<bits<2> sz, bit o2, bit L, bit o1, bit o0,
RegisterClass regtype, string asm>
: LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs regtype:$Rt),
(ins GPR64sp0:$Rn), asm, "\t$Rt, [$Rn]">,
Sched<[WriteLD]>;
class LoadExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0,
RegisterClass regtype, string asm>
: LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs regtype:$Rt),
(ins GPR64sp0:$Rn), asm, "\t$Rt, [$Rn]">,
Sched<[WriteLD]>;
class LoadExclusivePair<bits<2> sz, bit o2, bit L, bit o1, bit o0,
RegisterClass regtype, string asm>
: BaseLoadStoreExclusive<sz, o2, L, o1, o0,
(outs regtype:$Rt, regtype:$Rt2),
(ins GPR64sp0:$Rn), asm,
"\t$Rt, $Rt2, [$Rn]">,
Sched<[WriteLD, WriteLDHi]> {
bits<5> Rt;
bits<5> Rt2;
bits<5> Rn;
let Inst{14-10} = Rt2;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let PostEncoderMethod = "fixLoadStoreExclusive<0,1>";
}
// Simple store release operations do not check the exclusive monitor.
let mayLoad = 0, mayStore = 1 in
class StoreRelease<bits<2> sz, bit o2, bit L, bit o1, bit o0,
RegisterClass regtype, string asm>
: LoadStoreExclusiveSimple<sz, o2, L, o1, o0, (outs),
(ins regtype:$Rt, GPR64sp0:$Rn),
asm, "\t$Rt, [$Rn]">,
Sched<[WriteST]>;
let mayLoad = 1, mayStore = 1 in
class StoreExclusive<bits<2> sz, bit o2, bit L, bit o1, bit o0,
RegisterClass regtype, string asm>
: BaseLoadStoreExclusive<sz, o2, L, o1, o0, (outs GPR32:$Ws),
(ins regtype:$Rt, GPR64sp0:$Rn),
asm, "\t$Ws, $Rt, [$Rn]">,
Sched<[WriteSTX]> {
bits<5> Ws;
bits<5> Rt;
bits<5> Rn;
let Inst{20-16} = Ws;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let Constraints = "@earlyclobber $Ws";
let PostEncoderMethod = "fixLoadStoreExclusive<1,0>";
}
class StoreExclusivePair<bits<2> sz, bit o2, bit L, bit o1, bit o0,
RegisterClass regtype, string asm>
: BaseLoadStoreExclusive<sz, o2, L, o1, o0,
(outs GPR32:$Ws),
(ins regtype:$Rt, regtype:$Rt2, GPR64sp0:$Rn),
asm, "\t$Ws, $Rt, $Rt2, [$Rn]">,
Sched<[WriteSTX]> {
bits<5> Ws;
bits<5> Rt;
bits<5> Rt2;
bits<5> Rn;
let Inst{20-16} = Ws;
let Inst{14-10} = Rt2;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let Constraints = "@earlyclobber $Ws";
}
// Armv8.5-A Memory Tagging Extension
class BaseMemTag<bits<2> opc1, bits<2> opc2, string asm_insn,
string asm_opnds, string cstr, dag oops, dag iops>
: I<oops, iops, asm_insn, asm_opnds, cstr, []>,
Sched<[]> {
bits<5> Rn;
let Inst{31-24} = 0b11011001;
let Inst{23-22} = opc1;
let Inst{21} = 1;
// Inst{20-12} defined by subclass
let Inst{11-10} = opc2;
let Inst{9-5} = Rn;
// Inst{4-0} defined by subclass
}
class MemTagVector<bit Load, string asm_insn, string asm_opnds,
dag oops, dag iops>
: BaseMemTag<{0b1, Load}, 0b00, asm_insn, asm_opnds,
"", oops, iops> {
bits<5> Rt;
let Inst{20-12} = 0b000000000;
let Inst{4-0} = Rt;
let mayLoad = Load;
}
class MemTagLoad<string asm_insn, string asm_opnds>
: BaseMemTag<0b01, 0b00, asm_insn, asm_opnds, "$Rt = $wback",
(outs GPR64:$wback),
(ins GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)> {
bits<5> Rt;
bits<9> offset;
let Inst{20-12} = offset;
let Inst{4-0} = Rt;
let mayLoad = 1;
}
class BaseMemTagStore<bits<2> opc1, bits<2> opc2, string asm_insn,
string asm_opnds, string cstr, dag oops, dag iops>
: BaseMemTag<opc1, opc2, asm_insn, asm_opnds, cstr, oops, iops> {
bits<5> Rt;
bits<9> offset;
let Inst{20-12} = offset;
let Inst{4-0} = Rt;
let mayStore = 1;
}
multiclass MemTagStore<bits<2> opc1, string insn> {
def Offset :
BaseMemTagStore<opc1, 0b10, insn, "\t$Rt, [$Rn, $offset]", "",
(outs), (ins GPR64sp:$Rt, GPR64sp:$Rn, simm9s16:$offset)>;
def PreIndex :
BaseMemTagStore<opc1, 0b11, insn, "\t$Rt, [$Rn, $offset]!",
"$Rn = $wback",
(outs GPR64sp:$wback),
(ins GPR64sp:$Rt, GPR64sp:$Rn, simm9s16:$offset)>;
def PostIndex :
BaseMemTagStore<opc1, 0b01, insn, "\t$Rt, [$Rn], $offset",
"$Rn = $wback",
(outs GPR64sp:$wback),
(ins GPR64sp:$Rt, GPR64sp:$Rn, simm9s16:$offset)>;
def : InstAlias<insn # "\t$Rt, [$Rn]",
(!cast<Instruction>(NAME # "Offset") GPR64sp:$Rt, GPR64sp:$Rn, 0)>;
}
//---
// Exception generation
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in
class ExceptionGeneration<bits<3> op1, bits<2> ll, string asm>
: I<(outs), (ins i32_imm0_65535:$imm), asm, "\t$imm", "", []>,
Sched<[WriteSys]> {
bits<16> imm;
let Inst{31-24} = 0b11010100;
let Inst{23-21} = op1;
let Inst{20-5} = imm;
let Inst{4-2} = 0b000;
let Inst{1-0} = ll;
}
//---
// UDF : Permanently UNDEFINED instructions. Format: Opc = 0x0000, 16 bit imm.
//--
let hasSideEffects = 1, isTrap = 1, mayLoad = 0, mayStore = 0 in {
class UDFType<bits<16> opc, string asm>
: I<(outs), (ins uimm16:$imm),
asm, "\t$imm", "", []>,
Sched<[]> {
bits<16> imm;
let Inst{31-16} = opc;
let Inst{15-0} = imm;
}
}
let Predicates = [HasFPARMv8] in {
//---
// Floating point to integer conversion
//---
class BaseFPToIntegerUnscaled<bits<2> type, bits<2> rmode, bits<3> opcode,
RegisterClass srcType, RegisterClass dstType,
string asm, list<dag> pattern>
: I<(outs dstType:$Rd), (ins srcType:$Rn),
asm, "\t$Rd, $Rn", "", pattern>,
Sched<[WriteFCvt]> {
bits<5> Rd;
bits<5> Rn;
let Inst{30-29} = 0b00;
let Inst{28-24} = 0b11110;
let Inst{23-22} = type;
let Inst{21} = 1;
let Inst{20-19} = rmode;
let Inst{18-16} = opcode;
let Inst{15-10} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseFPToInteger<bits<2> type, bits<2> rmode, bits<3> opcode,
RegisterClass srcType, RegisterClass dstType,
Operand immType, string asm, list<dag> pattern>
: I<(outs dstType:$Rd), (ins srcType:$Rn, immType:$scale),
asm, "\t$Rd, $Rn, $scale", "", pattern>,
Sched<[WriteFCvt]> {
bits<5> Rd;
bits<5> Rn;
bits<6> scale;
let Inst{30-29} = 0b00;
let Inst{28-24} = 0b11110;
let Inst{23-22} = type;
let Inst{21} = 0;
let Inst{20-19} = rmode;
let Inst{18-16} = opcode;
let Inst{15-10} = scale;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass FPToIntegerUnscaled<bits<2> rmode, bits<3> opcode, string asm,
SDPatternOperator OpN> {
// Unscaled half-precision to 32-bit
def UWHr : BaseFPToIntegerUnscaled<0b11, rmode, opcode, FPR16, GPR32, asm,
[(set GPR32:$Rd, (OpN (f16 FPR16:$Rn)))]> {
let Inst{31} = 0; // 32-bit GPR flag
let Predicates = [HasFullFP16];
}
// Unscaled half-precision to 64-bit
def UXHr : BaseFPToIntegerUnscaled<0b11, rmode, opcode, FPR16, GPR64, asm,
[(set GPR64:$Rd, (OpN (f16 FPR16:$Rn)))]> {
let Inst{31} = 1; // 64-bit GPR flag
let Predicates = [HasFullFP16];
}
// Unscaled single-precision to 32-bit
def UWSr : BaseFPToIntegerUnscaled<0b00, rmode, opcode, FPR32, GPR32, asm,
[(set GPR32:$Rd, (OpN FPR32:$Rn))]> {
let Inst{31} = 0; // 32-bit GPR flag
}
// Unscaled single-precision to 64-bit
def UXSr : BaseFPToIntegerUnscaled<0b00, rmode, opcode, FPR32, GPR64, asm,
[(set GPR64:$Rd, (OpN FPR32:$Rn))]> {
let Inst{31} = 1; // 64-bit GPR flag
}
// Unscaled double-precision to 32-bit
def UWDr : BaseFPToIntegerUnscaled<0b01, rmode, opcode, FPR64, GPR32, asm,
[(set GPR32:$Rd, (OpN (f64 FPR64:$Rn)))]> {
let Inst{31} = 0; // 32-bit GPR flag
}
// Unscaled double-precision to 64-bit
def UXDr : BaseFPToIntegerUnscaled<0b01, rmode, opcode, FPR64, GPR64, asm,
[(set GPR64:$Rd, (OpN (f64 FPR64:$Rn)))]> {
let Inst{31} = 1; // 64-bit GPR flag
}
}
multiclass FPToIntegerScaled<bits<2> rmode, bits<3> opcode, string asm,
SDPatternOperator OpN> {
// Scaled half-precision to 32-bit
def SWHri : BaseFPToInteger<0b11, rmode, opcode, FPR16, GPR32,
fixedpoint_f16_i32, asm,
[(set GPR32:$Rd, (OpN (fmul (f16 FPR16:$Rn),
fixedpoint_f16_i32:$scale)))]> {
let Inst{31} = 0; // 32-bit GPR flag
let scale{5} = 1;
let Predicates = [HasFullFP16];
}
// Scaled half-precision to 64-bit
def SXHri : BaseFPToInteger<0b11, rmode, opcode, FPR16, GPR64,
fixedpoint_f16_i64, asm,
[(set GPR64:$Rd, (OpN (fmul (f16 FPR16:$Rn),
fixedpoint_f16_i64:$scale)))]> {
let Inst{31} = 1; // 64-bit GPR flag
let Predicates = [HasFullFP16];
}
// Scaled single-precision to 32-bit
def SWSri : BaseFPToInteger<0b00, rmode, opcode, FPR32, GPR32,
fixedpoint_f32_i32, asm,
[(set GPR32:$Rd, (OpN (fmul FPR32:$Rn,
fixedpoint_f32_i32:$scale)))]> {
let Inst{31} = 0; // 32-bit GPR flag
let scale{5} = 1;
}
// Scaled single-precision to 64-bit
def SXSri : BaseFPToInteger<0b00, rmode, opcode, FPR32, GPR64,
fixedpoint_f32_i64, asm,
[(set GPR64:$Rd, (OpN (fmul FPR32:$Rn,
fixedpoint_f32_i64:$scale)))]> {
let Inst{31} = 1; // 64-bit GPR flag
}
// Scaled double-precision to 32-bit
def SWDri : BaseFPToInteger<0b01, rmode, opcode, FPR64, GPR32,
fixedpoint_f64_i32, asm,
[(set GPR32:$Rd, (OpN (fmul FPR64:$Rn,
fixedpoint_f64_i32:$scale)))]> {
let Inst{31} = 0; // 32-bit GPR flag
let scale{5} = 1;
}
// Scaled double-precision to 64-bit
def SXDri : BaseFPToInteger<0b01, rmode, opcode, FPR64, GPR64,
fixedpoint_f64_i64, asm,
[(set GPR64:$Rd, (OpN (fmul FPR64:$Rn,
fixedpoint_f64_i64:$scale)))]> {
let Inst{31} = 1; // 64-bit GPR flag
}
}
//---
// Integer to floating point conversion
//---
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseIntegerToFP<bit isUnsigned,
RegisterClass srcType, RegisterClass dstType,
Operand immType, string asm, list<dag> pattern>
: I<(outs dstType:$Rd), (ins srcType:$Rn, immType:$scale),
asm, "\t$Rd, $Rn, $scale", "", pattern>,
Sched<[WriteFCvt]> {
bits<5> Rd;
bits<5> Rn;
bits<6> scale;
let Inst{30-24} = 0b0011110;
let Inst{21-17} = 0b00001;
let Inst{16} = isUnsigned;
let Inst{15-10} = scale;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class BaseIntegerToFPUnscaled<bit isUnsigned,
RegisterClass srcType, RegisterClass dstType,
ValueType dvt, string asm, SDPatternOperator node>
: I<(outs dstType:$Rd), (ins srcType:$Rn),
asm, "\t$Rd, $Rn", "", [(set (dvt dstType:$Rd), (node srcType:$Rn))]>,
Sched<[WriteFCvt]> {
bits<5> Rd;
bits<5> Rn;
bits<6> scale;
let Inst{30-24} = 0b0011110;
let Inst{21-17} = 0b10001;
let Inst{16} = isUnsigned;
let Inst{15-10} = 0b000000;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass IntegerToFP<bit isUnsigned, string asm, SDPatternOperator node> {
// Unscaled
def UWHri: BaseIntegerToFPUnscaled<isUnsigned, GPR32, FPR16, f16, asm, node> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b11; // 16-bit FPR flag
let Predicates = [HasFullFP16];
}
def UWSri: BaseIntegerToFPUnscaled<isUnsigned, GPR32, FPR32, f32, asm, node> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b00; // 32-bit FPR flag
}
def UWDri: BaseIntegerToFPUnscaled<isUnsigned, GPR32, FPR64, f64, asm, node> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b01; // 64-bit FPR flag
}
def UXHri: BaseIntegerToFPUnscaled<isUnsigned, GPR64, FPR16, f16, asm, node> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b11; // 16-bit FPR flag
let Predicates = [HasFullFP16];
}
def UXSri: BaseIntegerToFPUnscaled<isUnsigned, GPR64, FPR32, f32, asm, node> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b00; // 32-bit FPR flag
}
def UXDri: BaseIntegerToFPUnscaled<isUnsigned, GPR64, FPR64, f64, asm, node> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b01; // 64-bit FPR flag
}
// Scaled
def SWHri: BaseIntegerToFP<isUnsigned, GPR32, FPR16, fixedpoint_f16_i32, asm,
[(set (f16 FPR16:$Rd),
(fdiv (node GPR32:$Rn),
fixedpoint_f16_i32:$scale))]> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b11; // 16-bit FPR flag
let scale{5} = 1;
let Predicates = [HasFullFP16];
}
def SWSri: BaseIntegerToFP<isUnsigned, GPR32, FPR32, fixedpoint_f32_i32, asm,
[(set FPR32:$Rd,
(fdiv (node GPR32:$Rn),
fixedpoint_f32_i32:$scale))]> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b00; // 32-bit FPR flag
let scale{5} = 1;
}
def SWDri: BaseIntegerToFP<isUnsigned, GPR32, FPR64, fixedpoint_f64_i32, asm,
[(set FPR64:$Rd,
(fdiv (node GPR32:$Rn),
fixedpoint_f64_i32:$scale))]> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b01; // 64-bit FPR flag
let scale{5} = 1;
}
def SXHri: BaseIntegerToFP<isUnsigned, GPR64, FPR16, fixedpoint_f16_i64, asm,
[(set (f16 FPR16:$Rd),
(fdiv (node GPR64:$Rn),
fixedpoint_f16_i64:$scale))]> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b11; // 16-bit FPR flag
let Predicates = [HasFullFP16];
}
def SXSri: BaseIntegerToFP<isUnsigned, GPR64, FPR32, fixedpoint_f32_i64, asm,
[(set FPR32:$Rd,
(fdiv (node GPR64:$Rn),
fixedpoint_f32_i64:$scale))]> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b00; // 32-bit FPR flag
}
def SXDri: BaseIntegerToFP<isUnsigned, GPR64, FPR64, fixedpoint_f64_i64, asm,
[(set FPR64:$Rd,
(fdiv (node GPR64:$Rn),
fixedpoint_f64_i64:$scale))]> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b01; // 64-bit FPR flag
}
}
//---
// Unscaled integer <-> floating point conversion (i.e. FMOV)
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseUnscaledConversion<bits<2> rmode, bits<3> opcode,
RegisterClass srcType, RegisterClass dstType,
string asm>
: I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "",
// We use COPY_TO_REGCLASS for these bitconvert operations.
// copyPhysReg() expands the resultant COPY instructions after
// regalloc is done. This gives greater freedom for the allocator
// and related passes (coalescing, copy propagation, et. al.) to
// be more effective.
[/*(set (dvt dstType:$Rd), (bitconvert (svt srcType:$Rn)))*/]>,
Sched<[WriteFCopy]> {
bits<5> Rd;
bits<5> Rn;
let Inst{30-24} = 0b0011110;
let Inst{21} = 1;
let Inst{20-19} = rmode;
let Inst{18-16} = opcode;
let Inst{15-10} = 0b000000;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseUnscaledConversionToHigh<bits<2> rmode, bits<3> opcode,
RegisterClass srcType, RegisterOperand dstType, string asm,
string kind>
: I<(outs dstType:$Rd), (ins srcType:$Rn, VectorIndex1:$idx), asm,
"{\t$Rd"#kind#"$idx, $Rn|"#kind#"\t$Rd$idx, $Rn}", "", []>,
Sched<[WriteFCopy]> {
bits<5> Rd;
bits<5> Rn;
let Inst{30-23} = 0b00111101;
let Inst{21} = 1;
let Inst{20-19} = rmode;
let Inst{18-16} = opcode;
let Inst{15-10} = 0b000000;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
let DecoderMethod = "DecodeFMOVLaneInstruction";
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseUnscaledConversionFromHigh<bits<2> rmode, bits<3> opcode,
RegisterOperand srcType, RegisterClass dstType, string asm,
string kind>
: I<(outs dstType:$Rd), (ins srcType:$Rn, VectorIndex1:$idx), asm,
"{\t$Rd, $Rn"#kind#"$idx|"#kind#"\t$Rd, $Rn$idx}", "", []>,
Sched<[WriteFCopy]> {
bits<5> Rd;
bits<5> Rn;
let Inst{30-23} = 0b00111101;
let Inst{21} = 1;
let Inst{20-19} = rmode;
let Inst{18-16} = opcode;
let Inst{15-10} = 0b000000;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
let DecoderMethod = "DecodeFMOVLaneInstruction";
}
multiclass UnscaledConversion<string asm> {
def WHr : BaseUnscaledConversion<0b00, 0b111, GPR32, FPR16, asm> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b11; // 16-bit FPR flag
let Predicates = [HasFullFP16];
}
def XHr : BaseUnscaledConversion<0b00, 0b111, GPR64, FPR16, asm> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b11; // 16-bit FPR flag
let Predicates = [HasFullFP16];
}
def WSr : BaseUnscaledConversion<0b00, 0b111, GPR32, FPR32, asm> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b00; // 32-bit FPR flag
}
def XDr : BaseUnscaledConversion<0b00, 0b111, GPR64, FPR64, asm> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b01; // 64-bit FPR flag
}
def HWr : BaseUnscaledConversion<0b00, 0b110, FPR16, GPR32, asm> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b11; // 16-bit FPR flag
let Predicates = [HasFullFP16];
}
def HXr : BaseUnscaledConversion<0b00, 0b110, FPR16, GPR64, asm> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b11; // 16-bit FPR flag
let Predicates = [HasFullFP16];
}
def SWr : BaseUnscaledConversion<0b00, 0b110, FPR32, GPR32, asm> {
let Inst{31} = 0; // 32-bit GPR flag
let Inst{23-22} = 0b00; // 32-bit FPR flag
}
def DXr : BaseUnscaledConversion<0b00, 0b110, FPR64, GPR64, asm> {
let Inst{31} = 1; // 64-bit GPR flag
let Inst{23-22} = 0b01; // 64-bit FPR flag
}
def XDHighr : BaseUnscaledConversionToHigh<0b01, 0b111, GPR64, V128,
asm, ".d"> {
let Inst{31} = 1;
let Inst{22} = 0;
}
def DXHighr : BaseUnscaledConversionFromHigh<0b01, 0b110, V128, GPR64,
asm, ".d"> {
let Inst{31} = 1;
let Inst{22} = 0;
}
}
//---
// Floating point conversion
//---
class BaseFPConversion<bits<2> type, bits<2> opcode, RegisterClass dstType,
RegisterClass srcType, string asm, list<dag> pattern>
: I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", pattern>,
Sched<[WriteFCvt]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-24} = 0b00011110;
let Inst{23-22} = type;
let Inst{21-17} = 0b10001;
let Inst{16-15} = opcode;
let Inst{14-10} = 0b10000;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass FPConversion<string asm> {
// Double-precision to Half-precision
def HDr : BaseFPConversion<0b01, 0b11, FPR16, FPR64, asm,
[(set (f16 FPR16:$Rd), (any_fpround FPR64:$Rn))]>;
// Double-precision to Single-precision
def SDr : BaseFPConversion<0b01, 0b00, FPR32, FPR64, asm,
[(set FPR32:$Rd, (any_fpround FPR64:$Rn))]>;
// Half-precision to Double-precision
def DHr : BaseFPConversion<0b11, 0b01, FPR64, FPR16, asm,
[(set FPR64:$Rd, (fpextend (f16 FPR16:$Rn)))]>;
// Half-precision to Single-precision
def SHr : BaseFPConversion<0b11, 0b00, FPR32, FPR16, asm,
[(set FPR32:$Rd, (fpextend (f16 FPR16:$Rn)))]>;
// Single-precision to Double-precision
def DSr : BaseFPConversion<0b00, 0b01, FPR64, FPR32, asm,
[(set FPR64:$Rd, (fpextend FPR32:$Rn))]>;
// Single-precision to Half-precision
def HSr : BaseFPConversion<0b00, 0b11, FPR16, FPR32, asm,
[(set (f16 FPR16:$Rd), (any_fpround FPR32:$Rn))]>;
}
//---
// Single operand floating point data processing
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSingleOperandFPData<bits<6> opcode, RegisterClass regtype,
ValueType vt, string asm, SDPatternOperator node>
: I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn", "",
[(set (vt regtype:$Rd), (node (vt regtype:$Rn)))]>,
Sched<[WriteF]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-24} = 0b00011110;
let Inst{21} = 0b1;
let Inst{20-15} = opcode;
let Inst{14-10} = 0b10000;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SingleOperandFPData<bits<4> opcode, string asm,
SDPatternOperator node = null_frag> {
def Hr : BaseSingleOperandFPData<{0b00,opcode}, FPR16, f16, asm, node> {
let Inst{23-22} = 0b11; // 16-bit size flag
let Predicates = [HasFullFP16];
}
def Sr : BaseSingleOperandFPData<{0b00,opcode}, FPR32, f32, asm, node> {
let Inst{23-22} = 0b00; // 32-bit size flag
}
def Dr : BaseSingleOperandFPData<{0b00,opcode}, FPR64, f64, asm, node> {
let Inst{23-22} = 0b01; // 64-bit size flag
}
}
multiclass SingleOperandFPNo16<bits<6> opcode, string asm,
SDPatternOperator node = null_frag>{
def Sr : BaseSingleOperandFPData<opcode, FPR32, f32, asm, node> {
let Inst{23-22} = 0b00; // 32-bit registers
}
def Dr : BaseSingleOperandFPData<opcode, FPR64, f64, asm, node> {
let Inst{23-22} = 0b01; // 64-bit registers
}
}
// FRInt[32|64][Z|N] instructions
multiclass FRIntNNT<bits<2> opcode, string asm, SDPatternOperator node = null_frag> :
SingleOperandFPNo16<{0b0100,opcode}, asm, node>;
//---
// Two operand floating point data processing
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseTwoOperandFPData<bits<4> opcode, RegisterClass regtype,
string asm, list<dag> pat>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm),
asm, "\t$Rd, $Rn, $Rm", "", pat>,
Sched<[WriteF]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31-24} = 0b00011110;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass TwoOperandFPData<bits<4> opcode, string asm,
SDPatternOperator node = null_frag> {
def Hrr : BaseTwoOperandFPData<opcode, FPR16, asm,
[(set (f16 FPR16:$Rd),
(node (f16 FPR16:$Rn), (f16 FPR16:$Rm)))]> {
let Inst{23-22} = 0b11; // 16-bit size flag
let Predicates = [HasFullFP16];
}
def Srr : BaseTwoOperandFPData<opcode, FPR32, asm,
[(set (f32 FPR32:$Rd),
(node (f32 FPR32:$Rn), (f32 FPR32:$Rm)))]> {
let Inst{23-22} = 0b00; // 32-bit size flag
}
def Drr : BaseTwoOperandFPData<opcode, FPR64, asm,
[(set (f64 FPR64:$Rd),
(node (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]> {
let Inst{23-22} = 0b01; // 64-bit size flag
}
}
multiclass TwoOperandFPDataNeg<bits<4> opcode, string asm, SDNode node> {
def Hrr : BaseTwoOperandFPData<opcode, FPR16, asm,
[(set (f16 FPR16:$Rd), (fneg (node (f16 FPR16:$Rn), (f16 FPR16:$Rm))))]> {
let Inst{23-22} = 0b11; // 16-bit size flag
let Predicates = [HasFullFP16];
}
def Srr : BaseTwoOperandFPData<opcode, FPR32, asm,
[(set FPR32:$Rd, (fneg (node FPR32:$Rn, (f32 FPR32:$Rm))))]> {
let Inst{23-22} = 0b00; // 32-bit size flag
}
def Drr : BaseTwoOperandFPData<opcode, FPR64, asm,
[(set FPR64:$Rd, (fneg (node FPR64:$Rn, (f64 FPR64:$Rm))))]> {
let Inst{23-22} = 0b01; // 64-bit size flag
}
}
//---
// Three operand floating point data processing
//---
class BaseThreeOperandFPData<bit isNegated, bit isSub,
RegisterClass regtype, string asm, list<dag> pat>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, regtype: $Ra),
asm, "\t$Rd, $Rn, $Rm, $Ra", "", pat>,
Sched<[WriteFMul]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<5> Ra;
let Inst{31-24} = 0b00011111;
let Inst{21} = isNegated;
let Inst{20-16} = Rm;
let Inst{15} = isSub;
let Inst{14-10} = Ra;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass ThreeOperandFPData<bit isNegated, bit isSub,string asm,
SDPatternOperator node> {
def Hrrr : BaseThreeOperandFPData<isNegated, isSub, FPR16, asm,
[(set (f16 FPR16:$Rd),
(node (f16 FPR16:$Rn), (f16 FPR16:$Rm), (f16 FPR16:$Ra)))]> {
let Inst{23-22} = 0b11; // 16-bit size flag
let Predicates = [HasFullFP16];
}
def Srrr : BaseThreeOperandFPData<isNegated, isSub, FPR32, asm,
[(set FPR32:$Rd,
(node (f32 FPR32:$Rn), (f32 FPR32:$Rm), (f32 FPR32:$Ra)))]> {
let Inst{23-22} = 0b00; // 32-bit size flag
}
def Drrr : BaseThreeOperandFPData<isNegated, isSub, FPR64, asm,
[(set FPR64:$Rd,
(node (f64 FPR64:$Rn), (f64 FPR64:$Rm), (f64 FPR64:$Ra)))]> {
let Inst{23-22} = 0b01; // 64-bit size flag
}
}
//---
// Floating point data comparisons
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseOneOperandFPComparison<bit signalAllNans,
RegisterClass regtype, string asm,
list<dag> pat>
: I<(outs), (ins regtype:$Rn), asm, "\t$Rn, #0.0", "", pat>,
Sched<[WriteFCmp]> {
bits<5> Rn;
let Inst{31-24} = 0b00011110;
let Inst{21} = 1;
let Inst{15-10} = 0b001000;
let Inst{9-5} = Rn;
let Inst{4} = signalAllNans;
let Inst{3-0} = 0b1000;
// Rm should be 0b00000 canonically, but we need to accept any value.
let PostEncoderMethod = "fixOneOperandFPComparison";
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseTwoOperandFPComparison<bit signalAllNans, RegisterClass regtype,
string asm, list<dag> pat>
: I<(outs), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rn, $Rm", "", pat>,
Sched<[WriteFCmp]> {
bits<5> Rm;
bits<5> Rn;
let Inst{31-24} = 0b00011110;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15-10} = 0b001000;
let Inst{9-5} = Rn;
let Inst{4} = signalAllNans;
let Inst{3-0} = 0b0000;
}
multiclass FPComparison<bit signalAllNans, string asm,
SDPatternOperator OpNode = null_frag> {
let Defs = [NZCV] in {
def Hrr : BaseTwoOperandFPComparison<signalAllNans, FPR16, asm,
[(OpNode (f16 FPR16:$Rn), (f16 FPR16:$Rm)), (implicit NZCV)]> {
let Inst{23-22} = 0b11;
let Predicates = [HasFullFP16];
}
def Hri : BaseOneOperandFPComparison<signalAllNans, FPR16, asm,
[(OpNode (f16 FPR16:$Rn), fpimm0), (implicit NZCV)]> {
let Inst{23-22} = 0b11;
let Predicates = [HasFullFP16];
}
def Srr : BaseTwoOperandFPComparison<signalAllNans, FPR32, asm,
[(OpNode FPR32:$Rn, (f32 FPR32:$Rm)), (implicit NZCV)]> {
let Inst{23-22} = 0b00;
}
def Sri : BaseOneOperandFPComparison<signalAllNans, FPR32, asm,
[(OpNode (f32 FPR32:$Rn), fpimm0), (implicit NZCV)]> {
let Inst{23-22} = 0b00;
}
def Drr : BaseTwoOperandFPComparison<signalAllNans, FPR64, asm,
[(OpNode FPR64:$Rn, (f64 FPR64:$Rm)), (implicit NZCV)]> {
let Inst{23-22} = 0b01;
}
def Dri : BaseOneOperandFPComparison<signalAllNans, FPR64, asm,
[(OpNode (f64 FPR64:$Rn), fpimm0), (implicit NZCV)]> {
let Inst{23-22} = 0b01;
}
} // Defs = [NZCV]
}
//---
// Floating point conditional comparisons
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseFPCondComparison<bit signalAllNans, RegisterClass regtype,
string mnemonic, list<dag> pat>
: I<(outs), (ins regtype:$Rn, regtype:$Rm, imm32_0_15:$nzcv, ccode:$cond),
mnemonic, "\t$Rn, $Rm, $nzcv, $cond", "", pat>,
Sched<[WriteFCmp]> {
let Uses = [NZCV];
let Defs = [NZCV];
bits<5> Rn;
bits<5> Rm;
bits<4> nzcv;
bits<4> cond;
let Inst{31-24} = 0b00011110;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15-12} = cond;
let Inst{11-10} = 0b01;
let Inst{9-5} = Rn;
let Inst{4} = signalAllNans;
let Inst{3-0} = nzcv;
}
multiclass FPCondComparison<bit signalAllNans, string mnemonic,
SDPatternOperator OpNode = null_frag> {
def Hrr : BaseFPCondComparison<signalAllNans, FPR16, mnemonic,
[(set NZCV, (OpNode (f16 FPR16:$Rn), (f16 FPR16:$Rm), (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]> {
let Inst{23-22} = 0b11;
let Predicates = [HasFullFP16];
}
def Srr : BaseFPCondComparison<signalAllNans, FPR32, mnemonic,
[(set NZCV, (OpNode (f32 FPR32:$Rn), (f32 FPR32:$Rm), (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]> {
let Inst{23-22} = 0b00;
}
def Drr : BaseFPCondComparison<signalAllNans, FPR64, mnemonic,
[(set NZCV, (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm), (i32 imm:$nzcv),
(i32 imm:$cond), NZCV))]> {
let Inst{23-22} = 0b01;
}
}
//---
// Floating point conditional select
//---
class BaseFPCondSelect<RegisterClass regtype, ValueType vt, string asm>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond),
asm, "\t$Rd, $Rn, $Rm, $cond", "",
[(set regtype:$Rd,
(AArch64csel (vt regtype:$Rn), regtype:$Rm,
(i32 imm:$cond), NZCV))]>,
Sched<[WriteF]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<4> cond;
let Inst{31-24} = 0b00011110;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15-12} = cond;
let Inst{11-10} = 0b11;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass FPCondSelect<string asm> {
let Uses = [NZCV] in {
def Hrrr : BaseFPCondSelect<FPR16, f16, asm> {
let Inst{23-22} = 0b11;
let Predicates = [HasFullFP16];
}
def Srrr : BaseFPCondSelect<FPR32, f32, asm> {
let Inst{23-22} = 0b00;
}
def Drrr : BaseFPCondSelect<FPR64, f64, asm> {
let Inst{23-22} = 0b01;
}
} // Uses = [NZCV]
}
//---
// Floating move immediate
//---
class BaseFPMoveImmediate<RegisterClass regtype, Operand fpimmtype, string asm>
: I<(outs regtype:$Rd), (ins fpimmtype:$imm), asm, "\t$Rd, $imm", "",
[(set regtype:$Rd, fpimmtype:$imm)]>,
Sched<[WriteFImm]> {
bits<5> Rd;
bits<8> imm;
let Inst{31-24} = 0b00011110;
let Inst{21} = 1;
let Inst{20-13} = imm;
let Inst{12-5} = 0b10000000;
let Inst{4-0} = Rd;
}
multiclass FPMoveImmediate<string asm> {
def Hi : BaseFPMoveImmediate<FPR16, fpimm16, asm> {
let Inst{23-22} = 0b11;
let Predicates = [HasFullFP16];
}
def Si : BaseFPMoveImmediate<FPR32, fpimm32, asm> {
let Inst{23-22} = 0b00;
}
def Di : BaseFPMoveImmediate<FPR64, fpimm64, asm> {
let Inst{23-22} = 0b01;
}
}
} // end of 'let Predicates = [HasFPARMv8]'
//----------------------------------------------------------------------------
// AdvSIMD
//----------------------------------------------------------------------------
let Predicates = [HasNEON] in {
//----------------------------------------------------------------------------
// AdvSIMD three register vector instructions
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDThreeSameVector<bit Q, bit U, bits<3> size, bits<5> opcode,
RegisterOperand regtype, string asm, string kind,
list<dag> pattern>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm,
"{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind #
"|" # kind # "\t$Rd, $Rn, $Rm|}", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-21} = size;
let Inst{20-16} = Rm;
let Inst{15-11} = opcode;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDThreeSameVectorTied<bit Q, bit U, bits<3> size, bits<5> opcode,
RegisterOperand regtype, string asm, string kind,
list<dag> pattern>
: I<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn, regtype:$Rm), asm,
"{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind #
"|" # kind # "\t$Rd, $Rn, $Rm}", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-21} = size;
let Inst{20-16} = Rm;
let Inst{15-11} = opcode;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDThreeSameVectorPseudo<RegisterOperand regtype, list<dag> pattern>
: Pseudo<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn, regtype:$Rm), pattern>,
Sched<[WriteV]>;
multiclass SIMDLogicalThreeVectorPseudo<SDPatternOperator OpNode> {
def v8i8 : BaseSIMDThreeSameVectorPseudo<V64,
[(set (v8i8 V64:$dst),
(OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8 : BaseSIMDThreeSameVectorPseudo<V128,
[(set (v16i8 V128:$dst),
(OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn),
(v16i8 V128:$Rm)))]>;
def : Pat<(v4i16 (OpNode (v4i16 V64:$LHS), (v4i16 V64:$MHS),
(v4i16 V64:$RHS))),
(!cast<Instruction>(NAME#"v8i8")
V64:$LHS, V64:$MHS, V64:$RHS)>;
def : Pat<(v2i32 (OpNode (v2i32 V64:$LHS), (v2i32 V64:$MHS),
(v2i32 V64:$RHS))),
(!cast<Instruction>(NAME#"v8i8")
V64:$LHS, V64:$MHS, V64:$RHS)>;
def : Pat<(v1i64 (OpNode (v1i64 V64:$LHS), (v1i64 V64:$MHS),
(v1i64 V64:$RHS))),
(!cast<Instruction>(NAME#"v8i8")
V64:$LHS, V64:$MHS, V64:$RHS)>;
def : Pat<(v8i16 (OpNode (v8i16 V128:$LHS), (v8i16 V128:$MHS),
(v8i16 V128:$RHS))),
(!cast<Instruction>(NAME#"v16i8")
V128:$LHS, V128:$MHS, V128:$RHS)>;
def : Pat<(v4i32 (OpNode (v4i32 V128:$LHS), (v4i32 V128:$MHS),
(v4i32 V128:$RHS))),
(!cast<Instruction>(NAME#"v16i8")
V128:$LHS, V128:$MHS, V128:$RHS)>;
def : Pat<(v2i64 (OpNode (v2i64 V128:$LHS), (v2i64 V128:$MHS),
(v2i64 V128:$RHS))),
(!cast<Instruction>(NAME#"v16i8")
V128:$LHS, V128:$MHS, V128:$RHS)>;
}
// All operand sizes distinguished in the encoding.
multiclass SIMDThreeSameVector<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDThreeSameVector<0, U, 0b001, opc, V64,
asm, ".8b",
[(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8 : BaseSIMDThreeSameVector<1, U, 0b001, opc, V128,
asm, ".16b",
[(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>;
def v4i16 : BaseSIMDThreeSameVector<0, U, 0b011, opc, V64,
asm, ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
def v8i16 : BaseSIMDThreeSameVector<1, U, 0b011, opc, V128,
asm, ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>;
def v2i32 : BaseSIMDThreeSameVector<0, U, 0b101, opc, V64,
asm, ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
def v4i32 : BaseSIMDThreeSameVector<1, U, 0b101, opc, V128,
asm, ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>;
def v2i64 : BaseSIMDThreeSameVector<1, U, 0b111, opc, V128,
asm, ".2d",
[(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (v2i64 V128:$Rm)))]>;
}
multiclass SIMDThreeSameVectorExtraPatterns<string inst, SDPatternOperator OpNode> {
def : Pat<(v8i8 (OpNode V64:$LHS, V64:$RHS)),
(!cast<Instruction>(inst#"v8i8") V64:$LHS, V64:$RHS)>;
def : Pat<(v4i16 (OpNode V64:$LHS, V64:$RHS)),
(!cast<Instruction>(inst#"v4i16") V64:$LHS, V64:$RHS)>;
def : Pat<(v2i32 (OpNode V64:$LHS, V64:$RHS)),
(!cast<Instruction>(inst#"v2i32") V64:$LHS, V64:$RHS)>;
def : Pat<(v16i8 (OpNode V128:$LHS, V128:$RHS)),
(!cast<Instruction>(inst#"v16i8") V128:$LHS, V128:$RHS)>;
def : Pat<(v8i16 (OpNode V128:$LHS, V128:$RHS)),
(!cast<Instruction>(inst#"v8i16") V128:$LHS, V128:$RHS)>;
def : Pat<(v4i32 (OpNode V128:$LHS, V128:$RHS)),
(!cast<Instruction>(inst#"v4i32") V128:$LHS, V128:$RHS)>;
def : Pat<(v2i64 (OpNode V128:$LHS, V128:$RHS)),
(!cast<Instruction>(inst#"v2i64") V128:$LHS, V128:$RHS)>;
}
// As above, but D sized elements unsupported.
multiclass SIMDThreeSameVectorBHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDThreeSameVector<0, U, 0b001, opc, V64,
asm, ".8b",
[(set V64:$Rd, (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm))))]>;
def v16i8 : BaseSIMDThreeSameVector<1, U, 0b001, opc, V128,
asm, ".16b",
[(set V128:$Rd, (v16i8 (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm))))]>;
def v4i16 : BaseSIMDThreeSameVector<0, U, 0b011, opc, V64,
asm, ".4h",
[(set V64:$Rd, (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm))))]>;
def v8i16 : BaseSIMDThreeSameVector<1, U, 0b011, opc, V128,
asm, ".8h",
[(set V128:$Rd, (v8i16 (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm))))]>;
def v2i32 : BaseSIMDThreeSameVector<0, U, 0b101, opc, V64,
asm, ".2s",
[(set V64:$Rd, (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm))))]>;
def v4i32 : BaseSIMDThreeSameVector<1, U, 0b101, opc, V128,
asm, ".4s",
[(set V128:$Rd, (v4i32 (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm))))]>;
}
multiclass SIMDThreeSameVectorBHSTied<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDThreeSameVectorTied<0, U, 0b001, opc, V64,
asm, ".8b",
[(set (v8i8 V64:$dst),
(OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8 : BaseSIMDThreeSameVectorTied<1, U, 0b001, opc, V128,
asm, ".16b",
[(set (v16i8 V128:$dst),
(OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>;
def v4i16 : BaseSIMDThreeSameVectorTied<0, U, 0b011, opc, V64,
asm, ".4h",
[(set (v4i16 V64:$dst),
(OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
def v8i16 : BaseSIMDThreeSameVectorTied<1, U, 0b011, opc, V128,
asm, ".8h",
[(set (v8i16 V128:$dst),
(OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>;
def v2i32 : BaseSIMDThreeSameVectorTied<0, U, 0b101, opc, V64,
asm, ".2s",
[(set (v2i32 V64:$dst),
(OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
def v4i32 : BaseSIMDThreeSameVectorTied<1, U, 0b101, opc, V128,
asm, ".4s",
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>;
}
// As above, but only B sized elements supported.
multiclass SIMDThreeSameVectorB<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDThreeSameVector<0, U, 0b001, opc, V64,
asm, ".8b",
[(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8 : BaseSIMDThreeSameVector<1, U, 0b001, opc, V128,
asm, ".16b",
[(set (v16i8 V128:$Rd),
(OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>;
}
// As above, but only floating point elements supported.
multiclass SIMDThreeSameVectorFP<bit U, bit S, bits<3> opc,
string asm, SDPatternOperator OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4f16 : BaseSIMDThreeSameVector<0, U, {S,0b10}, {0b00,opc}, V64,
asm, ".4h",
[(set (v4f16 V64:$Rd), (OpNode (v4f16 V64:$Rn), (v4f16 V64:$Rm)))]>;
def v8f16 : BaseSIMDThreeSameVector<1, U, {S,0b10}, {0b00,opc}, V128,
asm, ".8h",
[(set (v8f16 V128:$Rd), (OpNode (v8f16 V128:$Rn), (v8f16 V128:$Rm)))]>;
} // Predicates = [HasNEON, HasFullFP16]
def v2f32 : BaseSIMDThreeSameVector<0, U, {S,0b01}, {0b11,opc}, V64,
asm, ".2s",
[(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>;
def v4f32 : BaseSIMDThreeSameVector<1, U, {S,0b01}, {0b11,opc}, V128,
asm, ".4s",
[(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>;
def v2f64 : BaseSIMDThreeSameVector<1, U, {S,0b11}, {0b11,opc}, V128,
asm, ".2d",
[(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>;
}
multiclass SIMDThreeSameVectorFPCmp<bit U, bit S, bits<3> opc,
string asm,
SDPatternOperator OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4f16 : BaseSIMDThreeSameVector<0, U, {S,0b10}, {0b00,opc}, V64,
asm, ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4f16 V64:$Rn), (v4f16 V64:$Rm)))]>;
def v8f16 : BaseSIMDThreeSameVector<1, U, {S,0b10}, {0b00,opc}, V128,
asm, ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8f16 V128:$Rn), (v8f16 V128:$Rm)))]>;
} // Predicates = [HasNEON, HasFullFP16]
def v2f32 : BaseSIMDThreeSameVector<0, U, {S,0b01}, {0b11,opc}, V64,
asm, ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>;
def v4f32 : BaseSIMDThreeSameVector<1, U, {S,0b01}, {0b11,opc}, V128,
asm, ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>;
def v2f64 : BaseSIMDThreeSameVector<1, U, {S,0b11}, {0b11,opc}, V128,
asm, ".2d",
[(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>;
}
multiclass SIMDThreeSameVectorFPTied<bit U, bit S, bits<3> opc,
string asm, SDPatternOperator OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4f16 : BaseSIMDThreeSameVectorTied<0, U, {S,0b10}, {0b00,opc}, V64,
asm, ".4h",
[(set (v4f16 V64:$dst),
(OpNode (v4f16 V64:$Rd), (v4f16 V64:$Rn), (v4f16 V64:$Rm)))]>;
def v8f16 : BaseSIMDThreeSameVectorTied<1, U, {S,0b10}, {0b00,opc}, V128,
asm, ".8h",
[(set (v8f16 V128:$dst),
(OpNode (v8f16 V128:$Rd), (v8f16 V128:$Rn), (v8f16 V128:$Rm)))]>;
} // Predicates = [HasNEON, HasFullFP16]
def v2f32 : BaseSIMDThreeSameVectorTied<0, U, {S,0b01}, {0b11,opc}, V64,
asm, ".2s",
[(set (v2f32 V64:$dst),
(OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>;
def v4f32 : BaseSIMDThreeSameVectorTied<1, U, {S,0b01}, {0b11,opc}, V128,
asm, ".4s",
[(set (v4f32 V128:$dst),
(OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>;
def v2f64 : BaseSIMDThreeSameVectorTied<1, U, {S,0b11}, {0b11,opc}, V128,
asm, ".2d",
[(set (v2f64 V128:$dst),
(OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>;
}
// As above, but D and B sized elements unsupported.
multiclass SIMDThreeSameVectorHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v4i16 : BaseSIMDThreeSameVector<0, U, 0b011, opc, V64,
asm, ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
def v8i16 : BaseSIMDThreeSameVector<1, U, 0b011, opc, V128,
asm, ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>;
def v2i32 : BaseSIMDThreeSameVector<0, U, 0b101, opc, V64,
asm, ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
def v4i32 : BaseSIMDThreeSameVector<1, U, 0b101, opc, V128,
asm, ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>;
}
// Logical three vector ops share opcode bits, and only use B sized elements.
multiclass SIMDLogicalThreeVector<bit U, bits<2> size, string asm,
SDPatternOperator OpNode = null_frag> {
def v8i8 : BaseSIMDThreeSameVector<0, U, {size,1}, 0b00011, V64,
asm, ".8b",
[(set (v8i8 V64:$Rd), (OpNode V64:$Rn, V64:$Rm))]>;
def v16i8 : BaseSIMDThreeSameVector<1, U, {size,1}, 0b00011, V128,
asm, ".16b",
[(set (v16i8 V128:$Rd), (OpNode V128:$Rn, V128:$Rm))]>;
def : Pat<(v4i16 (OpNode V64:$LHS, V64:$RHS)),
(!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>;
def : Pat<(v2i32 (OpNode V64:$LHS, V64:$RHS)),
(!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>;
def : Pat<(v1i64 (OpNode V64:$LHS, V64:$RHS)),
(!cast<Instruction>(NAME#"v8i8") V64:$LHS, V64:$RHS)>;
def : Pat<(v8i16 (OpNode V128:$LHS, V128:$RHS)),
(!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>;
def : Pat<(v4i32 (OpNode V128:$LHS, V128:$RHS)),
(!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>;
def : Pat<(v2i64 (OpNode V128:$LHS, V128:$RHS)),
(!cast<Instruction>(NAME#"v16i8") V128:$LHS, V128:$RHS)>;
}
multiclass SIMDLogicalThreeVectorTied<bit U, bits<2> size,
string asm, SDPatternOperator OpNode = null_frag> {
def v8i8 : BaseSIMDThreeSameVectorTied<0, U, {size,1}, 0b00011, V64,
asm, ".8b",
[(set (v8i8 V64:$dst),
(OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8 : BaseSIMDThreeSameVectorTied<1, U, {size,1}, 0b00011, V128,
asm, ".16b",
[(set (v16i8 V128:$dst),
(OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn),
(v16i8 V128:$Rm)))]>;
def : Pat<(v4i16 (OpNode (v4i16 V64:$LHS), (v4i16 V64:$MHS),
(v4i16 V64:$RHS))),
(!cast<Instruction>(NAME#"v8i8")
V64:$LHS, V64:$MHS, V64:$RHS)>;
def : Pat<(v2i32 (OpNode (v2i32 V64:$LHS), (v2i32 V64:$MHS),
(v2i32 V64:$RHS))),
(!cast<Instruction>(NAME#"v8i8")
V64:$LHS, V64:$MHS, V64:$RHS)>;
def : Pat<(v1i64 (OpNode (v1i64 V64:$LHS), (v1i64 V64:$MHS),
(v1i64 V64:$RHS))),
(!cast<Instruction>(NAME#"v8i8")
V64:$LHS, V64:$MHS, V64:$RHS)>;
def : Pat<(v8i16 (OpNode (v8i16 V128:$LHS), (v8i16 V128:$MHS),
(v8i16 V128:$RHS))),
(!cast<Instruction>(NAME#"v16i8")
V128:$LHS, V128:$MHS, V128:$RHS)>;
def : Pat<(v4i32 (OpNode (v4i32 V128:$LHS), (v4i32 V128:$MHS),
(v4i32 V128:$RHS))),
(!cast<Instruction>(NAME#"v16i8")
V128:$LHS, V128:$MHS, V128:$RHS)>;
def : Pat<(v2i64 (OpNode (v2i64 V128:$LHS), (v2i64 V128:$MHS),
(v2i64 V128:$RHS))),
(!cast<Instruction>(NAME#"v16i8")
V128:$LHS, V128:$MHS, V128:$RHS)>;
}
// ARMv8.2-A Dot Product Instructions (Vector): These instructions extract
// bytes from S-sized elements.
class BaseSIMDThreeSameVectorDot<bit Q, bit U, bit Mixed, string asm, string kind1,
string kind2, RegisterOperand RegType,
ValueType AccumType, ValueType InputType,
SDPatternOperator OpNode> :
BaseSIMDThreeSameVectorTied<Q, U, 0b100, {0b1001, Mixed}, RegType, asm, kind1,
[(set (AccumType RegType:$dst),
(OpNode (AccumType RegType:$Rd),
(InputType RegType:$Rn),
(InputType RegType:$Rm)))]> {
let AsmString = !strconcat(asm, "{\t$Rd" # kind1 # ", $Rn" # kind2 # ", $Rm" # kind2 # "}");
}
multiclass SIMDThreeSameVectorDot<bit U, bit Mixed, string asm, SDPatternOperator OpNode> {
def v8i8 : BaseSIMDThreeSameVectorDot<0, U, Mixed, asm, ".2s", ".8b", V64,
v2i32, v8i8, OpNode>;
def v16i8 : BaseSIMDThreeSameVectorDot<1, U, Mixed, asm, ".4s", ".16b", V128,
v4i32, v16i8, OpNode>;
}
// ARMv8.2-A Fused Multiply Add-Long Instructions (Vector): These instructions
// select inputs from 4H vectors and accumulate outputs to a 2S vector (or from
// 8H to 4S, when Q=1).
class BaseSIMDThreeSameVectorFML<bit Q, bit U, bit b13, bits<3> size, string asm, string kind1,
string kind2, RegisterOperand RegType,
ValueType AccumType, ValueType InputType,
SDPatternOperator OpNode> :
BaseSIMDThreeSameVectorTied<Q, U, size, 0b11101, RegType, asm, kind1,
[(set (AccumType RegType:$dst),
(OpNode (AccumType RegType:$Rd),
(InputType RegType:$Rn),
(InputType RegType:$Rm)))]> {
let AsmString = !strconcat(asm, "{\t$Rd" # kind1 # ", $Rn" # kind2 # ", $Rm" # kind2 # "}");
let Inst{13} = b13;
}
multiclass SIMDThreeSameVectorFML<bit U, bit b13, bits<3> size, string asm,
SDPatternOperator OpNode> {
def v4f16 : BaseSIMDThreeSameVectorFML<0, U, b13, size, asm, ".2s", ".2h", V64,
v2f32, v4f16, OpNode>;
def v8f16 : BaseSIMDThreeSameVectorFML<1, U, b13, size, asm, ".4s", ".4h", V128,
v4f32, v8f16, OpNode>;
}
//----------------------------------------------------------------------------
// AdvSIMD two register vector instructions.
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDTwoSameVector<bit Q, bit U, bits<2> size, bits<5> opcode,
bits<2> size2, RegisterOperand regtype, string asm,
string dstkind, string srckind, list<dag> pattern>
: I<(outs regtype:$Rd), (ins regtype:$Rn), asm,
"{\t$Rd" # dstkind # ", $Rn" # srckind #
"|" # dstkind # "\t$Rd, $Rn}", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21} = 0b1;
let Inst{20-19} = size2;
let Inst{18-17} = 0b00;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDTwoSameVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode,
bits<2> size2, RegisterOperand regtype,
string asm, string dstkind, string srckind,
list<dag> pattern>
: I<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn), asm,
"{\t$Rd" # dstkind # ", $Rn" # srckind #
"|" # dstkind # "\t$Rd, $Rn}", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21} = 0b1;
let Inst{20-19} = size2;
let Inst{18-17} = 0b00;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
// Supports B, H, and S element sizes.
multiclass SIMDTwoVectorBHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, 0b00, V64,
asm, ".8b", ".8b",
[(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>;
def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, 0b00, V128,
asm, ".16b", ".16b",
[(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, 0b00, V64,
asm, ".4h", ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>;
def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, 0b00, V128,
asm, ".8h", ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
def v2i32 : BaseSIMDTwoSameVector<0, U, 0b10, opc, 0b00, V64,
asm, ".2s", ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
def v4i32 : BaseSIMDTwoSameVector<1, U, 0b10, opc, 0b00, V128,
asm, ".4s", ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
}
class BaseSIMDVectorLShiftLongBySize<bit Q, bits<2> size,
RegisterOperand regtype, string asm, string dstkind,
string srckind, string amount>
: I<(outs V128:$Rd), (ins regtype:$Rn), asm,
"{\t$Rd" # dstkind # ", $Rn" # srckind # ", #" # amount #
"|" # dstkind # "\t$Rd, $Rn, #" # amount # "}", "", []>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29-24} = 0b101110;
let Inst{23-22} = size;
let Inst{21-10} = 0b100001001110;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDVectorLShiftLongBySizeBHS {
let hasSideEffects = 0 in {
def v8i8 : BaseSIMDVectorLShiftLongBySize<0, 0b00, V64,
"shll", ".8h", ".8b", "8">;
def v16i8 : BaseSIMDVectorLShiftLongBySize<1, 0b00, V128,
"shll2", ".8h", ".16b", "8">;
def v4i16 : BaseSIMDVectorLShiftLongBySize<0, 0b01, V64,
"shll", ".4s", ".4h", "16">;
def v8i16 : BaseSIMDVectorLShiftLongBySize<1, 0b01, V128,
"shll2", ".4s", ".8h", "16">;
def v2i32 : BaseSIMDVectorLShiftLongBySize<0, 0b10, V64,
"shll", ".2d", ".2s", "32">;
def v4i32 : BaseSIMDVectorLShiftLongBySize<1, 0b10, V128,
"shll2", ".2d", ".4s", "32">;
}
}
// Supports all element sizes.
multiclass SIMDLongTwoVector<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8_v4i16 : BaseSIMDTwoSameVector<0, U, 0b00, opc, 0b00, V64,
asm, ".4h", ".8b",
[(set (v4i16 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>;
def v16i8_v8i16 : BaseSIMDTwoSameVector<1, U, 0b00, opc, 0b00, V128,
asm, ".8h", ".16b",
[(set (v8i16 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
def v4i16_v2i32 : BaseSIMDTwoSameVector<0, U, 0b01, opc, 0b00, V64,
asm, ".2s", ".4h",
[(set (v2i32 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>;
def v8i16_v4i32 : BaseSIMDTwoSameVector<1, U, 0b01, opc, 0b00, V128,
asm, ".4s", ".8h",
[(set (v4i32 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
def v2i32_v1i64 : BaseSIMDTwoSameVector<0, U, 0b10, opc, 0b00, V64,
asm, ".1d", ".2s",
[(set (v1i64 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
def v4i32_v2i64 : BaseSIMDTwoSameVector<1, U, 0b10, opc, 0b00, V128,
asm, ".2d", ".4s",
[(set (v2i64 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
}
multiclass SIMDLongTwoVectorTied<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8_v4i16 : BaseSIMDTwoSameVectorTied<0, U, 0b00, opc, 0b00, V64,
asm, ".4h", ".8b",
[(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd),
(v8i8 V64:$Rn)))]>;
def v16i8_v8i16 : BaseSIMDTwoSameVectorTied<1, U, 0b00, opc, 0b00, V128,
asm, ".8h", ".16b",
[(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd),
(v16i8 V128:$Rn)))]>;
def v4i16_v2i32 : BaseSIMDTwoSameVectorTied<0, U, 0b01, opc, 0b00, V64,
asm, ".2s", ".4h",
[(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd),
(v4i16 V64:$Rn)))]>;
def v8i16_v4i32 : BaseSIMDTwoSameVectorTied<1, U, 0b01, opc, 0b00, V128,
asm, ".4s", ".8h",
[(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd),
(v8i16 V128:$Rn)))]>;
def v2i32_v1i64 : BaseSIMDTwoSameVectorTied<0, U, 0b10, opc, 0b00, V64,
asm, ".1d", ".2s",
[(set (v1i64 V64:$dst), (OpNode (v1i64 V64:$Rd),
(v2i32 V64:$Rn)))]>;
def v4i32_v2i64 : BaseSIMDTwoSameVectorTied<1, U, 0b10, opc, 0b00, V128,
asm, ".2d", ".4s",
[(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd),
(v4i32 V128:$Rn)))]>;
}
// Supports all element sizes, except 1xD.
multiclass SIMDTwoVectorBHSDTied<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDTwoSameVectorTied<0, U, 0b00, opc, 0b00, V64,
asm, ".8b", ".8b",
[(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn)))]>;
def v16i8 : BaseSIMDTwoSameVectorTied<1, U, 0b00, opc, 0b00, V128,
asm, ".16b", ".16b",
[(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn)))]>;
def v4i16 : BaseSIMDTwoSameVectorTied<0, U, 0b01, opc, 0b00, V64,
asm, ".4h", ".4h",
[(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn)))]>;
def v8i16 : BaseSIMDTwoSameVectorTied<1, U, 0b01, opc, 0b00, V128,
asm, ".8h", ".8h",
[(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn)))]>;
def v2i32 : BaseSIMDTwoSameVectorTied<0, U, 0b10, opc, 0b00, V64,
asm, ".2s", ".2s",
[(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn)))]>;
def v4i32 : BaseSIMDTwoSameVectorTied<1, U, 0b10, opc, 0b00, V128,
asm, ".4s", ".4s",
[(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn)))]>;
def v2i64 : BaseSIMDTwoSameVectorTied<1, U, 0b11, opc, 0b00, V128,
asm, ".2d", ".2d",
[(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn)))]>;
}
multiclass SIMDTwoVectorBHSD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, 0b00, V64,
asm, ".8b", ".8b",
[(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>;
def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, 0b00, V128,
asm, ".16b", ".16b",
[(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, 0b00, V64,
asm, ".4h", ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>;
def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, 0b00, V128,
asm, ".8h", ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
def v2i32 : BaseSIMDTwoSameVector<0, U, 0b10, opc, 0b00, V64,
asm, ".2s", ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
def v4i32 : BaseSIMDTwoSameVector<1, U, 0b10, opc, 0b00, V128,
asm, ".4s", ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
def v2i64 : BaseSIMDTwoSameVector<1, U, 0b11, opc, 0b00, V128,
asm, ".2d", ".2d",
[(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn)))]>;
}
// Supports only B element sizes.
multiclass SIMDTwoVectorB<bit U, bits<2> size, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDTwoSameVector<0, U, size, opc, 0b00, V64,
asm, ".8b", ".8b",
[(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>;
def v16i8 : BaseSIMDTwoSameVector<1, U, size, opc, 0b00, V128,
asm, ".16b", ".16b",
[(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
}
// Supports only B and H element sizes.
multiclass SIMDTwoVectorBH<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, 0b00, V64,
asm, ".8b", ".8b",
[(set (v8i8 V64:$Rd), (OpNode V64:$Rn))]>;
def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, 0b00, V128,
asm, ".16b", ".16b",
[(set (v16i8 V128:$Rd), (OpNode V128:$Rn))]>;
def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, 0b00, V64,
asm, ".4h", ".4h",
[(set (v4i16 V64:$Rd), (OpNode V64:$Rn))]>;
def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, 0b00, V128,
asm, ".8h", ".8h",
[(set (v8i16 V128:$Rd), (OpNode V128:$Rn))]>;
}
// Supports H, S and D element sizes, uses high bit of the size field
// as an extra opcode bit.
multiclass SIMDTwoVectorFP<bit U, bit S, bits<5> opc, string asm,
SDPatternOperator OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4f16 : BaseSIMDTwoSameVector<0, U, {S,1}, opc, 0b11, V64,
asm, ".4h", ".4h",
[(set (v4f16 V64:$Rd), (OpNode (v4f16 V64:$Rn)))]>;
def v8f16 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, 0b11, V128,
asm, ".8h", ".8h",
[(set (v8f16 V128:$Rd), (OpNode (v8f16 V128:$Rn)))]>;
} // Predicates = [HasNEON, HasFullFP16]
def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, 0b00, V64,
asm, ".2s", ".2s",
[(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>;
def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, 0b00, V128,
asm, ".4s", ".4s",
[(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>;
def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, 0b00, V128,
asm, ".2d", ".2d",
[(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>;
}
// Supports only S and D element sizes
multiclass SIMDTwoVectorSD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v2f32 : BaseSIMDTwoSameVector<0, U, 00, opc, 0b00, V64,
asm, ".2s", ".2s",
[(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>;
def v4f32 : BaseSIMDTwoSameVector<1, U, 00, opc, 0b00, V128,
asm, ".4s", ".4s",
[(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>;
def v2f64 : BaseSIMDTwoSameVector<1, U, 01, opc, 0b00, V128,
asm, ".2d", ".2d",
[(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>;
}
multiclass FRIntNNTVector<bit U, bit op, string asm,
SDPatternOperator OpNode = null_frag> :
SIMDTwoVectorSD<U, {0b1111,op}, asm, OpNode>;
// Supports only S element size.
multiclass SIMDTwoVectorS<bit U, bit S, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v2i32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, 0b00, V64,
asm, ".2s", ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
def v4i32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, 0b00, V128,
asm, ".4s", ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
}
multiclass SIMDTwoVectorFPToInt<bit U, bit S, bits<5> opc, string asm,
SDPatternOperator OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4f16 : BaseSIMDTwoSameVector<0, U, {S,1}, opc, 0b11, V64,
asm, ".4h", ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4f16 V64:$Rn)))]>;
def v8f16 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, 0b11, V128,
asm, ".8h", ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8f16 V128:$Rn)))]>;
} // Predicates = [HasNEON, HasFullFP16]
def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, 0b00, V64,
asm, ".2s", ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>;
def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, 0b00, V128,
asm, ".4s", ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>;
def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, 0b00, V128,
asm, ".2d", ".2d",
[(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>;
}
multiclass SIMDTwoVectorIntToFP<bit U, bit S, bits<5> opc, string asm,
SDPatternOperator OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4f16 : BaseSIMDTwoSameVector<0, U, {S,1}, opc, 0b11, V64,
asm, ".4h", ".4h",
[(set (v4f16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>;
def v8f16 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, 0b11, V128,
asm, ".8h", ".8h",
[(set (v8f16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
} // Predicates = [HasNEON, HasFullFP16]
def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, 0b00, V64,
asm, ".2s", ".2s",
[(set (v2f32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>;
def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, 0b00, V128,
asm, ".4s", ".4s",
[(set (v4f32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, 0b00, V128,
asm, ".2d", ".2d",
[(set (v2f64 V128:$Rd), (OpNode (v2i64 V128:$Rn)))]>;
}
class BaseSIMDMixedTwoVector<bit Q, bit U, bits<2> size, bits<5> opcode,
RegisterOperand inreg, RegisterOperand outreg,
string asm, string outkind, string inkind,
list<dag> pattern>
: I<(outs outreg:$Rd), (ins inreg:$Rn), asm,
"{\t$Rd" # outkind # ", $Rn" # inkind #
"|" # outkind # "\t$Rd, $Rn}", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21-17} = 0b10000;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class BaseSIMDMixedTwoVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode,
RegisterOperand inreg, RegisterOperand outreg,
string asm, string outkind, string inkind,
list<dag> pattern>
: I<(outs outreg:$dst), (ins outreg:$Rd, inreg:$Rn), asm,
"{\t$Rd" # outkind # ", $Rn" # inkind #
"|" # outkind # "\t$Rd, $Rn}", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21-17} = 0b10000;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDMixedTwoVector<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDMixedTwoVector<0, U, 0b00, opc, V128, V64,
asm, ".8b", ".8h",
[(set (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn)))]>;
def v16i8 : BaseSIMDMixedTwoVectorTied<1, U, 0b00, opc, V128, V128,
asm#"2", ".16b", ".8h", []>;
def v4i16 : BaseSIMDMixedTwoVector<0, U, 0b01, opc, V128, V64,
asm, ".4h", ".4s",
[(set (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn)))]>;
def v8i16 : BaseSIMDMixedTwoVectorTied<1, U, 0b01, opc, V128, V128,
asm#"2", ".8h", ".4s", []>;
def v2i32 : BaseSIMDMixedTwoVector<0, U, 0b10, opc, V128, V64,
asm, ".2s", ".2d",
[(set (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn)))]>;
def v4i32 : BaseSIMDMixedTwoVectorTied<1, U, 0b10, opc, V128, V128,
asm#"2", ".4s", ".2d", []>;
def : Pat<(concat_vectors (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn))),
(!cast<Instruction>(NAME # "v16i8")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn))),
(!cast<Instruction>(NAME # "v8i16")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn))),
(!cast<Instruction>(NAME # "v4i32")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
}
class BaseSIMDCmpTwoVector<bit Q, bit U, bits<2> size, bits<2> size2,
bits<5> opcode, RegisterOperand regtype, string asm,
string kind, string zero, ValueType dty,
ValueType sty, SDNode OpNode>
: I<(outs regtype:$Rd), (ins regtype:$Rn), asm,
"{\t$Rd" # kind # ", $Rn" # kind # ", #" # zero #
"|" # kind # "\t$Rd, $Rn, #" # zero # "}", "",
[(set (dty regtype:$Rd), (OpNode (sty regtype:$Rn)))]>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21} = 0b1;
let Inst{20-19} = size2;
let Inst{18-17} = 0b00;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
// Comparisons support all element sizes, except 1xD.
multiclass SIMDCmpTwoVector<bit U, bits<5> opc, string asm,
SDNode OpNode> {
def v8i8rz : BaseSIMDCmpTwoVector<0, U, 0b00, 0b00, opc, V64,
asm, ".8b", "0",
v8i8, v8i8, OpNode>;
def v16i8rz : BaseSIMDCmpTwoVector<1, U, 0b00, 0b00, opc, V128,
asm, ".16b", "0",
v16i8, v16i8, OpNode>;
def v4i16rz : BaseSIMDCmpTwoVector<0, U, 0b01, 0b00, opc, V64,
asm, ".4h", "0",
v4i16, v4i16, OpNode>;
def v8i16rz : BaseSIMDCmpTwoVector<1, U, 0b01, 0b00, opc, V128,
asm, ".8h", "0",
v8i16, v8i16, OpNode>;
def v2i32rz : BaseSIMDCmpTwoVector<0, U, 0b10, 0b00, opc, V64,
asm, ".2s", "0",
v2i32, v2i32, OpNode>;
def v4i32rz : BaseSIMDCmpTwoVector<1, U, 0b10, 0b00, opc, V128,
asm, ".4s", "0",
v4i32, v4i32, OpNode>;
def v2i64rz : BaseSIMDCmpTwoVector<1, U, 0b11, 0b00, opc, V128,
asm, ".2d", "0",
v2i64, v2i64, OpNode>;
}
// FP Comparisons support only S and D element sizes (and H for v8.2a).
multiclass SIMDFPCmpTwoVector<bit U, bit S, bits<5> opc,
string asm, SDNode OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4i16rz : BaseSIMDCmpTwoVector<0, U, {S,1}, 0b11, opc, V64,
asm, ".4h", "0.0",
v4i16, v4f16, OpNode>;
def v8i16rz : BaseSIMDCmpTwoVector<1, U, {S,1}, 0b11, opc, V128,
asm, ".8h", "0.0",
v8i16, v8f16, OpNode>;
} // Predicates = [HasNEON, HasFullFP16]
def v2i32rz : BaseSIMDCmpTwoVector<0, U, {S,0}, 0b00, opc, V64,
asm, ".2s", "0.0",
v2i32, v2f32, OpNode>;
def v4i32rz : BaseSIMDCmpTwoVector<1, U, {S,0}, 0b00, opc, V128,
asm, ".4s", "0.0",
v4i32, v4f32, OpNode>;
def v2i64rz : BaseSIMDCmpTwoVector<1, U, {S,1}, 0b00, opc, V128,
asm, ".2d", "0.0",
v2i64, v2f64, OpNode>;
let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<asm # "\t$Vd.4h, $Vn.4h, #0",
(!cast<Instruction>(NAME # v4i16rz) V64:$Vd, V64:$Vn), 0>;
def : InstAlias<asm # "\t$Vd.8h, $Vn.8h, #0",
(!cast<Instruction>(NAME # v8i16rz) V128:$Vd, V128:$Vn), 0>;
}
def : InstAlias<asm # "\t$Vd.2s, $Vn.2s, #0",
(!cast<Instruction>(NAME # v2i32rz) V64:$Vd, V64:$Vn), 0>;
def : InstAlias<asm # "\t$Vd.4s, $Vn.4s, #0",
(!cast<Instruction>(NAME # v4i32rz) V128:$Vd, V128:$Vn), 0>;
def : InstAlias<asm # "\t$Vd.2d, $Vn.2d, #0",
(!cast<Instruction>(NAME # v2i64rz) V128:$Vd, V128:$Vn), 0>;
let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<asm # ".4h\t$Vd, $Vn, #0",
(!cast<Instruction>(NAME # v4i16rz) V64:$Vd, V64:$Vn), 0>;
def : InstAlias<asm # ".8h\t$Vd, $Vn, #0",
(!cast<Instruction>(NAME # v8i16rz) V128:$Vd, V128:$Vn), 0>;
}
def : InstAlias<asm # ".2s\t$Vd, $Vn, #0",
(!cast<Instruction>(NAME # v2i32rz) V64:$Vd, V64:$Vn), 0>;
def : InstAlias<asm # ".4s\t$Vd, $Vn, #0",
(!cast<Instruction>(NAME # v4i32rz) V128:$Vd, V128:$Vn), 0>;
def : InstAlias<asm # ".2d\t$Vd, $Vn, #0",
(!cast<Instruction>(NAME # v2i64rz) V128:$Vd, V128:$Vn), 0>;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDFPCvtTwoVector<bit Q, bit U, bits<2> size, bits<5> opcode,
RegisterOperand outtype, RegisterOperand intype,
string asm, string VdTy, string VnTy,
list<dag> pattern>
: I<(outs outtype:$Rd), (ins intype:$Rn), asm,
!strconcat("\t$Rd", VdTy, ", $Rn", VnTy), "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21-17} = 0b10000;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class BaseSIMDFPCvtTwoVectorTied<bit Q, bit U, bits<2> size, bits<5> opcode,
RegisterOperand outtype, RegisterOperand intype,
string asm, string VdTy, string VnTy,
list<dag> pattern>
: I<(outs outtype:$dst), (ins outtype:$Rd, intype:$Rn), asm,
!strconcat("\t$Rd", VdTy, ", $Rn", VnTy), "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21-17} = 0b10000;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDFPWidenTwoVector<bit U, bit S, bits<5> opc, string asm> {
def v4i16 : BaseSIMDFPCvtTwoVector<0, U, {S,0}, opc, V128, V64,
asm, ".4s", ".4h", []>;
def v8i16 : BaseSIMDFPCvtTwoVector<1, U, {S,0}, opc, V128, V128,
asm#"2", ".4s", ".8h", []>;
def v2i32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V128, V64,
asm, ".2d", ".2s", []>;
def v4i32 : BaseSIMDFPCvtTwoVector<1, U, {S,1}, opc, V128, V128,
asm#"2", ".2d", ".4s", []>;
}
multiclass SIMDFPNarrowTwoVector<bit U, bit S, bits<5> opc, string asm> {
def v4i16 : BaseSIMDFPCvtTwoVector<0, U, {S,0}, opc, V64, V128,
asm, ".4h", ".4s", []>;
def v8i16 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,0}, opc, V128, V128,
asm#"2", ".8h", ".4s", []>;
def v2i32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V64, V128,
asm, ".2s", ".2d", []>;
def v4i32 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,1}, opc, V128, V128,
asm#"2", ".4s", ".2d", []>;
}
multiclass SIMDFPInexactCvtTwoVector<bit U, bit S, bits<5> opc, string asm,
Intrinsic OpNode> {
def v2f32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V64, V128,
asm, ".2s", ".2d",
[(set (v2f32 V64:$Rd), (OpNode (v2f64 V128:$Rn)))]>;
def v4f32 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,1}, opc, V128, V128,
asm#"2", ".4s", ".2d", []>;
def : Pat<(concat_vectors (v2f32 V64:$Rd), (OpNode (v2f64 V128:$Rn))),
(!cast<Instruction>(NAME # "v4f32")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
}
//----------------------------------------------------------------------------
// AdvSIMD three register different-size vector instructions.
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDDifferentThreeVector<bit U, bits<3> size, bits<4> opcode,
RegisterOperand outtype, RegisterOperand intype1,
RegisterOperand intype2, string asm,
string outkind, string inkind1, string inkind2,
list<dag> pattern>
: I<(outs outtype:$Rd), (ins intype1:$Rn, intype2:$Rm), asm,
"{\t$Rd" # outkind # ", $Rn" # inkind1 # ", $Rm" # inkind2 #
"|" # outkind # "\t$Rd, $Rn, $Rm}", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31} = 0;
let Inst{30} = size{0};
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size{2-1};
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15-12} = opcode;
let Inst{11-10} = 0b00;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDDifferentThreeVectorTied<bit U, bits<3> size, bits<4> opcode,
RegisterOperand outtype, RegisterOperand intype1,
RegisterOperand intype2, string asm,
string outkind, string inkind1, string inkind2,
list<dag> pattern>
: I<(outs outtype:$dst), (ins outtype:$Rd, intype1:$Rn, intype2:$Rm), asm,
"{\t$Rd" # outkind # ", $Rn" # inkind1 # ", $Rm" # inkind2 #
"|" # outkind # "\t$Rd, $Rn, $Rm}", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31} = 0;
let Inst{30} = size{0};
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size{2-1};
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15-12} = opcode;
let Inst{11-10} = 0b00;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
// FIXME: TableGen doesn't know how to deal with expanded types that also
// change the element count (in this case, placing the results in
// the high elements of the result register rather than the low
// elements). Until that's fixed, we can't code-gen those.
multiclass SIMDNarrowThreeVectorBHS<bit U, bits<4> opc, string asm,
Intrinsic IntOp> {
def v8i16_v8i8 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
V64, V128, V128,
asm, ".8b", ".8h", ".8h",
[(set (v8i8 V64:$Rd), (IntOp (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>;
def v8i16_v16i8 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc,
V128, V128, V128,
asm#"2", ".16b", ".8h", ".8h",
[]>;
def v4i32_v4i16 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
V64, V128, V128,
asm, ".4h", ".4s", ".4s",
[(set (v4i16 V64:$Rd), (IntOp (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>;
def v4i32_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc,
V128, V128, V128,
asm#"2", ".8h", ".4s", ".4s",
[]>;
def v2i64_v2i32 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
V64, V128, V128,
asm, ".2s", ".2d", ".2d",
[(set (v2i32 V64:$Rd), (IntOp (v2i64 V128:$Rn), (v2i64 V128:$Rm)))]>;
def v2i64_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc,
V128, V128, V128,
asm#"2", ".4s", ".2d", ".2d",
[]>;
// Patterns for the '2' variants involve INSERT_SUBREG, which you can't put in
// a version attached to an instruction.
def : Pat<(concat_vectors (v8i8 V64:$Rd), (IntOp (v8i16 V128:$Rn),
(v8i16 V128:$Rm))),
(!cast<Instruction>(NAME # "v8i16_v16i8")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd), (IntOp (v4i32 V128:$Rn),
(v4i32 V128:$Rm))),
(!cast<Instruction>(NAME # "v4i32_v8i16")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd), (IntOp (v2i64 V128:$Rn),
(v2i64 V128:$Rm))),
(!cast<Instruction>(NAME # "v2i64_v4i32")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
}
multiclass SIMDDifferentThreeVectorBD<bit U, bits<4> opc, string asm,
Intrinsic IntOp> {
def v8i8 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
V128, V64, V64,
asm, ".8h", ".8b", ".8b",
[(set (v8i16 V128:$Rd), (IntOp (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8 : BaseSIMDDifferentThreeVector<U, 0b001, opc,
V128, V128, V128,
asm#"2", ".8h", ".16b", ".16b", []>;
let Predicates = [HasAES] in {
def v1i64 : BaseSIMDDifferentThreeVector<U, 0b110, opc,
V128, V64, V64,
asm, ".1q", ".1d", ".1d", []>;
def v2i64 : BaseSIMDDifferentThreeVector<U, 0b111, opc,
V128, V128, V128,
asm#"2", ".1q", ".2d", ".2d", []>;
}
def : Pat<(v8i16 (IntOp (v8i8 (extract_high_v16i8 V128:$Rn)),
(v8i8 (extract_high_v16i8 V128:$Rm)))),
(!cast<Instruction>(NAME#"v16i8") V128:$Rn, V128:$Rm)>;
}
multiclass SIMDLongThreeVectorHS<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
V128, V64, V64,
asm, ".4s", ".4h", ".4h",
[(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc,
V128, V128, V128,
asm#"2", ".4s", ".8h", ".8h",
[(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 V128:$Rm)))]>;
def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
V128, V64, V64,
asm, ".2d", ".2s", ".2s",
[(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc,
V128, V128, V128,
asm#"2", ".2d", ".4s", ".4s",
[(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 V128:$Rm)))]>;
}
multiclass SIMDLongThreeVectorBHSabdl<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
V128, V64, V64,
asm, ".8h", ".8b", ".8b",
[(set (v8i16 V128:$Rd),
(zext (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))))]>;
def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc,
V128, V128, V128,
asm#"2", ".8h", ".16b", ".16b",
[(set (v8i16 V128:$Rd),
(zext (v8i8 (OpNode (extract_high_v16i8 V128:$Rn),
(extract_high_v16i8 V128:$Rm)))))]>;
def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
V128, V64, V64,
asm, ".4s", ".4h", ".4h",
[(set (v4i32 V128:$Rd),
(zext (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))))]>;
def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc,
V128, V128, V128,
asm#"2", ".4s", ".8h", ".8h",
[(set (v4i32 V128:$Rd),
(zext (v4i16 (OpNode (extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 V128:$Rm)))))]>;
def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
V128, V64, V64,
asm, ".2d", ".2s", ".2s",
[(set (v2i64 V128:$Rd),
(zext (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))))]>;
def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc,
V128, V128, V128,
asm#"2", ".2d", ".4s", ".4s",
[(set (v2i64 V128:$Rd),
(zext (v2i32 (OpNode (extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 V128:$Rm)))))]>;
}
multiclass SIMDLongThreeVectorTiedBHSabal<bit U, bits<4> opc,
string asm,
SDPatternOperator OpNode> {
def v8i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b000, opc,
V128, V64, V64,
asm, ".8h", ".8b", ".8b",
[(set (v8i16 V128:$dst),
(add (v8i16 V128:$Rd),
(zext (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm))))))]>;
def v16i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc,
V128, V128, V128,
asm#"2", ".8h", ".16b", ".16b",
[(set (v8i16 V128:$dst),
(add (v8i16 V128:$Rd),
(zext (v8i8 (OpNode (extract_high_v16i8 V128:$Rn),
(extract_high_v16i8 V128:$Rm))))))]>;
def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc,
V128, V64, V64,
asm, ".4s", ".4h", ".4h",
[(set (v4i32 V128:$dst),
(add (v4i32 V128:$Rd),
(zext (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm))))))]>;
def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc,
V128, V128, V128,
asm#"2", ".4s", ".8h", ".8h",
[(set (v4i32 V128:$dst),
(add (v4i32 V128:$Rd),
(zext (v4i16 (OpNode (extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 V128:$Rm))))))]>;
def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc,
V128, V64, V64,
asm, ".2d", ".2s", ".2s",
[(set (v2i64 V128:$dst),
(add (v2i64 V128:$Rd),
(zext (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm))))))]>;
def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc,
V128, V128, V128,
asm#"2", ".2d", ".4s", ".4s",
[(set (v2i64 V128:$dst),
(add (v2i64 V128:$Rd),
(zext (v2i32 (OpNode (extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 V128:$Rm))))))]>;
}
multiclass SIMDLongThreeVectorBHS<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
V128, V64, V64,
asm, ".8h", ".8b", ".8b",
[(set (v8i16 V128:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc,
V128, V128, V128,
asm#"2", ".8h", ".16b", ".16b",
[(set (v8i16 V128:$Rd), (OpNode (extract_high_v16i8 V128:$Rn),
(extract_high_v16i8 V128:$Rm)))]>;
def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
V128, V64, V64,
asm, ".4s", ".4h", ".4h",
[(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc,
V128, V128, V128,
asm#"2", ".4s", ".8h", ".8h",
[(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 V128:$Rm)))]>;
def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
V128, V64, V64,
asm, ".2d", ".2s", ".2s",
[(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc,
V128, V128, V128,
asm#"2", ".2d", ".4s", ".4s",
[(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 V128:$Rm)))]>;
}
multiclass SIMDLongThreeVectorTiedBHS<bit U, bits<4> opc,
string asm,
SDPatternOperator OpNode> {
def v8i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b000, opc,
V128, V64, V64,
asm, ".8h", ".8b", ".8b",
[(set (v8i16 V128:$dst),
(OpNode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8_v8i16 : BaseSIMDDifferentThreeVectorTied<U, 0b001, opc,
V128, V128, V128,
asm#"2", ".8h", ".16b", ".16b",
[(set (v8i16 V128:$dst),
(OpNode (v8i16 V128:$Rd),
(extract_high_v16i8 V128:$Rn),
(extract_high_v16i8 V128:$Rm)))]>;
def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc,
V128, V64, V64,
asm, ".4s", ".4h", ".4h",
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>;
def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc,
V128, V128, V128,
asm#"2", ".4s", ".8h", ".8h",
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd),
(extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 V128:$Rm)))]>;
def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc,
V128, V64, V64,
asm, ".2d", ".2s", ".2s",
[(set (v2i64 V128:$dst),
(OpNode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>;
def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc,
V128, V128, V128,
asm#"2", ".2d", ".4s", ".4s",
[(set (v2i64 V128:$dst),
(OpNode (v2i64 V128:$Rd),
(extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 V128:$Rm)))]>;
}
multiclass SIMDLongThreeVectorSQDMLXTiedHS<bit U, bits<4> opc, string asm,
SDPatternOperator Accum> {
def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b010, opc,
V128, V64, V64,
asm, ".4s", ".4h", ".4h",
[(set (v4i32 V128:$dst),
(Accum (v4i32 V128:$Rd),
(v4i32 (int_aarch64_neon_sqdmull (v4i16 V64:$Rn),
(v4i16 V64:$Rm)))))]>;
def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied<U, 0b011, opc,
V128, V128, V128,
asm#"2", ".4s", ".8h", ".8h",
[(set (v4i32 V128:$dst),
(Accum (v4i32 V128:$Rd),
(v4i32 (int_aarch64_neon_sqdmull (extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 V128:$Rm)))))]>;
def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b100, opc,
V128, V64, V64,
asm, ".2d", ".2s", ".2s",
[(set (v2i64 V128:$dst),
(Accum (v2i64 V128:$Rd),
(v2i64 (int_aarch64_neon_sqdmull (v2i32 V64:$Rn),
(v2i32 V64:$Rm)))))]>;
def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied<U, 0b101, opc,
V128, V128, V128,
asm#"2", ".2d", ".4s", ".4s",
[(set (v2i64 V128:$dst),
(Accum (v2i64 V128:$Rd),
(v2i64 (int_aarch64_neon_sqdmull (extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 V128:$Rm)))))]>;
}
multiclass SIMDWideThreeVectorBHS<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
def v8i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b000, opc,
V128, V128, V64,
asm, ".8h", ".8h", ".8b",
[(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i8 V64:$Rm)))]>;
def v16i8_v8i16 : BaseSIMDDifferentThreeVector<U, 0b001, opc,
V128, V128, V128,
asm#"2", ".8h", ".8h", ".16b",
[(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn),
(extract_high_v16i8 V128:$Rm)))]>;
def v4i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b010, opc,
V128, V128, V64,
asm, ".4s", ".4s", ".4h",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i16 V64:$Rm)))]>;
def v8i16_v4i32 : BaseSIMDDifferentThreeVector<U, 0b011, opc,
V128, V128, V128,
asm#"2", ".4s", ".4s", ".8h",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn),
(extract_high_v8i16 V128:$Rm)))]>;
def v2i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b100, opc,
V128, V128, V64,
asm, ".2d", ".2d", ".2s",
[(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (v2i32 V64:$Rm)))]>;
def v4i32_v2i64 : BaseSIMDDifferentThreeVector<U, 0b101, opc,
V128, V128, V128,
asm#"2", ".2d", ".2d", ".4s",
[(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn),
(extract_high_v4i32 V128:$Rm)))]>;
}
//----------------------------------------------------------------------------
// AdvSIMD bitwise extract from vector
//----------------------------------------------------------------------------
class BaseSIMDBitwiseExtract<bit size, RegisterOperand regtype, ValueType vty,
string asm, string kind>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, i32imm:$imm), asm,
"{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # ", $imm" #
"|" # kind # "\t$Rd, $Rn, $Rm, $imm}", "",
[(set (vty regtype:$Rd),
(AArch64ext regtype:$Rn, regtype:$Rm, (i32 imm:$imm)))]>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<4> imm;
let Inst{31} = 0;
let Inst{30} = size;
let Inst{29-21} = 0b101110000;
let Inst{20-16} = Rm;
let Inst{15} = 0;
let Inst{14-11} = imm;
let Inst{10} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDBitwiseExtract<string asm> {
def v8i8 : BaseSIMDBitwiseExtract<0, V64, v8i8, asm, ".8b"> {
let imm{3} = 0;
}
def v16i8 : BaseSIMDBitwiseExtract<1, V128, v16i8, asm, ".16b">;
}
//----------------------------------------------------------------------------
// AdvSIMD zip vector
//----------------------------------------------------------------------------
class BaseSIMDZipVector<bits<3> size, bits<3> opc, RegisterOperand regtype,
string asm, string kind, SDNode OpNode, ValueType valty>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm,
"{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind #
"|" # kind # "\t$Rd, $Rn, $Rm}", "",
[(set (valty regtype:$Rd), (OpNode regtype:$Rn, regtype:$Rm))]>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31} = 0;
let Inst{30} = size{0};
let Inst{29-24} = 0b001110;
let Inst{23-22} = size{2-1};
let Inst{21} = 0;
let Inst{20-16} = Rm;
let Inst{15} = 0;
let Inst{14-12} = opc;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDZipVector<bits<3>opc, string asm,
SDNode OpNode> {
def v8i8 : BaseSIMDZipVector<0b000, opc, V64,
asm, ".8b", OpNode, v8i8>;
def v16i8 : BaseSIMDZipVector<0b001, opc, V128,
asm, ".16b", OpNode, v16i8>;
def v4i16 : BaseSIMDZipVector<0b010, opc, V64,
asm, ".4h", OpNode, v4i16>;
def v8i16 : BaseSIMDZipVector<0b011, opc, V128,
asm, ".8h", OpNode, v8i16>;
def v2i32 : BaseSIMDZipVector<0b100, opc, V64,
asm, ".2s", OpNode, v2i32>;
def v4i32 : BaseSIMDZipVector<0b101, opc, V128,
asm, ".4s", OpNode, v4i32>;
def v2i64 : BaseSIMDZipVector<0b111, opc, V128,
asm, ".2d", OpNode, v2i64>;
def : Pat<(v4f16 (OpNode V64:$Rn, V64:$Rm)),
(!cast<Instruction>(NAME#"v4i16") V64:$Rn, V64:$Rm)>;
def : Pat<(v8f16 (OpNode V128:$Rn, V128:$Rm)),
(!cast<Instruction>(NAME#"v8i16") V128:$Rn, V128:$Rm)>;
def : Pat<(v2f32 (OpNode V64:$Rn, V64:$Rm)),
(!cast<Instruction>(NAME#"v2i32") V64:$Rn, V64:$Rm)>;
def : Pat<(v4f32 (OpNode V128:$Rn, V128:$Rm)),
(!cast<Instruction>(NAME#"v4i32") V128:$Rn, V128:$Rm)>;
def : Pat<(v2f64 (OpNode V128:$Rn, V128:$Rm)),
(!cast<Instruction>(NAME#"v2i64") V128:$Rn, V128:$Rm)>;
}
//----------------------------------------------------------------------------
// AdvSIMD three register scalar instructions
//----------------------------------------------------------------------------
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseSIMDThreeScalar<bit U, bits<3> size, bits<5> opcode,
RegisterClass regtype, string asm,
list<dag> pattern>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm,
"\t$Rd, $Rn, $Rm", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-24} = 0b11110;
let Inst{23-21} = size;
let Inst{20-16} = Rm;
let Inst{15-11} = opcode;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseSIMDThreeScalarTied<bit U, bits<2> size, bit R, bits<5> opcode,
dag oops, dag iops, string asm,
list<dag> pattern>
: I<oops, iops, asm, "\t$Rd, $Rn, $Rm", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-24} = 0b11110;
let Inst{23-22} = size;
let Inst{21} = R;
let Inst{20-16} = Rm;
let Inst{15-11} = opcode;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDThreeScalarD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v1i64 : BaseSIMDThreeScalar<U, 0b111, opc, FPR64, asm,
[(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm)))]>;
}
multiclass SIMDThreeScalarBHSD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v1i64 : BaseSIMDThreeScalar<U, 0b111, opc, FPR64, asm,
[(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn), (v1i64 FPR64:$Rm)))]>;
def v1i32 : BaseSIMDThreeScalar<U, 0b101, opc, FPR32, asm, []>;
def v1i16 : BaseSIMDThreeScalar<U, 0b011, opc, FPR16, asm, []>;
def v1i8 : BaseSIMDThreeScalar<U, 0b001, opc, FPR8 , asm, []>;
def : Pat<(i64 (OpNode (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(!cast<Instruction>(NAME#"v1i64") FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i32 (OpNode (i32 FPR32:$Rn), (i32 FPR32:$Rm))),
(!cast<Instruction>(NAME#"v1i32") FPR32:$Rn, FPR32:$Rm)>;
}
multiclass SIMDThreeScalarHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v1i32 : BaseSIMDThreeScalar<U, 0b101, opc, FPR32, asm,
[(set FPR32:$Rd, (OpNode FPR32:$Rn, FPR32:$Rm))]>;
def v1i16 : BaseSIMDThreeScalar<U, 0b011, opc, FPR16, asm, []>;
}
multiclass SIMDThreeScalarHSTied<bit U, bit R, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v1i32: BaseSIMDThreeScalarTied<U, 0b10, R, opc, (outs FPR32:$dst),
(ins FPR32:$Rd, FPR32:$Rn, FPR32:$Rm),
asm, []>;
def v1i16: BaseSIMDThreeScalarTied<U, 0b01, R, opc, (outs FPR16:$dst),
(ins FPR16:$Rd, FPR16:$Rn, FPR16:$Rm),
asm, []>;
}
multiclass SIMDFPThreeScalar<bit U, bit S, bits<3> opc, string asm,
SDPatternOperator OpNode = null_frag> {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
def NAME#64 : BaseSIMDThreeScalar<U, {S,0b11}, {0b11,opc}, FPR64, asm,
[(set (f64 FPR64:$Rd), (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]>;
def NAME#32 : BaseSIMDThreeScalar<U, {S,0b01}, {0b11,opc}, FPR32, asm,
[(set FPR32:$Rd, (OpNode FPR32:$Rn, FPR32:$Rm))]>;
let Predicates = [HasNEON, HasFullFP16] in {
def NAME#16 : BaseSIMDThreeScalar<U, {S,0b10}, {0b00,opc}, FPR16, asm,
[(set (f16 FPR16:$Rd), (OpNode (f16 FPR16:$Rn), (f16 FPR16:$Rm)))]>;
} // Predicates = [HasNEON, HasFullFP16]
}
def : Pat<(v1f64 (OpNode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(!cast<Instruction>(NAME # "64") FPR64:$Rn, FPR64:$Rm)>;
}
multiclass SIMDThreeScalarFPCmp<bit U, bit S, bits<3> opc, string asm,
SDPatternOperator OpNode = null_frag> {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
def NAME#64 : BaseSIMDThreeScalar<U, {S,0b11}, {0b11,opc}, FPR64, asm,
[(set (i64 FPR64:$Rd), (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm)))]>;
def NAME#32 : BaseSIMDThreeScalar<U, {S,0b01}, {0b11,opc}, FPR32, asm,
[(set (i32 FPR32:$Rd), (OpNode (f32 FPR32:$Rn), (f32 FPR32:$Rm)))]>;
let Predicates = [HasNEON, HasFullFP16] in {
def NAME#16 : BaseSIMDThreeScalar<U, {S,0b10}, {0b00,opc}, FPR16, asm,
[]>;
} // Predicates = [HasNEON, HasFullFP16]
}
def : Pat<(v1i64 (OpNode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(!cast<Instruction>(NAME # "64") FPR64:$Rn, FPR64:$Rm)>;
}
class BaseSIMDThreeScalarMixed<bit U, bits<2> size, bits<5> opcode,
dag oops, dag iops, string asm, string cstr, list<dag> pat>
: I<oops, iops, asm,
"\t$Rd, $Rn, $Rm", cstr, pat>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-24} = 0b11110;
let Inst{23-22} = size;
let Inst{21} = 1;
let Inst{20-16} = Rm;
let Inst{15-11} = opcode;
let Inst{10} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
multiclass SIMDThreeScalarMixedHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def i16 : BaseSIMDThreeScalarMixed<U, 0b01, opc,
(outs FPR32:$Rd),
(ins FPR16:$Rn, FPR16:$Rm), asm, "", []>;
def i32 : BaseSIMDThreeScalarMixed<U, 0b10, opc,
(outs FPR64:$Rd),
(ins FPR32:$Rn, FPR32:$Rm), asm, "",
[(set (i64 FPR64:$Rd), (OpNode (i32 FPR32:$Rn), (i32 FPR32:$Rm)))]>;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
multiclass SIMDThreeScalarMixedTiedHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def i16 : BaseSIMDThreeScalarMixed<U, 0b01, opc,
(outs FPR32:$dst),
(ins FPR32:$Rd, FPR16:$Rn, FPR16:$Rm),
asm, "$Rd = $dst", []>;
def i32 : BaseSIMDThreeScalarMixed<U, 0b10, opc,
(outs FPR64:$dst),
(ins FPR64:$Rd, FPR32:$Rn, FPR32:$Rm),
asm, "$Rd = $dst",
[(set (i64 FPR64:$dst),
(OpNode (i64 FPR64:$Rd), (i32 FPR32:$Rn), (i32 FPR32:$Rm)))]>;
}
//----------------------------------------------------------------------------
// AdvSIMD two register scalar instructions
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDTwoScalar<bit U, bits<2> size, bits<2> size2, bits<5> opcode,
RegisterClass regtype, RegisterClass regtype2,
string asm, list<dag> pat>
: I<(outs regtype:$Rd), (ins regtype2:$Rn), asm,
"\t$Rd, $Rn", "", pat>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-24} = 0b11110;
let Inst{23-22} = size;
let Inst{21} = 0b1;
let Inst{20-19} = size2;
let Inst{18-17} = 0b00;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDTwoScalarTied<bit U, bits<2> size, bits<5> opcode,
RegisterClass regtype, RegisterClass regtype2,
string asm, list<dag> pat>
: I<(outs regtype:$dst), (ins regtype:$Rd, regtype2:$Rn), asm,
"\t$Rd, $Rn", "$Rd = $dst", pat>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-24} = 0b11110;
let Inst{23-22} = size;
let Inst{21-17} = 0b10000;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDCmpTwoScalar<bit U, bits<2> size, bits<2> size2, bits<5> opcode,
RegisterClass regtype, string asm, string zero>
: I<(outs regtype:$Rd), (ins regtype:$Rn), asm,
"\t$Rd, $Rn, #" # zero, "", []>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-24} = 0b11110;
let Inst{23-22} = size;
let Inst{21} = 0b1;
let Inst{20-19} = size2;
let Inst{18-17} = 0b00;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class SIMDInexactCvtTwoScalar<bits<5> opcode, string asm>
: I<(outs FPR32:$Rd), (ins FPR64:$Rn), asm, "\t$Rd, $Rn", "",
[(set (f32 FPR32:$Rd), (int_aarch64_sisd_fcvtxn (f64 FPR64:$Rn)))]>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-17} = 0b011111100110000;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDCmpTwoScalarD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v1i64rz : BaseSIMDCmpTwoScalar<U, 0b11, 0b00, opc, FPR64, asm, "0">;
def : Pat<(v1i64 (OpNode FPR64:$Rn)),
(!cast<Instruction>(NAME # v1i64rz) FPR64:$Rn)>;
}
multiclass SIMDFPCmpTwoScalar<bit U, bit S, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v1i64rz : BaseSIMDCmpTwoScalar<U, {S,1}, 0b00, opc, FPR64, asm, "0.0">;
def v1i32rz : BaseSIMDCmpTwoScalar<U, {S,0}, 0b00, opc, FPR32, asm, "0.0">;
let Predicates = [HasNEON, HasFullFP16] in {
def v1i16rz : BaseSIMDCmpTwoScalar<U, {S,1}, 0b11, opc, FPR16, asm, "0.0">;
}
def : InstAlias<asm # "\t$Rd, $Rn, #0",
(!cast<Instruction>(NAME # v1i64rz) FPR64:$Rd, FPR64:$Rn), 0>;
def : InstAlias<asm # "\t$Rd, $Rn, #0",
(!cast<Instruction>(NAME # v1i32rz) FPR32:$Rd, FPR32:$Rn), 0>;
let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<asm # "\t$Rd, $Rn, #0",
(!cast<Instruction>(NAME # v1i16rz) FPR16:$Rd, FPR16:$Rn), 0>;
}
def : Pat<(v1i64 (OpNode (v1f64 FPR64:$Rn))),
(!cast<Instruction>(NAME # v1i64rz) FPR64:$Rn)>;
}
multiclass SIMDTwoScalarD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v1i64 : BaseSIMDTwoScalar<U, 0b11, 0b00, opc, FPR64, FPR64, asm,
[(set (v1i64 FPR64:$Rd), (OpNode (v1i64 FPR64:$Rn)))]>;
def : Pat<(i64 (OpNode (i64 FPR64:$Rn))),
(!cast<Instruction>(NAME # "v1i64") FPR64:$Rn)>;
}
multiclass SIMDFPTwoScalar<bit U, bit S, bits<5> opc, string asm> {
def v1i64 : BaseSIMDTwoScalar<U, {S,1}, 0b00, opc, FPR64, FPR64, asm,[]>;
def v1i32 : BaseSIMDTwoScalar<U, {S,0}, 0b00, opc, FPR32, FPR32, asm,[]>;
let Predicates = [HasNEON, HasFullFP16] in {
def v1f16 : BaseSIMDTwoScalar<U, {S,1}, 0b11, opc, FPR16, FPR16, asm,[]>;
}
}
multiclass SIMDFPTwoScalarCVT<bit U, bit S, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v1i64 : BaseSIMDTwoScalar<U, {S,1}, 0b00, opc, FPR64, FPR64, asm,
[(set FPR64:$Rd, (OpNode (f64 FPR64:$Rn)))]>;
def v1i32 : BaseSIMDTwoScalar<U, {S,0}, 0b00, opc, FPR32, FPR32, asm,
[(set FPR32:$Rd, (OpNode (f32 FPR32:$Rn)))]>;
let Predicates = [HasNEON, HasFullFP16] in {
def v1i16 : BaseSIMDTwoScalar<U, {S,1}, 0b11, opc, FPR16, FPR16, asm,
[(set (f16 FPR16:$Rd), (OpNode (f16 FPR16:$Rn)))]>;
}
}
multiclass SIMDTwoScalarBHSD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
def v1i64 : BaseSIMDTwoScalar<U, 0b11, 0b00, opc, FPR64, FPR64, asm,
[(set (i64 FPR64:$Rd), (OpNode (i64 FPR64:$Rn)))]>;
def v1i32 : BaseSIMDTwoScalar<U, 0b10, 0b00, opc, FPR32, FPR32, asm,
[(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn)))]>;
def v1i16 : BaseSIMDTwoScalar<U, 0b01, 0b00, opc, FPR16, FPR16, asm, []>;
def v1i8 : BaseSIMDTwoScalar<U, 0b00, 0b00, opc, FPR8 , FPR8 , asm, []>;
}
def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn))),
(!cast<Instruction>(NAME # v1i64) FPR64:$Rn)>;
}
multiclass SIMDTwoScalarBHSDTied<bit U, bits<5> opc, string asm,
Intrinsic OpNode> {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
def v1i64 : BaseSIMDTwoScalarTied<U, 0b11, opc, FPR64, FPR64, asm,
[(set (i64 FPR64:$dst), (OpNode (i64 FPR64:$Rd), (i64 FPR64:$Rn)))]>;
def v1i32 : BaseSIMDTwoScalarTied<U, 0b10, opc, FPR32, FPR32, asm,
[(set (i32 FPR32:$dst), (OpNode (i32 FPR32:$Rd), (i32 FPR32:$Rn)))]>;
def v1i16 : BaseSIMDTwoScalarTied<U, 0b01, opc, FPR16, FPR16, asm, []>;
def v1i8 : BaseSIMDTwoScalarTied<U, 0b00, opc, FPR8 , FPR8 , asm, []>;
}
def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn))),
(!cast<Instruction>(NAME # v1i64) FPR64:$Rd, FPR64:$Rn)>;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
multiclass SIMDTwoScalarMixedBHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v1i32 : BaseSIMDTwoScalar<U, 0b10, 0b00, opc, FPR32, FPR64, asm,
[(set (i32 FPR32:$Rd), (OpNode (i64 FPR64:$Rn)))]>;
def v1i16 : BaseSIMDTwoScalar<U, 0b01, 0b00, opc, FPR16, FPR32, asm, []>;
def v1i8 : BaseSIMDTwoScalar<U, 0b00, 0b00, opc, FPR8 , FPR16, asm, []>;
}
//----------------------------------------------------------------------------
// AdvSIMD scalar pairwise instructions
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDPairwiseScalar<bit U, bits<2> size, bits<5> opcode,
RegisterOperand regtype, RegisterOperand vectype,
string asm, string kind>
: I<(outs regtype:$Rd), (ins vectype:$Rn), asm,
"{\t$Rd, $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", "", []>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-24} = 0b11110;
let Inst{23-22} = size;
let Inst{21-17} = 0b11000;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDPairwiseScalarD<bit U, bits<5> opc, string asm> {
def v2i64p : BaseSIMDPairwiseScalar<U, 0b11, opc, FPR64Op, V128,
asm, ".2d">;
}
multiclass SIMDFPPairwiseScalar<bit S, bits<5> opc, string asm> {
let Predicates = [HasNEON, HasFullFP16] in {
def v2i16p : BaseSIMDPairwiseScalar<0, {S,0}, opc, FPR16Op, V64,
asm, ".2h">;
}
def v2i32p : BaseSIMDPairwiseScalar<1, {S,0}, opc, FPR32Op, V64,
asm, ".2s">;
def v2i64p : BaseSIMDPairwiseScalar<1, {S,1}, opc, FPR64Op, V128,
asm, ".2d">;
}
//----------------------------------------------------------------------------
// AdvSIMD across lanes instructions
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDAcrossLanes<bit Q, bit U, bits<2> size, bits<5> opcode,
RegisterClass regtype, RegisterOperand vectype,
string asm, string kind, list<dag> pattern>
: I<(outs regtype:$Rd), (ins vectype:$Rn), asm,
"{\t$Rd, $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21-17} = 0b11000;
let Inst{16-12} = opcode;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDAcrossLanesBHS<bit U, bits<5> opcode,
string asm> {
def v8i8v : BaseSIMDAcrossLanes<0, U, 0b00, opcode, FPR8, V64,
asm, ".8b", []>;
def v16i8v : BaseSIMDAcrossLanes<1, U, 0b00, opcode, FPR8, V128,
asm, ".16b", []>;
def v4i16v : BaseSIMDAcrossLanes<0, U, 0b01, opcode, FPR16, V64,
asm, ".4h", []>;
def v8i16v : BaseSIMDAcrossLanes<1, U, 0b01, opcode, FPR16, V128,
asm, ".8h", []>;
def v4i32v : BaseSIMDAcrossLanes<1, U, 0b10, opcode, FPR32, V128,
asm, ".4s", []>;
}
multiclass SIMDAcrossLanesHSD<bit U, bits<5> opcode, string asm> {
def v8i8v : BaseSIMDAcrossLanes<0, U, 0b00, opcode, FPR16, V64,
asm, ".8b", []>;
def v16i8v : BaseSIMDAcrossLanes<1, U, 0b00, opcode, FPR16, V128,
asm, ".16b", []>;
def v4i16v : BaseSIMDAcrossLanes<0, U, 0b01, opcode, FPR32, V64,
asm, ".4h", []>;
def v8i16v : BaseSIMDAcrossLanes<1, U, 0b01, opcode, FPR32, V128,
asm, ".8h", []>;
def v4i32v : BaseSIMDAcrossLanes<1, U, 0b10, opcode, FPR64, V128,
asm, ".4s", []>;
}
multiclass SIMDFPAcrossLanes<bits<5> opcode, bit sz1, string asm,
Intrinsic intOp> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4i16v : BaseSIMDAcrossLanes<0, 0, {sz1, 0}, opcode, FPR16, V64,
asm, ".4h",
[(set (f16 FPR16:$Rd), (intOp (v4f16 V64:$Rn)))]>;
def v8i16v : BaseSIMDAcrossLanes<1, 0, {sz1, 0}, opcode, FPR16, V128,
asm, ".8h",
[(set (f16 FPR16:$Rd), (intOp (v8f16 V128:$Rn)))]>;
} // Predicates = [HasNEON, HasFullFP16]
def v4i32v : BaseSIMDAcrossLanes<1, 1, {sz1, 0}, opcode, FPR32, V128,
asm, ".4s",
[(set FPR32:$Rd, (intOp (v4f32 V128:$Rn)))]>;
}
//----------------------------------------------------------------------------
// AdvSIMD INS/DUP instructions
//----------------------------------------------------------------------------
// FIXME: There has got to be a better way to factor these. ugh.
class BaseSIMDInsDup<bit Q, bit op, dag outs, dag ins, string asm,
string operands, string constraints, list<dag> pattern>
: I<outs, ins, asm, operands, constraints, pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = op;
let Inst{28-21} = 0b01110000;
let Inst{15} = 0;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class SIMDDupFromMain<bit Q, bits<5> imm5, string size, ValueType vectype,
RegisterOperand vecreg, RegisterClass regtype>
: BaseSIMDInsDup<Q, 0, (outs vecreg:$Rd), (ins regtype:$Rn), "dup",
"{\t$Rd" # size # ", $Rn" #
"|" # size # "\t$Rd, $Rn}", "",
[(set (vectype vecreg:$Rd), (AArch64dup regtype:$Rn))]> {
let Inst{20-16} = imm5;
let Inst{14-11} = 0b0001;
}
class SIMDDupFromElement<bit Q, string dstkind, string srckind,
ValueType vectype, ValueType insreg,
RegisterOperand vecreg, Operand idxtype,
ValueType elttype, SDNode OpNode>
: BaseSIMDInsDup<Q, 0, (outs vecreg:$Rd), (ins V128:$Rn, idxtype:$idx), "dup",
"{\t$Rd" # dstkind # ", $Rn" # srckind # "$idx" #
"|" # dstkind # "\t$Rd, $Rn$idx}", "",
[(set (vectype vecreg:$Rd),
(OpNode (insreg V128:$Rn), idxtype:$idx))]> {
let Inst{14-11} = 0b0000;
}
class SIMDDup64FromElement
: SIMDDupFromElement<1, ".2d", ".d", v2i64, v2i64, V128,
VectorIndexD, i64, AArch64duplane64> {
bits<1> idx;
let Inst{20} = idx;
let Inst{19-16} = 0b1000;
}
class SIMDDup32FromElement<bit Q, string size, ValueType vectype,
RegisterOperand vecreg>
: SIMDDupFromElement<Q, size, ".s", vectype, v4i32, vecreg,
VectorIndexS, i64, AArch64duplane32> {
bits<2> idx;
let Inst{20-19} = idx;
let Inst{18-16} = 0b100;
}
class SIMDDup16FromElement<bit Q, string size, ValueType vectype,
RegisterOperand vecreg>
: SIMDDupFromElement<Q, size, ".h", vectype, v8i16, vecreg,
VectorIndexH, i64, AArch64duplane16> {
bits<3> idx;
let Inst{20-18} = idx;
let Inst{17-16} = 0b10;
}
class SIMDDup8FromElement<bit Q, string size, ValueType vectype,
RegisterOperand vecreg>
: SIMDDupFromElement<Q, size, ".b", vectype, v16i8, vecreg,
VectorIndexB, i64, AArch64duplane8> {
bits<4> idx;
let Inst{20-17} = idx;
let Inst{16} = 1;
}
class BaseSIMDMov<bit Q, string size, bits<4> imm4, RegisterClass regtype,
Operand idxtype, string asm, list<dag> pattern>
: BaseSIMDInsDup<Q, 0, (outs regtype:$Rd), (ins V128:$Rn, idxtype:$idx), asm,
"{\t$Rd, $Rn" # size # "$idx" #
"|" # size # "\t$Rd, $Rn$idx}", "", pattern> {
let Inst{14-11} = imm4;
}
class SIMDSMov<bit Q, string size, RegisterClass regtype,
Operand idxtype>
: BaseSIMDMov<Q, size, 0b0101, regtype, idxtype, "smov", []>;
class SIMDUMov<bit Q, string size, ValueType vectype, RegisterClass regtype,
Operand idxtype>
: BaseSIMDMov<Q, size, 0b0111, regtype, idxtype, "umov",
[(set regtype:$Rd, (vector_extract (vectype V128:$Rn), idxtype:$idx))]>;
class SIMDMovAlias<string asm, string size, Instruction inst,
RegisterClass regtype, Operand idxtype>
: InstAlias<asm#"{\t$dst, $src"#size#"$idx" #
"|" # size # "\t$dst, $src$idx}",
(inst regtype:$dst, V128:$src, idxtype:$idx)>;
multiclass SMov {
def vi8to32 : SIMDSMov<0, ".b", GPR32, VectorIndexB> {
bits<4> idx;
let Inst{20-17} = idx;
let Inst{16} = 1;
}
def vi8to64 : SIMDSMov<1, ".b", GPR64, VectorIndexB> {
bits<4> idx;
let Inst{20-17} = idx;
let Inst{16} = 1;
}
def vi16to32 : SIMDSMov<0, ".h", GPR32, VectorIndexH> {
bits<3> idx;
let Inst{20-18} = idx;
let Inst{17-16} = 0b10;
}
def vi16to64 : SIMDSMov<1, ".h", GPR64, VectorIndexH> {
bits<3> idx;
let Inst{20-18} = idx;
let Inst{17-16} = 0b10;
}
def vi32to64 : SIMDSMov<1, ".s", GPR64, VectorIndexS> {
bits<2> idx;
let Inst{20-19} = idx;
let Inst{18-16} = 0b100;
}
}
multiclass UMov {
def vi8 : SIMDUMov<0, ".b", v16i8, GPR32, VectorIndexB> {
bits<4> idx;
let Inst{20-17} = idx;
let Inst{16} = 1;
}
def vi16 : SIMDUMov<0, ".h", v8i16, GPR32, VectorIndexH> {
bits<3> idx;
let Inst{20-18} = idx;
let Inst{17-16} = 0b10;
}
def vi32 : SIMDUMov<0, ".s", v4i32, GPR32, VectorIndexS> {
bits<2> idx;
let Inst{20-19} = idx;
let Inst{18-16} = 0b100;
}
def vi64 : SIMDUMov<1, ".d", v2i64, GPR64, VectorIndexD> {
bits<1> idx;
let Inst{20} = idx;
let Inst{19-16} = 0b1000;
}
def : SIMDMovAlias<"mov", ".s",
!cast<Instruction>(NAME#"vi32"),
GPR32, VectorIndexS>;
def : SIMDMovAlias<"mov", ".d",
!cast<Instruction>(NAME#"vi64"),
GPR64, VectorIndexD>;
}
class SIMDInsFromMain<string size, ValueType vectype,
RegisterClass regtype, Operand idxtype>
: BaseSIMDInsDup<1, 0, (outs V128:$dst),
(ins V128:$Rd, idxtype:$idx, regtype:$Rn), "ins",
"{\t$Rd" # size # "$idx, $Rn" #
"|" # size # "\t$Rd$idx, $Rn}",
"$Rd = $dst",
[(set V128:$dst,
(vector_insert (vectype V128:$Rd), regtype:$Rn, idxtype:$idx))]> {
let Inst{14-11} = 0b0011;
}
class SIMDInsFromElement<string size, ValueType vectype,
ValueType elttype, Operand idxtype>
: BaseSIMDInsDup<1, 1, (outs V128:$dst),
(ins V128:$Rd, idxtype:$idx, V128:$Rn, idxtype:$idx2), "ins",
"{\t$Rd" # size # "$idx, $Rn" # size # "$idx2" #
"|" # size # "\t$Rd$idx, $Rn$idx2}",
"$Rd = $dst",
[(set V128:$dst,
(vector_insert
(vectype V128:$Rd),
(elttype (vector_extract (vectype V128:$Rn), idxtype:$idx2)),
idxtype:$idx))]>;
class SIMDInsMainMovAlias<string size, Instruction inst,
RegisterClass regtype, Operand idxtype>
: InstAlias<"mov" # "{\t$dst" # size # "$idx, $src" #
"|" # size #"\t$dst$idx, $src}",
(inst V128:$dst, idxtype:$idx, regtype:$src)>;
class SIMDInsElementMovAlias<string size, Instruction inst,
Operand idxtype>
: InstAlias<"mov" # "{\t$dst" # size # "$idx, $src" # size # "$idx2"
# "|" # size #"\t$dst$idx, $src$idx2}",
(inst V128:$dst, idxtype:$idx, V128:$src, idxtype:$idx2)>;
multiclass SIMDIns {
def vi8gpr : SIMDInsFromMain<".b", v16i8, GPR32, VectorIndexB> {
bits<4> idx;
let Inst{20-17} = idx;
let Inst{16} = 1;
}
def vi16gpr : SIMDInsFromMain<".h", v8i16, GPR32, VectorIndexH> {
bits<3> idx;
let Inst{20-18} = idx;
let Inst{17-16} = 0b10;
}
def vi32gpr : SIMDInsFromMain<".s", v4i32, GPR32, VectorIndexS> {
bits<2> idx;
let Inst{20-19} = idx;
let Inst{18-16} = 0b100;
}
def vi64gpr : SIMDInsFromMain<".d", v2i64, GPR64, VectorIndexD> {
bits<1> idx;
let Inst{20} = idx;
let Inst{19-16} = 0b1000;
}
def vi8lane : SIMDInsFromElement<".b", v16i8, i32, VectorIndexB> {
bits<4> idx;
bits<4> idx2;
let Inst{20-17} = idx;
let Inst{16} = 1;
let Inst{14-11} = idx2;
}
def vi16lane : SIMDInsFromElement<".h", v8i16, i32, VectorIndexH> {
bits<3> idx;
bits<3> idx2;
let Inst{20-18} = idx;
let Inst{17-16} = 0b10;
let Inst{14-12} = idx2;
let Inst{11} = {?};
}
def vi32lane : SIMDInsFromElement<".s", v4i32, i32, VectorIndexS> {
bits<2> idx;
bits<2> idx2;
let Inst{20-19} = idx;
let Inst{18-16} = 0b100;
let Inst{14-13} = idx2;
let Inst{12-11} = {?,?};
}
def vi64lane : SIMDInsFromElement<".d", v2i64, i64, VectorIndexD> {
bits<1> idx;
bits<1> idx2;
let Inst{20} = idx;
let Inst{19-16} = 0b1000;
let Inst{14} = idx2;
let Inst{13-11} = {?,?,?};
}
// For all forms of the INS instruction, the "mov" mnemonic is the
// preferred alias. Why they didn't just call the instruction "mov" in
// the first place is a very good question indeed...
def : SIMDInsMainMovAlias<".b", !cast<Instruction>(NAME#"vi8gpr"),
GPR32, VectorIndexB>;
def : SIMDInsMainMovAlias<".h", !cast<Instruction>(NAME#"vi16gpr"),
GPR32, VectorIndexH>;
def : SIMDInsMainMovAlias<".s", !cast<Instruction>(NAME#"vi32gpr"),
GPR32, VectorIndexS>;
def : SIMDInsMainMovAlias<".d", !cast<Instruction>(NAME#"vi64gpr"),
GPR64, VectorIndexD>;
def : SIMDInsElementMovAlias<".b", !cast<Instruction>(NAME#"vi8lane"),
VectorIndexB>;
def : SIMDInsElementMovAlias<".h", !cast<Instruction>(NAME#"vi16lane"),
VectorIndexH>;
def : SIMDInsElementMovAlias<".s", !cast<Instruction>(NAME#"vi32lane"),
VectorIndexS>;
def : SIMDInsElementMovAlias<".d", !cast<Instruction>(NAME#"vi64lane"),
VectorIndexD>;
}
//----------------------------------------------------------------------------
// AdvSIMD TBL/TBX
//----------------------------------------------------------------------------
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseSIMDTableLookup<bit Q, bits<2> len, bit op, RegisterOperand vectype,
RegisterOperand listtype, string asm, string kind>
: I<(outs vectype:$Vd), (ins listtype:$Vn, vectype:$Vm), asm,
"\t$Vd" # kind # ", $Vn, $Vm" # kind, "", []>,
Sched<[WriteV]> {
bits<5> Vd;
bits<5> Vn;
bits<5> Vm;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29-21} = 0b001110000;
let Inst{20-16} = Vm;
let Inst{15} = 0;
let Inst{14-13} = len;
let Inst{12} = op;
let Inst{11-10} = 0b00;
let Inst{9-5} = Vn;
let Inst{4-0} = Vd;
}
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseSIMDTableLookupTied<bit Q, bits<2> len, bit op, RegisterOperand vectype,
RegisterOperand listtype, string asm, string kind>
: I<(outs vectype:$dst), (ins vectype:$Vd, listtype:$Vn, vectype:$Vm), asm,
"\t$Vd" # kind # ", $Vn, $Vm" # kind, "$Vd = $dst", []>,
Sched<[WriteV]> {
bits<5> Vd;
bits<5> Vn;
bits<5> Vm;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29-21} = 0b001110000;
let Inst{20-16} = Vm;
let Inst{15} = 0;
let Inst{14-13} = len;
let Inst{12} = op;
let Inst{11-10} = 0b00;
let Inst{9-5} = Vn;
let Inst{4-0} = Vd;
}
class SIMDTableLookupAlias<string asm, Instruction inst,
RegisterOperand vectype, RegisterOperand listtype>
: InstAlias<!strconcat(asm, "\t$dst, $lst, $index"),
(inst vectype:$dst, listtype:$lst, vectype:$index), 0>;
multiclass SIMDTableLookup<bit op, string asm> {
def v8i8One : BaseSIMDTableLookup<0, 0b00, op, V64, VecListOne16b,
asm, ".8b">;
def v8i8Two : BaseSIMDTableLookup<0, 0b01, op, V64, VecListTwo16b,
asm, ".8b">;
def v8i8Three : BaseSIMDTableLookup<0, 0b10, op, V64, VecListThree16b,
asm, ".8b">;
def v8i8Four : BaseSIMDTableLookup<0, 0b11, op, V64, VecListFour16b,
asm, ".8b">;
def v16i8One : BaseSIMDTableLookup<1, 0b00, op, V128, VecListOne16b,
asm, ".16b">;
def v16i8Two : BaseSIMDTableLookup<1, 0b01, op, V128, VecListTwo16b,
asm, ".16b">;
def v16i8Three: BaseSIMDTableLookup<1, 0b10, op, V128, VecListThree16b,
asm, ".16b">;
def v16i8Four : BaseSIMDTableLookup<1, 0b11, op, V128, VecListFour16b,
asm, ".16b">;
def : SIMDTableLookupAlias<asm # ".8b",
!cast<Instruction>(NAME#"v8i8One"),
V64, VecListOne128>;
def : SIMDTableLookupAlias<asm # ".8b",
!cast<Instruction>(NAME#"v8i8Two"),
V64, VecListTwo128>;
def : SIMDTableLookupAlias<asm # ".8b",
!cast<Instruction>(NAME#"v8i8Three"),
V64, VecListThree128>;
def : SIMDTableLookupAlias<asm # ".8b",
!cast<Instruction>(NAME#"v8i8Four"),
V64, VecListFour128>;
def : SIMDTableLookupAlias<asm # ".16b",
!cast<Instruction>(NAME#"v16i8One"),
V128, VecListOne128>;
def : SIMDTableLookupAlias<asm # ".16b",
!cast<Instruction>(NAME#"v16i8Two"),
V128, VecListTwo128>;
def : SIMDTableLookupAlias<asm # ".16b",
!cast<Instruction>(NAME#"v16i8Three"),
V128, VecListThree128>;
def : SIMDTableLookupAlias<asm # ".16b",
!cast<Instruction>(NAME#"v16i8Four"),
V128, VecListFour128>;
}
multiclass SIMDTableLookupTied<bit op, string asm> {
def v8i8One : BaseSIMDTableLookupTied<0, 0b00, op, V64, VecListOne16b,
asm, ".8b">;
def v8i8Two : BaseSIMDTableLookupTied<0, 0b01, op, V64, VecListTwo16b,
asm, ".8b">;
def v8i8Three : BaseSIMDTableLookupTied<0, 0b10, op, V64, VecListThree16b,
asm, ".8b">;
def v8i8Four : BaseSIMDTableLookupTied<0, 0b11, op, V64, VecListFour16b,
asm, ".8b">;
def v16i8One : BaseSIMDTableLookupTied<1, 0b00, op, V128, VecListOne16b,
asm, ".16b">;
def v16i8Two : BaseSIMDTableLookupTied<1, 0b01, op, V128, VecListTwo16b,
asm, ".16b">;
def v16i8Three: BaseSIMDTableLookupTied<1, 0b10, op, V128, VecListThree16b,
asm, ".16b">;
def v16i8Four : BaseSIMDTableLookupTied<1, 0b11, op, V128, VecListFour16b,
asm, ".16b">;
def : SIMDTableLookupAlias<asm # ".8b",
!cast<Instruction>(NAME#"v8i8One"),
V64, VecListOne128>;
def : SIMDTableLookupAlias<asm # ".8b",
!cast<Instruction>(NAME#"v8i8Two"),
V64, VecListTwo128>;
def : SIMDTableLookupAlias<asm # ".8b",
!cast<Instruction>(NAME#"v8i8Three"),
V64, VecListThree128>;
def : SIMDTableLookupAlias<asm # ".8b",
!cast<Instruction>(NAME#"v8i8Four"),
V64, VecListFour128>;
def : SIMDTableLookupAlias<asm # ".16b",
!cast<Instruction>(NAME#"v16i8One"),
V128, VecListOne128>;
def : SIMDTableLookupAlias<asm # ".16b",
!cast<Instruction>(NAME#"v16i8Two"),
V128, VecListTwo128>;
def : SIMDTableLookupAlias<asm # ".16b",
!cast<Instruction>(NAME#"v16i8Three"),
V128, VecListThree128>;
def : SIMDTableLookupAlias<asm # ".16b",
!cast<Instruction>(NAME#"v16i8Four"),
V128, VecListFour128>;
}
//----------------------------------------------------------------------------
// AdvSIMD scalar CPY
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDScalarCPY<RegisterClass regtype, RegisterOperand vectype,
string kind, Operand idxtype>
: I<(outs regtype:$dst), (ins vectype:$src, idxtype:$idx), "mov",
"{\t$dst, $src" # kind # "$idx" #
"|\t$dst, $src$idx}", "", []>,
Sched<[WriteV]> {
bits<5> dst;
bits<5> src;
let Inst{31-21} = 0b01011110000;
let Inst{15-10} = 0b000001;
let Inst{9-5} = src;
let Inst{4-0} = dst;
}
class SIMDScalarCPYAlias<string asm, string size, Instruction inst,
RegisterClass regtype, RegisterOperand vectype, Operand idxtype>
: InstAlias<asm # "{\t$dst, $src" # size # "$index"
# "|\t$dst, $src$index}",
(inst regtype:$dst, vectype:$src, idxtype:$index), 0>;
multiclass SIMDScalarCPY<string asm> {
def i8 : BaseSIMDScalarCPY<FPR8, V128, ".b", VectorIndexB> {
bits<4> idx;
let Inst{20-17} = idx;
let Inst{16} = 1;
}
def i16 : BaseSIMDScalarCPY<FPR16, V128, ".h", VectorIndexH> {
bits<3> idx;
let Inst{20-18} = idx;
let Inst{17-16} = 0b10;
}
def i32 : BaseSIMDScalarCPY<FPR32, V128, ".s", VectorIndexS> {
bits<2> idx;
let Inst{20-19} = idx;
let Inst{18-16} = 0b100;
}
def i64 : BaseSIMDScalarCPY<FPR64, V128, ".d", VectorIndexD> {
bits<1> idx;
let Inst{20} = idx;
let Inst{19-16} = 0b1000;
}
def : Pat<(v1i64 (scalar_to_vector (i64 (vector_extract (v2i64 V128:$src),
VectorIndexD:$idx)))),
(!cast<Instruction>(NAME # i64) V128:$src, VectorIndexD:$idx)>;
// 'DUP' mnemonic aliases.
def : SIMDScalarCPYAlias<"dup", ".b",
!cast<Instruction>(NAME#"i8"),
FPR8, V128, VectorIndexB>;
def : SIMDScalarCPYAlias<"dup", ".h",
!cast<Instruction>(NAME#"i16"),
FPR16, V128, VectorIndexH>;
def : SIMDScalarCPYAlias<"dup", ".s",
!cast<Instruction>(NAME#"i32"),
FPR32, V128, VectorIndexS>;
def : SIMDScalarCPYAlias<"dup", ".d",
!cast<Instruction>(NAME#"i64"),
FPR64, V128, VectorIndexD>;
}
//----------------------------------------------------------------------------
// AdvSIMD modified immediate instructions
//----------------------------------------------------------------------------
class BaseSIMDModifiedImm<bit Q, bit op, bit op2, dag oops, dag iops,
string asm, string op_string,
string cstr, list<dag> pattern>
: I<oops, iops, asm, op_string, cstr, pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<8> imm8;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = op;
let Inst{28-19} = 0b0111100000;
let Inst{18-16} = imm8{7-5};
let Inst{11} = op2;
let Inst{10} = 1;
let Inst{9-5} = imm8{4-0};
let Inst{4-0} = Rd;
}
class BaseSIMDModifiedImmVector<bit Q, bit op, bit op2, RegisterOperand vectype,
Operand immtype, dag opt_shift_iop,
string opt_shift, string asm, string kind,
list<dag> pattern>
: BaseSIMDModifiedImm<Q, op, op2, (outs vectype:$Rd),
!con((ins immtype:$imm8), opt_shift_iop), asm,
"{\t$Rd" # kind # ", $imm8" # opt_shift #
"|" # kind # "\t$Rd, $imm8" # opt_shift # "}",
"", pattern> {
let DecoderMethod = "DecodeModImmInstruction";
}
class BaseSIMDModifiedImmVectorTied<bit Q, bit op, RegisterOperand vectype,
Operand immtype, dag opt_shift_iop,
string opt_shift, string asm, string kind,
list<dag> pattern>
: BaseSIMDModifiedImm<Q, op, 0, (outs vectype:$dst),
!con((ins vectype:$Rd, immtype:$imm8), opt_shift_iop),
asm, "{\t$Rd" # kind # ", $imm8" # opt_shift #
"|" # kind # "\t$Rd, $imm8" # opt_shift # "}",
"$Rd = $dst", pattern> {
let DecoderMethod = "DecodeModImmTiedInstruction";
}
class BaseSIMDModifiedImmVectorShift<bit Q, bit op, bits<2> b15_b12,
RegisterOperand vectype, string asm,
string kind, list<dag> pattern>
: BaseSIMDModifiedImmVector<Q, op, 0, vectype, imm0_255,
(ins logical_vec_shift:$shift),
"$shift", asm, kind, pattern> {
bits<2> shift;
let Inst{15} = b15_b12{1};
let Inst{14-13} = shift;
let Inst{12} = b15_b12{0};
}
class BaseSIMDModifiedImmVectorShiftTied<bit Q, bit op, bits<2> b15_b12,
RegisterOperand vectype, string asm,
string kind, list<dag> pattern>
: BaseSIMDModifiedImmVectorTied<Q, op, vectype, imm0_255,
(ins logical_vec_shift:$shift),
"$shift", asm, kind, pattern> {
bits<2> shift;
let Inst{15} = b15_b12{1};
let Inst{14-13} = shift;
let Inst{12} = b15_b12{0};
}
class BaseSIMDModifiedImmVectorShiftHalf<bit Q, bit op, bits<2> b15_b12,
RegisterOperand vectype, string asm,
string kind, list<dag> pattern>
: BaseSIMDModifiedImmVector<Q, op, 0, vectype, imm0_255,
(ins logical_vec_hw_shift:$shift),
"$shift", asm, kind, pattern> {
bits<2> shift;
let Inst{15} = b15_b12{1};
let Inst{14} = 0;
let Inst{13} = shift{0};
let Inst{12} = b15_b12{0};
}
class BaseSIMDModifiedImmVectorShiftHalfTied<bit Q, bit op, bits<2> b15_b12,
RegisterOperand vectype, string asm,
string kind, list<dag> pattern>
: BaseSIMDModifiedImmVectorTied<Q, op, vectype, imm0_255,
(ins logical_vec_hw_shift:$shift),
"$shift", asm, kind, pattern> {
bits<2> shift;
let Inst{15} = b15_b12{1};
let Inst{14} = 0;
let Inst{13} = shift{0};
let Inst{12} = b15_b12{0};
}
multiclass SIMDModifiedImmVectorShift<bit op, bits<2> hw_cmode, bits<2> w_cmode,
string asm> {
def v4i16 : BaseSIMDModifiedImmVectorShiftHalf<0, op, hw_cmode, V64,
asm, ".4h", []>;
def v8i16 : BaseSIMDModifiedImmVectorShiftHalf<1, op, hw_cmode, V128,
asm, ".8h", []>;
def v2i32 : BaseSIMDModifiedImmVectorShift<0, op, w_cmode, V64,
asm, ".2s", []>;
def v4i32 : BaseSIMDModifiedImmVectorShift<1, op, w_cmode, V128,
asm, ".4s", []>;
}
multiclass SIMDModifiedImmVectorShiftTied<bit op, bits<2> hw_cmode,
bits<2> w_cmode, string asm,
SDNode OpNode> {
def v4i16 : BaseSIMDModifiedImmVectorShiftHalfTied<0, op, hw_cmode, V64,
asm, ".4h",
[(set (v4i16 V64:$dst), (OpNode V64:$Rd,
imm0_255:$imm8,
(i32 imm:$shift)))]>;
def v8i16 : BaseSIMDModifiedImmVectorShiftHalfTied<1, op, hw_cmode, V128,
asm, ".8h",
[(set (v8i16 V128:$dst), (OpNode V128:$Rd,
imm0_255:$imm8,
(i32 imm:$shift)))]>;
def v2i32 : BaseSIMDModifiedImmVectorShiftTied<0, op, w_cmode, V64,
asm, ".2s",
[(set (v2i32 V64:$dst), (OpNode V64:$Rd,
imm0_255:$imm8,
(i32 imm:$shift)))]>;
def v4i32 : BaseSIMDModifiedImmVectorShiftTied<1, op, w_cmode, V128,
asm, ".4s",
[(set (v4i32 V128:$dst), (OpNode V128:$Rd,
imm0_255:$imm8,
(i32 imm:$shift)))]>;
}
class SIMDModifiedImmMoveMSL<bit Q, bit op, bits<4> cmode,
RegisterOperand vectype, string asm,
string kind, list<dag> pattern>
: BaseSIMDModifiedImmVector<Q, op, 0, vectype, imm0_255,
(ins move_vec_shift:$shift),
"$shift", asm, kind, pattern> {
bits<1> shift;
let Inst{15-13} = cmode{3-1};
let Inst{12} = shift;
}
class SIMDModifiedImmVectorNoShift<bit Q, bit op, bit op2, bits<4> cmode,
RegisterOperand vectype,
Operand imm_type, string asm,
string kind, list<dag> pattern>
: BaseSIMDModifiedImmVector<Q, op, op2, vectype, imm_type, (ins), "",
asm, kind, pattern> {
let Inst{15-12} = cmode;
}
class SIMDModifiedImmScalarNoShift<bit Q, bit op, bits<4> cmode, string asm,
list<dag> pattern>
: BaseSIMDModifiedImm<Q, op, 0, (outs FPR64:$Rd), (ins simdimmtype10:$imm8), asm,
"\t$Rd, $imm8", "", pattern> {
let Inst{15-12} = cmode;
let DecoderMethod = "DecodeModImmInstruction";
}
//----------------------------------------------------------------------------
// AdvSIMD indexed element
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDIndexed<bit Q, bit U, bit Scalar, bits<2> size, bits<4> opc,
RegisterOperand dst_reg, RegisterOperand lhs_reg,
RegisterOperand rhs_reg, Operand vec_idx, string asm,
string apple_kind, string dst_kind, string lhs_kind,
string rhs_kind, list<dag> pattern>
: I<(outs dst_reg:$Rd), (ins lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx),
asm,
"{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind # "$idx" #
"|" # apple_kind # "\t$Rd, $Rn, $Rm$idx}", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28} = Scalar;
let Inst{27-24} = 0b1111;
let Inst{23-22} = size;
// Bit 21 must be set by the derived class.
let Inst{20-16} = Rm;
let Inst{15-12} = opc;
// Bit 11 must be set by the derived class.
let Inst{10} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDIndexedTied<bit Q, bit U, bit Scalar, bits<2> size, bits<4> opc,
RegisterOperand dst_reg, RegisterOperand lhs_reg,
RegisterOperand rhs_reg, Operand vec_idx, string asm,
string apple_kind, string dst_kind, string lhs_kind,
string rhs_kind, list<dag> pattern>
: I<(outs dst_reg:$dst),
(ins dst_reg:$Rd, lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx), asm,
"{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind # "$idx" #
"|" # apple_kind # "\t$Rd, $Rn, $Rm$idx}", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28} = Scalar;
let Inst{27-24} = 0b1111;
let Inst{23-22} = size;
// Bit 21 must be set by the derived class.
let Inst{20-16} = Rm;
let Inst{15-12} = opc;
// Bit 11 must be set by the derived class.
let Inst{10} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
//----------------------------------------------------------------------------
// Armv8.6 BFloat16 Extension
//----------------------------------------------------------------------------
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in {
class BaseSIMDThreeSameVectorBFDot<bit Q, bit U, string asm, string kind1,
string kind2, RegisterOperand RegType,
ValueType AccumType, ValueType InputType>
: BaseSIMDThreeSameVectorTied<Q, U, 0b010, 0b11111, RegType, asm, kind1, [(set (AccumType RegType:$dst),
(int_aarch64_neon_bfdot (AccumType RegType:$Rd),
(InputType RegType:$Rn),
(InputType RegType:$Rm)))]> {
let AsmString = !strconcat(asm,
"{\t$Rd" # kind1 # ", $Rn" # kind2 #
", $Rm" # kind2 # "}");
}
multiclass SIMDThreeSameVectorBFDot<bit U, string asm> {
def v4bf16 : BaseSIMDThreeSameVectorBFDot<0, U, asm, ".2s", ".4h", V64,
v2f32, v4bf16>;
def v8bf16 : BaseSIMDThreeSameVectorBFDot<1, U, asm, ".4s", ".8h", V128,
v4f32, v8bf16>;
}
class BaseSIMDThreeSameVectorBF16DotI<bit Q, bit U, string asm,
string dst_kind, string lhs_kind,
string rhs_kind,
RegisterOperand RegType,
ValueType AccumType,
ValueType InputType>
: BaseSIMDIndexedTied<Q, U, 0b0, 0b01, 0b1111,
RegType, RegType, V128, VectorIndexS,
asm, "", dst_kind, lhs_kind, rhs_kind,
[(set (AccumType RegType:$dst),
(AccumType (int_aarch64_neon_bfdot
(AccumType RegType:$Rd),
(InputType RegType:$Rn),
(InputType (bitconvert (AccumType
(AArch64duplane32 (v4f32 V128:$Rm),
VectorIndexS:$idx)))))))]> {
bits<2> idx;
let Inst{21} = idx{0}; // L
let Inst{11} = idx{1}; // H
}
multiclass SIMDThreeSameVectorBF16DotI<bit U, string asm> {
def v4bf16 : BaseSIMDThreeSameVectorBF16DotI<0, U, asm, ".2s", ".4h",
".2h", V64, v2f32, v4bf16>;
def v8bf16 : BaseSIMDThreeSameVectorBF16DotI<1, U, asm, ".4s", ".8h",
".2h", V128, v4f32, v8bf16>;
}
class SIMDBF16MLAL<bit Q, string asm, SDPatternOperator OpNode>
: BaseSIMDThreeSameVectorTied<Q, 0b1, 0b110, 0b11111, V128, asm, ".4s",
[(set (v4f32 V128:$dst), (OpNode (v4f32 V128:$Rd),
(v8bf16 V128:$Rn),
(v8bf16 V128:$Rm)))]> {
let AsmString = !strconcat(asm, "{\t$Rd.4s, $Rn.8h, $Rm.8h}");
}
class SIMDBF16MLALIndex<bit Q, string asm, SDPatternOperator OpNode>
: I<(outs V128:$dst),
(ins V128:$Rd, V128:$Rn, V128_lo:$Rm, VectorIndexH:$idx), asm,
"{\t$Rd.4s, $Rn.8h, $Rm.h$idx}", "$Rd = $dst",
[(set (v4f32 V128:$dst),
(v4f32 (OpNode (v4f32 V128:$Rd),
(v8bf16 V128:$Rn),
(v8bf16
(AArch64duplane16 (v8bf16 V128_lo:$Rm),
VectorIndexH:$idx)))))]>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<4> Rm;
bits<3> idx;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29-22} = 0b00111111;
let Inst{21-20} = idx{1-0};
let Inst{19-16} = Rm;
let Inst{15-12} = 0b1111;
let Inst{11} = idx{2}; // H
let Inst{10} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class SIMDThreeSameVectorBF16MatrixMul<string asm>
: BaseSIMDThreeSameVectorTied<1, 1, 0b010, 0b11101,
V128, asm, ".4s",
[(set (v4f32 V128:$dst),
(int_aarch64_neon_bfmmla (v4f32 V128:$Rd),
(v8bf16 V128:$Rn),
(v8bf16 V128:$Rm)))]> {
let AsmString = !strconcat(asm, "{\t$Rd", ".4s", ", $Rn", ".8h",
", $Rm", ".8h", "}");
}
class SIMD_BFCVTN
: BaseSIMDMixedTwoVector<0, 0, 0b10, 0b10110, V128, V128,
"bfcvtn", ".4h", ".4s",
[(set (v8bf16 V128:$Rd),
(int_aarch64_neon_bfcvtn (v4f32 V128:$Rn)))]>;
class SIMD_BFCVTN2
: BaseSIMDMixedTwoVectorTied<1, 0, 0b10, 0b10110, V128, V128,
"bfcvtn2", ".8h", ".4s",
[(set (v8bf16 V128:$dst),
(int_aarch64_neon_bfcvtn2 (v8bf16 V128:$Rd), (v4f32 V128:$Rn)))]>;
class BF16ToSinglePrecision<string asm>
: I<(outs FPR16:$Rd), (ins FPR32:$Rn), asm, "\t$Rd, $Rn", "",
[(set (bf16 FPR16:$Rd), (int_aarch64_neon_bfcvt (f32 FPR32:$Rn)))]>,
Sched<[WriteFCvt]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31-10} = 0b0001111001100011010000;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
} // End of let mayStore = 0, mayLoad = 0, hasSideEffects = 0
//----------------------------------------------------------------------------
// Armv8.6 Matrix Multiply Extension
//----------------------------------------------------------------------------
class SIMDThreeSameVectorMatMul<bit B, bit U, string asm, SDPatternOperator OpNode>
: BaseSIMDThreeSameVectorTied<1, U, 0b100, {0b1010, B}, V128, asm, ".4s",
[(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd),
(v16i8 V128:$Rn),
(v16i8 V128:$Rm)))]> {
let AsmString = asm # "{\t$Rd.4s, $Rn.16b, $Rm.16b}";
}
//----------------------------------------------------------------------------
// ARMv8.2-A Dot Product Instructions (Indexed)
class BaseSIMDThreeSameVectorDotIndex<bit Q, bit U, bit Mixed, bits<2> size, string asm,
string dst_kind, string lhs_kind, string rhs_kind,
RegisterOperand RegType,
ValueType AccumType, ValueType InputType,
SDPatternOperator OpNode> :
BaseSIMDIndexedTied<Q, U, 0b0, size, {0b111, Mixed}, RegType, RegType, V128,
VectorIndexS, asm, "", dst_kind, lhs_kind, rhs_kind,
[(set (AccumType RegType:$dst),
(AccumType (OpNode (AccumType RegType:$Rd),
(InputType RegType:$Rn),
(InputType (bitconvert (AccumType
(AArch64duplane32 (v4i32 V128:$Rm),
VectorIndexS:$idx)))))))]> {
bits<2> idx;
let Inst{21} = idx{0}; // L
let Inst{11} = idx{1}; // H
}
multiclass SIMDThreeSameVectorDotIndex<bit U, bit Mixed, bits<2> size, string asm,
SDPatternOperator OpNode> {
def v8i8 : BaseSIMDThreeSameVectorDotIndex<0, U, Mixed, size, asm, ".2s", ".8b", ".4b",
V64, v2i32, v8i8, OpNode>;
def v16i8 : BaseSIMDThreeSameVectorDotIndex<1, U, Mixed, size, asm, ".4s", ".16b", ".4b",
V128, v4i32, v16i8, OpNode>;
}
// ARMv8.2-A Fused Multiply Add-Long Instructions (Indexed)
class BaseSIMDThreeSameVectorFMLIndex<bit Q, bit U, bits<4> opc, string asm,
string dst_kind, string lhs_kind,
string rhs_kind, RegisterOperand RegType,
ValueType AccumType, ValueType InputType,
SDPatternOperator OpNode> :
BaseSIMDIndexedTied<Q, U, 0, 0b10, opc, RegType, RegType, V128,
VectorIndexH, asm, "", dst_kind, lhs_kind, rhs_kind,
[(set (AccumType RegType:$dst),
(AccumType (OpNode (AccumType RegType:$Rd),
(InputType RegType:$Rn),
(InputType (AArch64duplane16 (v8f16 V128:$Rm),
VectorIndexH:$idx)))))]> {
// idx = H:L:M
bits<3> idx;
let Inst{11} = idx{2}; // H
let Inst{21} = idx{1}; // L
let Inst{20} = idx{0}; // M
}
multiclass SIMDThreeSameVectorFMLIndex<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
def v4f16 : BaseSIMDThreeSameVectorFMLIndex<0, U, opc, asm, ".2s", ".2h", ".h",
V64, v2f32, v4f16, OpNode>;
def v8f16 : BaseSIMDThreeSameVectorFMLIndex<1, U, opc, asm, ".4s", ".4h", ".h",
V128, v4f32, v8f16, OpNode>;
}
multiclass SIMDFPIndexed<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b00, opc,
V64, V64,
V128_lo, VectorIndexH,
asm, ".4h", ".4h", ".4h", ".h",
[(set (v4f16 V64:$Rd),
(OpNode (v4f16 V64:$Rn),
(v4f16 (AArch64duplane16 (v8f16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b00, opc,
V128, V128,
V128_lo, VectorIndexH,
asm, ".8h", ".8h", ".8h", ".h",
[(set (v8f16 V128:$Rd),
(OpNode (v8f16 V128:$Rn),
(v8f16 (AArch64duplane16 (v8f16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
} // Predicates = [HasNEON, HasFullFP16]
def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
V64, V64,
V128, VectorIndexS,
asm, ".2s", ".2s", ".2s", ".s",
[(set (v2f32 V64:$Rd),
(OpNode (v2f32 V64:$Rn),
(v2f32 (AArch64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm, ".4s", ".4s", ".4s", ".s",
[(set (v4f32 V128:$Rd),
(OpNode (v4f32 V128:$Rn),
(v4f32 (AArch64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v2i64_indexed : BaseSIMDIndexed<1, U, 0, 0b11, opc,
V128, V128,
V128, VectorIndexD,
asm, ".2d", ".2d", ".2d", ".d",
[(set (v2f64 V128:$Rd),
(OpNode (v2f64 V128:$Rn),
(v2f64 (AArch64duplane64 (v2f64 V128:$Rm), VectorIndexD:$idx))))]> {
bits<1> idx;
let Inst{11} = idx{0};
let Inst{21} = 0;
}
let Predicates = [HasNEON, HasFullFP16] in {
def v1i16_indexed : BaseSIMDIndexed<1, U, 1, 0b00, opc,
FPR16Op, FPR16Op, V128_lo, VectorIndexH,
asm, ".h", "", "", ".h",
[(set (f16 FPR16Op:$Rd),
(OpNode (f16 FPR16Op:$Rn),
(f16 (vector_extract (v8f16 V128_lo:$Rm),
VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
} // Predicates = [HasNEON, HasFullFP16]
def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc,
FPR32Op, FPR32Op, V128, VectorIndexS,
asm, ".s", "", "", ".s",
[(set (f32 FPR32Op:$Rd),
(OpNode (f32 FPR32Op:$Rn),
(f32 (vector_extract (v4f32 V128:$Rm),
VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v1i64_indexed : BaseSIMDIndexed<1, U, 1, 0b11, opc,
FPR64Op, FPR64Op, V128, VectorIndexD,
asm, ".d", "", "", ".d",
[(set (f64 FPR64Op:$Rd),
(OpNode (f64 FPR64Op:$Rn),
(f64 (vector_extract (v2f64 V128:$Rm),
VectorIndexD:$idx))))]> {
bits<1> idx;
let Inst{11} = idx{0};
let Inst{21} = 0;
}
}
multiclass SIMDFPIndexedTiedPatterns<string INST, SDPatternOperator OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
// Patterns for f16: DUPLANE, DUP scalar and vector_extract.
def : Pat<(v8f16 (OpNode (v8f16 V128:$Rd), (v8f16 V128:$Rn),
(AArch64duplane16 (v8f16 V128_lo:$Rm),
VectorIndexH:$idx))),
(!cast<Instruction>(INST # "v8i16_indexed")
V128:$Rd, V128:$Rn, V128_lo:$Rm, VectorIndexH:$idx)>;
def : Pat<(v8f16 (OpNode (v8f16 V128:$Rd), (v8f16 V128:$Rn),
(AArch64dup (f16 FPR16Op_lo:$Rm)))),
(!cast<Instruction>(INST # "v8i16_indexed") V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), (f16 FPR16Op_lo:$Rm), hsub), (i64 0))>;
def : Pat<(v4f16 (OpNode (v4f16 V64:$Rd), (v4f16 V64:$Rn),
(AArch64duplane16 (v8f16 V128_lo:$Rm),
VectorIndexH:$idx))),
(!cast<Instruction>(INST # "v4i16_indexed")
V64:$Rd, V64:$Rn, V128_lo:$Rm, VectorIndexH:$idx)>;
def : Pat<(v4f16 (OpNode (v4f16 V64:$Rd), (v4f16 V64:$Rn),
(AArch64dup (f16 FPR16Op_lo:$Rm)))),
(!cast<Instruction>(INST # "v4i16_indexed") V64:$Rd, V64:$Rn,
(SUBREG_TO_REG (i32 0), (f16 FPR16Op_lo:$Rm), hsub), (i64 0))>;
def : Pat<(f16 (OpNode (f16 FPR16:$Rd), (f16 FPR16:$Rn),
(vector_extract (v8f16 V128_lo:$Rm), VectorIndexH:$idx))),
(!cast<Instruction>(INST # "v1i16_indexed") FPR16:$Rd, FPR16:$Rn,
V128_lo:$Rm, VectorIndexH:$idx)>;
} // Predicates = [HasNEON, HasFullFP16]
// 2 variants for the .2s version: DUPLANE from 128-bit and DUP scalar.
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
(AArch64duplane32 (v4f32 V128:$Rm),
VectorIndexS:$idx))),
(!cast<Instruction>(INST # v2i32_indexed)
V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
(AArch64dup (f32 FPR32Op:$Rm)))),
(!cast<Instruction>(INST # "v2i32_indexed") V64:$Rd, V64:$Rn,
(SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
// 2 variants for the .4s version: DUPLANE from 128-bit and DUP scalar.
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
(AArch64duplane32 (v4f32 V128:$Rm),
VectorIndexS:$idx))),
(!cast<Instruction>(INST # "v4i32_indexed")
V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
(AArch64dup (f32 FPR32Op:$Rm)))),
(!cast<Instruction>(INST # "v4i32_indexed") V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
// 2 variants for the .2d version: DUPLANE from 128-bit and DUP scalar.
def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
(AArch64duplane64 (v2f64 V128:$Rm),
VectorIndexD:$idx))),
(!cast<Instruction>(INST # "v2i64_indexed")
V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
(AArch64dup (f64 FPR64Op:$Rm)))),
(!cast<Instruction>(INST # "v2i64_indexed") V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
// Covers 2 variants for 32-bit scalar version: extract from .2s or from .4s
def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
(vector_extract (v4f32 V128:$Rm), VectorIndexS:$idx))),
(!cast<Instruction>(INST # "v1i32_indexed") FPR32:$Rd, FPR32:$Rn,
V128:$Rm, VectorIndexS:$idx)>;
// 1 variant for 64-bit scalar version: extract from .1d or from .2d
def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
(vector_extract (v2f64 V128:$Rm), VectorIndexD:$idx))),
(!cast<Instruction>(INST # "v1i64_indexed") FPR64:$Rd, FPR64:$Rn,
V128:$Rm, VectorIndexD:$idx)>;
}
multiclass SIMDFPIndexedTied<bit U, bits<4> opc, string asm> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b00, opc, V64, V64,
V128_lo, VectorIndexH,
asm, ".4h", ".4h", ".4h", ".h", []> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b00, opc,
V128, V128,
V128_lo, VectorIndexH,
asm, ".8h", ".8h", ".8h", ".h", []> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
} // Predicates = [HasNEON, HasFullFP16]
def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V64, V64,
V128, VectorIndexS,
asm, ".2s", ".2s", ".2s", ".s", []> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm, ".4s", ".4s", ".4s", ".s", []> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v2i64_indexed : BaseSIMDIndexedTied<1, U, 0, 0b11, opc,
V128, V128,
V128, VectorIndexD,
asm, ".2d", ".2d", ".2d", ".d", []> {
bits<1> idx;
let Inst{11} = idx{0};
let Inst{21} = 0;
}
let Predicates = [HasNEON, HasFullFP16] in {
def v1i16_indexed : BaseSIMDIndexedTied<1, U, 1, 0b00, opc,
FPR16Op, FPR16Op, V128_lo, VectorIndexH,
asm, ".h", "", "", ".h", []> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
} // Predicates = [HasNEON, HasFullFP16]
def v1i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc,
FPR32Op, FPR32Op, V128, VectorIndexS,
asm, ".s", "", "", ".s", []> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v1i64_indexed : BaseSIMDIndexedTied<1, U, 1, 0b11, opc,
FPR64Op, FPR64Op, V128, VectorIndexD,
asm, ".d", "", "", ".d", []> {
bits<1> idx;
let Inst{11} = idx{0};
let Inst{21} = 0;
}
}
multiclass SIMDIndexedHSPatterns<SDPatternOperator OpNodeLane,
SDPatternOperator OpNodeLaneQ> {
def : Pat<(v4i16 (OpNodeLane
(v4i16 V64:$Rn), (v4i16 V64_lo:$Rm),
VectorIndexS32b:$idx)),
(!cast<Instruction>(NAME # v4i16_indexed) $Rn,
(SUBREG_TO_REG (i32 0), (v4i16 V64_lo:$Rm), dsub),
(UImmS1XForm $idx))>;
def : Pat<(v4i16 (OpNodeLaneQ
(v4i16 V64:$Rn), (v8i16 V128_lo:$Rm),
VectorIndexH32b:$idx)),
(!cast<Instruction>(NAME # v4i16_indexed) $Rn, $Rm,
(UImmS1XForm $idx))>;
def : Pat<(v8i16 (OpNodeLane
(v8i16 V128:$Rn), (v4i16 V64_lo:$Rm),
VectorIndexS32b:$idx)),
(!cast<Instruction>(NAME # v8i16_indexed) $Rn,
(SUBREG_TO_REG (i32 0), $Rm, dsub),
(UImmS1XForm $idx))>;
def : Pat<(v8i16 (OpNodeLaneQ
(v8i16 V128:$Rn), (v8i16 V128_lo:$Rm),
VectorIndexH32b:$idx)),
(!cast<Instruction>(NAME # v8i16_indexed) $Rn, $Rm,
(UImmS1XForm $idx))>;
def : Pat<(v2i32 (OpNodeLane
(v2i32 V64:$Rn), (v2i32 V64:$Rm),
VectorIndexD32b:$idx)),
(!cast<Instruction>(NAME # v2i32_indexed) $Rn,
(SUBREG_TO_REG (i32 0), (v2i32 V64_lo:$Rm), dsub),
(UImmS1XForm $idx))>;
def : Pat<(v2i32 (OpNodeLaneQ
(v2i32 V64:$Rn), (v4i32 V128:$Rm),
VectorIndexS32b:$idx)),
(!cast<Instruction>(NAME # v2i32_indexed) $Rn, $Rm,
(UImmS1XForm $idx))>;
def : Pat<(v4i32 (OpNodeLane
(v4i32 V128:$Rn), (v2i32 V64:$Rm),
VectorIndexD32b:$idx)),
(!cast<Instruction>(NAME # v4i32_indexed) $Rn,
(SUBREG_TO_REG (i32 0), $Rm, dsub),
(UImmS1XForm $idx))>;
def : Pat<(v4i32 (OpNodeLaneQ
(v4i32 V128:$Rn),
(v4i32 V128:$Rm),
VectorIndexS32b:$idx)),
(!cast<Instruction>(NAME # v4i32_indexed) $Rn, $Rm,
(UImmS1XForm $idx))>;
}
multiclass SIMDIndexedHS<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V64, V64,
V128_lo, VectorIndexH,
asm, ".4h", ".4h", ".4h", ".h",
[(set (v4i16 V64:$Rd),
(OpNode (v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc,
V128, V128,
V128_lo, VectorIndexH,
asm, ".8h", ".8h", ".8h", ".h",
[(set (v8i16 V128:$Rd),
(OpNode (v8i16 V128:$Rn),
(v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
V64, V64,
V128, VectorIndexS,
asm, ".2s", ".2s", ".2s", ".s",
[(set (v2i32 V64:$Rd),
(OpNode (v2i32 V64:$Rn),
(v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm, ".4s", ".4s", ".4s", ".s",
[(set (v4i32 V128:$Rd),
(OpNode (v4i32 V128:$Rn),
(v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v1i16_indexed : BaseSIMDIndexed<1, U, 1, 0b01, opc,
FPR16Op, FPR16Op, V128_lo, VectorIndexH,
asm, ".h", "", "", ".h", []> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc,
FPR32Op, FPR32Op, V128, VectorIndexS,
asm, ".s", "", "", ".s",
[(set (i32 FPR32Op:$Rd),
(OpNode FPR32Op:$Rn,
(i32 (vector_extract (v4i32 V128:$Rm),
VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
}
multiclass SIMDVectorIndexedHS<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc,
V64, V64,
V128_lo, VectorIndexH,
asm, ".4h", ".4h", ".4h", ".h",
[(set (v4i16 V64:$Rd),
(OpNode (v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc,
V128, V128,
V128_lo, VectorIndexH,
asm, ".8h", ".8h", ".8h", ".h",
[(set (v8i16 V128:$Rd),
(OpNode (v8i16 V128:$Rn),
(v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
V64, V64,
V128, VectorIndexS,
asm, ".2s", ".2s", ".2s", ".s",
[(set (v2i32 V64:$Rd),
(OpNode (v2i32 V64:$Rn),
(v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm, ".4s", ".4s", ".4s", ".s",
[(set (v4i32 V128:$Rd),
(OpNode (v4i32 V128:$Rn),
(v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
}
multiclass SIMDVectorIndexedHSTied<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V64, V64,
V128_lo, VectorIndexH,
asm, ".4h", ".4h", ".4h", ".h",
[(set (v4i16 V64:$dst),
(OpNode (v4i16 V64:$Rd),(v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc,
V128, V128,
V128_lo, VectorIndexH,
asm, ".8h", ".8h", ".8h", ".h",
[(set (v8i16 V128:$dst),
(OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn),
(v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc,
V64, V64,
V128, VectorIndexS,
asm, ".2s", ".2s", ".2s", ".s",
[(set (v2i32 V64:$dst),
(OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn),
(v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm, ".4s", ".4s", ".4s", ".s",
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn),
(v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
}
multiclass SIMDIndexedLongSD<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc,
V128, V64,
V128_lo, VectorIndexH,
asm, ".4s", ".4s", ".4h", ".h",
[(set (v4i32 V128:$Rd),
(OpNode (v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc,
V128, V128,
V128_lo, VectorIndexH,
asm#"2", ".4s", ".4s", ".8h", ".h",
[(set (v4i32 V128:$Rd),
(OpNode (extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
V128, V64,
V128, VectorIndexS,
asm, ".2d", ".2d", ".2s", ".s",
[(set (v2i64 V128:$Rd),
(OpNode (v2i32 V64:$Rn),
(v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm#"2", ".2d", ".2d", ".4s", ".s",
[(set (v2i64 V128:$Rd),
(OpNode (extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm),
VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b01, opc,
FPR32Op, FPR16Op, V128_lo, VectorIndexH,
asm, ".h", "", "", ".h", []> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v1i64_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc,
FPR64Op, FPR32Op, V128, VectorIndexS,
asm, ".s", "", "", ".s", []> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
}
multiclass SIMDIndexedLongSQDMLXSDTied<bit U, bits<4> opc, string asm,
SDPatternOperator Accum> {
def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc,
V128, V64,
V128_lo, VectorIndexH,
asm, ".4s", ".4s", ".4h", ".h",
[(set (v4i32 V128:$dst),
(Accum (v4i32 V128:$Rd),
(v4i32 (int_aarch64_neon_sqdmull
(v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
VectorIndexH:$idx))))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
// FIXME: it would be nice to use the scalar (v1i32) instruction here, but an
// intermediate EXTRACT_SUBREG would be untyped.
def : Pat<(i32 (Accum (i32 FPR32Op:$Rd),
(i32 (vector_extract (v4i32
(int_aarch64_neon_sqdmull (v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
VectorIndexH:$idx)))),
(i64 0))))),
(EXTRACT_SUBREG
(!cast<Instruction>(NAME # v4i16_indexed)
(SUBREG_TO_REG (i32 0), FPR32Op:$Rd, ssub), V64:$Rn,
V128_lo:$Rm, VectorIndexH:$idx),
ssub)>;
def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc,
V128, V128,
V128_lo, VectorIndexH,
asm#"2", ".4s", ".4s", ".8h", ".h",
[(set (v4i32 V128:$dst),
(Accum (v4i32 V128:$Rd),
(v4i32 (int_aarch64_neon_sqdmull
(extract_high_v8i16 V128:$Rn),
(extract_high_v8i16
(AArch64duplane16 (v8i16 V128_lo:$Rm),
VectorIndexH:$idx))))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc,
V128, V64,
V128, VectorIndexS,
asm, ".2d", ".2d", ".2s", ".s",
[(set (v2i64 V128:$dst),
(Accum (v2i64 V128:$Rd),
(v2i64 (int_aarch64_neon_sqdmull
(v2i32 V64:$Rn),
(v2i32 (AArch64duplane32 (v4i32 V128:$Rm),
VectorIndexS:$idx))))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm#"2", ".2d", ".2d", ".4s", ".s",
[(set (v2i64 V128:$dst),
(Accum (v2i64 V128:$Rd),
(v2i64 (int_aarch64_neon_sqdmull
(extract_high_v4i32 V128:$Rn),
(extract_high_v4i32
(AArch64duplane32 (v4i32 V128:$Rm),
VectorIndexS:$idx))))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v1i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b01, opc,
FPR32Op, FPR16Op, V128_lo, VectorIndexH,
asm, ".h", "", "", ".h", []> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v1i64_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc,
FPR64Op, FPR32Op, V128, VectorIndexS,
asm, ".s", "", "", ".s",
[(set (i64 FPR64Op:$dst),
(Accum (i64 FPR64Op:$Rd),
(i64 (int_aarch64_neon_sqdmulls_scalar
(i32 FPR32Op:$Rn),
(i32 (vector_extract (v4i32 V128:$Rm),
VectorIndexS:$idx))))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
}
multiclass SIMDVectorIndexedLongSD<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc,
V128, V64,
V128_lo, VectorIndexH,
asm, ".4s", ".4s", ".4h", ".h",
[(set (v4i32 V128:$Rd),
(OpNode (v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc,
V128, V128,
V128_lo, VectorIndexH,
asm#"2", ".4s", ".4s", ".8h", ".h",
[(set (v4i32 V128:$Rd),
(OpNode (extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc,
V128, V64,
V128, VectorIndexS,
asm, ".2d", ".2d", ".2s", ".s",
[(set (v2i64 V128:$Rd),
(OpNode (v2i32 V64:$Rn),
(v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm#"2", ".2d", ".2d", ".4s", ".s",
[(set (v2i64 V128:$Rd),
(OpNode (extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm),
VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
}
}
multiclass SIMDVectorIndexedLongSDTied<bit U, bits<4> opc, string asm,
SDPatternOperator OpNode> {
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc,
V128, V64,
V128_lo, VectorIndexH,
asm, ".4s", ".4s", ".4h", ".h",
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd), (v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc,
V128, V128,
V128_lo, VectorIndexH,
asm#"2", ".4s", ".4s", ".8h", ".h",
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd),
(extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
VectorIndexH:$idx))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc,
V128, V64,
V128, VectorIndexS,
asm, ".2d", ".2d", ".2s", ".s",
[(set (v2i64 V128:$dst),
(OpNode (v2i64 V128:$Rd), (v2i32 V64:$Rn),
(v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
V128, V128,
V128, VectorIndexS,
asm#"2", ".2d", ".2d", ".4s", ".s",
[(set (v2i64 V128:$dst),
(OpNode (v2i64 V128:$Rd),
(extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 (AArch64duplane32 (v4i32 V128:$Rm),
VectorIndexS:$idx))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
}
}
//----------------------------------------------------------------------------
// AdvSIMD scalar shift by immediate
//----------------------------------------------------------------------------
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseSIMDScalarShift<bit U, bits<5> opc, bits<7> fixed_imm,
RegisterClass regtype1, RegisterClass regtype2,
Operand immtype, string asm, list<dag> pattern>
: I<(outs regtype1:$Rd), (ins regtype2:$Rn, immtype:$imm),
asm, "\t$Rd, $Rn, $imm", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<7> imm;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-23} = 0b111110;
let Inst{22-16} = fixed_imm;
let Inst{15-11} = opc;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseSIMDScalarShiftTied<bit U, bits<5> opc, bits<7> fixed_imm,
RegisterClass regtype1, RegisterClass regtype2,
Operand immtype, string asm, list<dag> pattern>
: I<(outs regtype1:$dst), (ins regtype1:$Rd, regtype2:$Rn, immtype:$imm),
asm, "\t$Rd, $Rn, $imm", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<7> imm;
let Inst{31-30} = 0b01;
let Inst{29} = U;
let Inst{28-23} = 0b111110;
let Inst{22-16} = fixed_imm;
let Inst{15-11} = opc;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDFPScalarRShift<bit U, bits<5> opc, string asm> {
let Predicates = [HasNEON, HasFullFP16] in {
def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?},
FPR16, FPR16, vecshiftR16, asm, []> {
let Inst{19-16} = imm{3-0};
}
} // Predicates = [HasNEON, HasFullFP16]
def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?},
FPR32, FPR32, vecshiftR32, asm, []> {
let Inst{20-16} = imm{4-0};
}
def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
FPR64, FPR64, vecshiftR64, asm, []> {
let Inst{21-16} = imm{5-0};
}
}
multiclass SIMDScalarRShiftD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
FPR64, FPR64, vecshiftR64, asm,
[(set (i64 FPR64:$Rd),
(OpNode (i64 FPR64:$Rn), (i32 vecshiftR64:$imm)))]> {
let Inst{21-16} = imm{5-0};
}
def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftR64:$imm))),
(!cast<Instruction>(NAME # "d") FPR64:$Rn, vecshiftR64:$imm)>;
}
multiclass SIMDScalarRShiftDTied<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def d : BaseSIMDScalarShiftTied<U, opc, {1,?,?,?,?,?,?},
FPR64, FPR64, vecshiftR64, asm,
[(set (i64 FPR64:$dst), (OpNode (i64 FPR64:$Rd), (i64 FPR64:$Rn),
(i32 vecshiftR64:$imm)))]> {
let Inst{21-16} = imm{5-0};
}
def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
(i32 vecshiftR64:$imm))),
(!cast<Instruction>(NAME # "d") FPR64:$Rd, FPR64:$Rn,
vecshiftR64:$imm)>;
}
multiclass SIMDScalarLShiftD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
FPR64, FPR64, vecshiftL64, asm,
[(set (i64 FPR64:$Rd),
(OpNode (i64 FPR64:$Rn), (i32 vecshiftL64:$imm)))]> {
let Inst{21-16} = imm{5-0};
}
def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftL64:$imm))),
(!cast<Instruction>(NAME # "d") FPR64:$Rn, vecshiftL64:$imm)>;
}
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
multiclass SIMDScalarLShiftDTied<bit U, bits<5> opc, string asm> {
def d : BaseSIMDScalarShiftTied<U, opc, {1,?,?,?,?,?,?},
FPR64, FPR64, vecshiftL64, asm, []> {
let Inst{21-16} = imm{5-0};
}
}
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
multiclass SIMDScalarRShiftBHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?},
FPR8, FPR16, vecshiftR8, asm, []> {
let Inst{18-16} = imm{2-0};
}
def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?},
FPR16, FPR32, vecshiftR16, asm, []> {
let Inst{19-16} = imm{3-0};
}
def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?},
FPR32, FPR64, vecshiftR32, asm,
[(set (i32 FPR32:$Rd), (OpNode (i64 FPR64:$Rn), vecshiftR32:$imm))]> {
let Inst{20-16} = imm{4-0};
}
}
multiclass SIMDScalarLShiftBHSD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?},
FPR8, FPR8, vecshiftL8, asm, []> {
let Inst{18-16} = imm{2-0};
}
def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?},
FPR16, FPR16, vecshiftL16, asm, []> {
let Inst{19-16} = imm{3-0};
}
def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?},
FPR32, FPR32, vecshiftL32, asm,
[(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn), (i32 vecshiftL32:$imm)))]> {
let Inst{20-16} = imm{4-0};
}
def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
FPR64, FPR64, vecshiftL64, asm,
[(set (i64 FPR64:$Rd), (OpNode (i64 FPR64:$Rn), (i32 vecshiftL64:$imm)))]> {
let Inst{21-16} = imm{5-0};
}
def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftL64:$imm))),
(!cast<Instruction>(NAME # "d") FPR64:$Rn, vecshiftL64:$imm)>;
}
multiclass SIMDScalarRShiftBHSD<bit U, bits<5> opc, string asm> {
def b : BaseSIMDScalarShift<U, opc, {0,0,0,1,?,?,?},
FPR8, FPR8, vecshiftR8, asm, []> {
let Inst{18-16} = imm{2-0};
}
def h : BaseSIMDScalarShift<U, opc, {0,0,1,?,?,?,?},
FPR16, FPR16, vecshiftR16, asm, []> {
let Inst{19-16} = imm{3-0};
}
def s : BaseSIMDScalarShift<U, opc, {0,1,?,?,?,?,?},
FPR32, FPR32, vecshiftR32, asm, []> {
let Inst{20-16} = imm{4-0};
}
def d : BaseSIMDScalarShift<U, opc, {1,?,?,?,?,?,?},
FPR64, FPR64, vecshiftR64, asm, []> {
let Inst{21-16} = imm{5-0};
}
}
//----------------------------------------------------------------------------
// AdvSIMD vector x indexed element
//----------------------------------------------------------------------------
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseSIMDVectorShift<bit Q, bit U, bits<5> opc, bits<7> fixed_imm,
RegisterOperand dst_reg, RegisterOperand src_reg,
Operand immtype,
string asm, string dst_kind, string src_kind,
list<dag> pattern>
: I<(outs dst_reg:$Rd), (ins src_reg:$Rn, immtype:$imm),
asm, "{\t$Rd" # dst_kind # ", $Rn" # src_kind # ", $imm" #
"|" # dst_kind # "\t$Rd, $Rn, $imm}", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-23} = 0b011110;
let Inst{22-16} = fixed_imm;
let Inst{15-11} = opc;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in
class BaseSIMDVectorShiftTied<bit Q, bit U, bits<5> opc, bits<7> fixed_imm,
RegisterOperand vectype1, RegisterOperand vectype2,
Operand immtype,
string asm, string dst_kind, string src_kind,
list<dag> pattern>
: I<(outs vectype1:$dst), (ins vectype1:$Rd, vectype2:$Rn, immtype:$imm),
asm, "{\t$Rd" # dst_kind # ", $Rn" # src_kind # ", $imm" #
"|" # dst_kind # "\t$Rd, $Rn, $imm}", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-23} = 0b011110;
let Inst{22-16} = fixed_imm;
let Inst{15-11} = opc;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDVectorRShiftSD<bit U, bits<5> opc, string asm,
Intrinsic OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
V64, V64, vecshiftR16,
asm, ".4h", ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4f16 V64:$Rn), (i32 imm:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?},
V128, V128, vecshiftR16,
asm, ".8h", ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8f16 V128:$Rn), (i32 imm:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
} // Predicates = [HasNEON, HasFullFP16]
def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
V64, V64, vecshiftR32,
asm, ".2s", ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (i32 imm:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
V128, V128, vecshiftR32,
asm, ".4s", ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (i32 imm:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?},
V128, V128, vecshiftR64,
asm, ".2d", ".2d",
[(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (i32 imm:$imm)))]> {
bits<6> imm;
let Inst{21-16} = imm;
}
}
multiclass SIMDVectorRShiftToFP<bit U, bits<5> opc, string asm,
Intrinsic OpNode> {
let Predicates = [HasNEON, HasFullFP16] in {
def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
V64, V64, vecshiftR16,
asm, ".4h", ".4h",
[(set (v4f16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (i32 imm:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?},
V128, V128, vecshiftR16,
asm, ".8h", ".8h",
[(set (v8f16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (i32 imm:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
} // Predicates = [HasNEON, HasFullFP16]
def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
V64, V64, vecshiftR32,
asm, ".2s", ".2s",
[(set (v2f32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (i32 imm:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
V128, V128, vecshiftR32,
asm, ".4s", ".4s",
[(set (v4f32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (i32 imm:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?},
V128, V128, vecshiftR64,
asm, ".2d", ".2d",
[(set (v2f64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (i32 imm:$imm)))]> {
bits<6> imm;
let Inst{21-16} = imm;
}
}
multiclass SIMDVectorRShiftNarrowBHS<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?},
V64, V128, vecshiftR16Narrow,
asm, ".8b", ".8h",
[(set (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?},
V128, V128, vecshiftR16Narrow,
asm#"2", ".16b", ".8h", []> {
bits<3> imm;
let Inst{18-16} = imm;
let hasSideEffects = 0;
}
def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
V64, V128, vecshiftR32Narrow,
asm, ".4h", ".4s",
[(set (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?},
V128, V128, vecshiftR32Narrow,
asm#"2", ".8h", ".4s", []> {
bits<4> imm;
let Inst{19-16} = imm;
let hasSideEffects = 0;
}
def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
V64, V128, vecshiftR64Narrow,
asm, ".2s", ".2d",
[(set (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?},
V128, V128, vecshiftR64Narrow,
asm#"2", ".4s", ".2d", []> {
bits<5> imm;
let Inst{20-16} = imm;
let hasSideEffects = 0;
}
// TableGen doesn't like patters w/ INSERT_SUBREG on the instructions
// themselves, so put them here instead.
// Patterns involving what's effectively an insert high and a normal
// intrinsic, represented by CONCAT_VECTORS.
def : Pat<(concat_vectors (v8i8 V64:$Rd),(OpNode (v8i16 V128:$Rn),
vecshiftR16Narrow:$imm)),
(!cast<Instruction>(NAME # "v16i8_shift")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR16Narrow:$imm)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn),
vecshiftR32Narrow:$imm)),
(!cast<Instruction>(NAME # "v8i16_shift")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR32Narrow:$imm)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn),
vecshiftR64Narrow:$imm)),
(!cast<Instruction>(NAME # "v4i32_shift")
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR64Narrow:$imm)>;
}
multiclass SIMDVectorLShiftBHSD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?},
V64, V64, vecshiftL8,
asm, ".8b", ".8b",
[(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn),
(i32 vecshiftL8:$imm)))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?},
V128, V128, vecshiftL8,
asm, ".16b", ".16b",
[(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn),
(i32 vecshiftL8:$imm)))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
V64, V64, vecshiftL16,
asm, ".4h", ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn),
(i32 vecshiftL16:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?},
V128, V128, vecshiftL16,
asm, ".8h", ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn),
(i32 vecshiftL16:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
V64, V64, vecshiftL32,
asm, ".2s", ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn),
(i32 vecshiftL32:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
V128, V128, vecshiftL32,
asm, ".4s", ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn),
(i32 vecshiftL32:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?},
V128, V128, vecshiftL64,
asm, ".2d", ".2d",
[(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn),
(i32 vecshiftL64:$imm)))]> {
bits<6> imm;
let Inst{21-16} = imm;
}
}
multiclass SIMDVectorRShiftBHSD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?},
V64, V64, vecshiftR8,
asm, ".8b", ".8b",
[(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn),
(i32 vecshiftR8:$imm)))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?},
V128, V128, vecshiftR8,
asm, ".16b", ".16b",
[(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn),
(i32 vecshiftR8:$imm)))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
V64, V64, vecshiftR16,
asm, ".4h", ".4h",
[(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn),
(i32 vecshiftR16:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?},
V128, V128, vecshiftR16,
asm, ".8h", ".8h",
[(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn),
(i32 vecshiftR16:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
V64, V64, vecshiftR32,
asm, ".2s", ".2s",
[(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn),
(i32 vecshiftR32:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
V128, V128, vecshiftR32,
asm, ".4s", ".4s",
[(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn),
(i32 vecshiftR32:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?},
V128, V128, vecshiftR64,
asm, ".2d", ".2d",
[(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn),
(i32 vecshiftR64:$imm)))]> {
bits<6> imm;
let Inst{21-16} = imm;
}
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
multiclass SIMDVectorRShiftBHSDTied<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v8i8_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,0,1,?,?,?},
V64, V64, vecshiftR8, asm, ".8b", ".8b",
[(set (v8i8 V64:$dst),
(OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn),
(i32 vecshiftR8:$imm)))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?},
V128, V128, vecshiftR8, asm, ".16b", ".16b",
[(set (v16i8 V128:$dst),
(OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn),
(i32 vecshiftR8:$imm)))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v4i16_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,1,?,?,?,?},
V64, V64, vecshiftR16, asm, ".4h", ".4h",
[(set (v4i16 V64:$dst),
(OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn),
(i32 vecshiftR16:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?},
V128, V128, vecshiftR16, asm, ".8h", ".8h",
[(set (v8i16 V128:$dst),
(OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn),
(i32 vecshiftR16:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v2i32_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,1,?,?,?,?,?},
V64, V64, vecshiftR32, asm, ".2s", ".2s",
[(set (v2i32 V64:$dst),
(OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn),
(i32 vecshiftR32:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?},
V128, V128, vecshiftR32, asm, ".4s", ".4s",
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn),
(i32 vecshiftR32:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v2i64_shift : BaseSIMDVectorShiftTied<1, U, opc, {1,?,?,?,?,?,?},
V128, V128, vecshiftR64,
asm, ".2d", ".2d", [(set (v2i64 V128:$dst),
(OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn),
(i32 vecshiftR64:$imm)))]> {
bits<6> imm;
let Inst{21-16} = imm;
}
}
multiclass SIMDVectorLShiftBHSDTied<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode = null_frag> {
def v8i8_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,0,1,?,?,?},
V64, V64, vecshiftL8,
asm, ".8b", ".8b",
[(set (v8i8 V64:$dst),
(OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn),
(i32 vecshiftL8:$imm)))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?},
V128, V128, vecshiftL8,
asm, ".16b", ".16b",
[(set (v16i8 V128:$dst),
(OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn),
(i32 vecshiftL8:$imm)))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v4i16_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,1,?,?,?,?},
V64, V64, vecshiftL16,
asm, ".4h", ".4h",
[(set (v4i16 V64:$dst),
(OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn),
(i32 vecshiftL16:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?},
V128, V128, vecshiftL16,
asm, ".8h", ".8h",
[(set (v8i16 V128:$dst),
(OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn),
(i32 vecshiftL16:$imm)))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v2i32_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,1,?,?,?,?,?},
V64, V64, vecshiftL32,
asm, ".2s", ".2s",
[(set (v2i32 V64:$dst),
(OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn),
(i32 vecshiftL32:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?},
V128, V128, vecshiftL32,
asm, ".4s", ".4s",
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn),
(i32 vecshiftL32:$imm)))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v2i64_shift : BaseSIMDVectorShiftTied<1, U, opc, {1,?,?,?,?,?,?},
V128, V128, vecshiftL64,
asm, ".2d", ".2d",
[(set (v2i64 V128:$dst),
(OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn),
(i32 vecshiftL64:$imm)))]> {
bits<6> imm;
let Inst{21-16} = imm;
}
}
multiclass SIMDVectorLShiftLongBHSD<bit U, bits<5> opc, string asm,
SDPatternOperator OpNode> {
def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?},
V128, V64, vecshiftL8, asm, ".8h", ".8b",
[(set (v8i16 V128:$Rd), (OpNode (v8i8 V64:$Rn), vecshiftL8:$imm))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?},
V128, V128, vecshiftL8,
asm#"2", ".8h", ".16b",
[(set (v8i16 V128:$Rd),
(OpNode (extract_high_v16i8 V128:$Rn), vecshiftL8:$imm))]> {
bits<3> imm;
let Inst{18-16} = imm;
}
def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?},
V128, V64, vecshiftL16, asm, ".4s", ".4h",
[(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), vecshiftL16:$imm))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?},
V128, V128, vecshiftL16,
asm#"2", ".4s", ".8h",
[(set (v4i32 V128:$Rd),
(OpNode (extract_high_v8i16 V128:$Rn), vecshiftL16:$imm))]> {
bits<4> imm;
let Inst{19-16} = imm;
}
def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?},
V128, V64, vecshiftL32, asm, ".2d", ".2s",
[(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), vecshiftL32:$imm))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?},
V128, V128, vecshiftL32,
asm#"2", ".2d", ".4s",
[(set (v2i64 V128:$Rd),
(OpNode (extract_high_v4i32 V128:$Rn), vecshiftL32:$imm))]> {
bits<5> imm;
let Inst{20-16} = imm;
}
}
//---
// Vector load/store
//---
// SIMD ldX/stX no-index memory references don't allow the optional
// ", #0" constant and handle post-indexing explicitly, so we use
// a more specialized parse method for them. Otherwise, it's the same as
// the general GPR64sp handling.
class BaseSIMDLdSt<bit Q, bit L, bits<4> opcode, bits<2> size,
string asm, dag oops, dag iops, list<dag> pattern>
: I<oops, iops, asm, "\t$Vt, [$Rn]", "", pattern> {
bits<5> Vt;
bits<5> Rn;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29-23} = 0b0011000;
let Inst{22} = L;
let Inst{21-16} = 0b000000;
let Inst{15-12} = opcode;
let Inst{11-10} = size;
let Inst{9-5} = Rn;
let Inst{4-0} = Vt;
}
class BaseSIMDLdStPost<bit Q, bit L, bits<4> opcode, bits<2> size,
string asm, dag oops, dag iops>
: I<oops, iops, asm, "\t$Vt, [$Rn], $Xm", "$Rn = $wback", []> {
bits<5> Vt;
bits<5> Rn;
bits<5> Xm;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29-23} = 0b0011001;
let Inst{22} = L;
let Inst{21} = 0;
let Inst{20-16} = Xm;
let Inst{15-12} = opcode;
let Inst{11-10} = size;
let Inst{9-5} = Rn;
let Inst{4-0} = Vt;
}
// The immediate form of AdvSIMD post-indexed addressing is encoded with
// register post-index addressing from the zero register.
multiclass SIMDLdStAliases<string BaseName, string asm, string layout, string Count,
int Offset, int Size> {
// E.g. "ld1 { v0.8b, v1.8b }, [x1], #16"
// "ld1\t$Vt, [$Rn], #16"
// may get mapped to
// (LD1Twov8b_POST VecListTwo8b:$Vt, GPR64sp:$Rn, XZR)
def : InstAlias<asm # "\t$Vt, [$Rn], #" # Offset,
(!cast<Instruction>(BaseName # Count # "v" # layout # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # layout):$Vt,
XZR), 1>;
// E.g. "ld1.8b { v0, v1 }, [x1], #16"
// "ld1.8b\t$Vt, [$Rn], #16"
// may get mapped to
// (LD1Twov8b_POST VecListTwo64:$Vt, GPR64sp:$Rn, XZR)
def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], #" # Offset,
(!cast<Instruction>(BaseName # Count # "v" # layout # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # Size):$Vt,
XZR), 0>;
// E.g. "ld1.8b { v0, v1 }, [x1]"
// "ld1\t$Vt, [$Rn]"
// may get mapped to
// (LD1Twov8b VecListTwo64:$Vt, GPR64sp:$Rn)
def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn]",
(!cast<Instruction>(BaseName # Count # "v" # layout)
!cast<RegisterOperand>("VecList" # Count # Size):$Vt,
GPR64sp:$Rn), 0>;
// E.g. "ld1.8b { v0, v1 }, [x1], x2"
// "ld1\t$Vt, [$Rn], $Xm"
// may get mapped to
// (LD1Twov8b_POST VecListTwo64:$Vt, GPR64sp:$Rn, GPR64pi8:$Xm)
def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], $Xm",
(!cast<Instruction>(BaseName # Count # "v" # layout # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # Size):$Vt,
!cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>;
}
multiclass BaseSIMDLdN<string BaseName, string Count, string asm, string veclist,
int Offset128, int Offset64, bits<4> opcode> {
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
def v16b: BaseSIMDLdSt<1, 1, opcode, 0b00, asm,
(outs !cast<RegisterOperand>(veclist # "16b"):$Vt),
(ins GPR64sp:$Rn), []>;
def v8h : BaseSIMDLdSt<1, 1, opcode, 0b01, asm,
(outs !cast<RegisterOperand>(veclist # "8h"):$Vt),
(ins GPR64sp:$Rn), []>;
def v4s : BaseSIMDLdSt<1, 1, opcode, 0b10, asm,
(outs !cast<RegisterOperand>(veclist # "4s"):$Vt),
(ins GPR64sp:$Rn), []>;
def v2d : BaseSIMDLdSt<1, 1, opcode, 0b11, asm,
(outs !cast<RegisterOperand>(veclist # "2d"):$Vt),
(ins GPR64sp:$Rn), []>;
def v8b : BaseSIMDLdSt<0, 1, opcode, 0b00, asm,
(outs !cast<RegisterOperand>(veclist # "8b"):$Vt),
(ins GPR64sp:$Rn), []>;
def v4h : BaseSIMDLdSt<0, 1, opcode, 0b01, asm,
(outs !cast<RegisterOperand>(veclist # "4h"):$Vt),
(ins GPR64sp:$Rn), []>;
def v2s : BaseSIMDLdSt<0, 1, opcode, 0b10, asm,
(outs !cast<RegisterOperand>(veclist # "2s"):$Vt),
(ins GPR64sp:$Rn), []>;
def v16b_POST: BaseSIMDLdStPost<1, 1, opcode, 0b00, asm,
(outs GPR64sp:$wback,
!cast<RegisterOperand>(veclist # "16b"):$Vt),
(ins GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
def v8h_POST : BaseSIMDLdStPost<1, 1, opcode, 0b01, asm,
(outs GPR64sp:$wback,
!cast<RegisterOperand>(veclist # "8h"):$Vt),
(ins GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
def v4s_POST : BaseSIMDLdStPost<1, 1, opcode, 0b10, asm,
(outs GPR64sp:$wback,
!cast<RegisterOperand>(veclist # "4s"):$Vt),
(ins GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
def v2d_POST : BaseSIMDLdStPost<1, 1, opcode, 0b11, asm,
(outs GPR64sp:$wback,
!cast<RegisterOperand>(veclist # "2d"):$Vt),
(ins GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
def v8b_POST : BaseSIMDLdStPost<0, 1, opcode, 0b00, asm,
(outs GPR64sp:$wback,
!cast<RegisterOperand>(veclist # "8b"):$Vt),
(ins GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
def v4h_POST : BaseSIMDLdStPost<0, 1, opcode, 0b01, asm,
(outs GPR64sp:$wback,
!cast<RegisterOperand>(veclist # "4h"):$Vt),
(ins GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
def v2s_POST : BaseSIMDLdStPost<0, 1, opcode, 0b10, asm,
(outs GPR64sp:$wback,
!cast<RegisterOperand>(veclist # "2s"):$Vt),
(ins GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
}
defm : SIMDLdStAliases<BaseName, asm, "16b", Count, Offset128, 128>;
defm : SIMDLdStAliases<BaseName, asm, "8h", Count, Offset128, 128>;
defm : SIMDLdStAliases<BaseName, asm, "4s", Count, Offset128, 128>;
defm : SIMDLdStAliases<BaseName, asm, "2d", Count, Offset128, 128>;
defm : SIMDLdStAliases<BaseName, asm, "8b", Count, Offset64, 64>;
defm : SIMDLdStAliases<BaseName, asm, "4h", Count, Offset64, 64>;
defm : SIMDLdStAliases<BaseName, asm, "2s", Count, Offset64, 64>;
}
// Only ld1/st1 has a v1d version.
multiclass BaseSIMDStN<string BaseName, string Count, string asm, string veclist,
int Offset128, int Offset64, bits<4> opcode> {
let hasSideEffects = 0, mayStore = 1, mayLoad = 0 in {
def v16b : BaseSIMDLdSt<1, 0, opcode, 0b00, asm, (outs),
(ins !cast<RegisterOperand>(veclist # "16b"):$Vt,
GPR64sp:$Rn), []>;
def v8h : BaseSIMDLdSt<1, 0, opcode, 0b01, asm, (outs),
(ins !cast<RegisterOperand>(veclist # "8h"):$Vt,
GPR64sp:$Rn), []>;
def v4s : BaseSIMDLdSt<1, 0, opcode, 0b10, asm, (outs),
(ins !cast<RegisterOperand>(veclist # "4s"):$Vt,
GPR64sp:$Rn), []>;
def v2d : BaseSIMDLdSt<1, 0, opcode, 0b11, asm, (outs),
(ins !cast<RegisterOperand>(veclist # "2d"):$Vt,
GPR64sp:$Rn), []>;
def v8b : BaseSIMDLdSt<0, 0, opcode, 0b00, asm, (outs),
(ins !cast<RegisterOperand>(veclist # "8b"):$Vt,
GPR64sp:$Rn), []>;
def v4h : BaseSIMDLdSt<0, 0, opcode, 0b01, asm, (outs),
(ins !cast<RegisterOperand>(veclist # "4h"):$Vt,
GPR64sp:$Rn), []>;
def v2s : BaseSIMDLdSt<0, 0, opcode, 0b10, asm, (outs),
(ins !cast<RegisterOperand>(veclist # "2s"):$Vt,
GPR64sp:$Rn), []>;
def v16b_POST : BaseSIMDLdStPost<1, 0, opcode, 0b00, asm,
(outs GPR64sp:$wback),
(ins !cast<RegisterOperand>(veclist # "16b"):$Vt,
GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
def v8h_POST : BaseSIMDLdStPost<1, 0, opcode, 0b01, asm,
(outs GPR64sp:$wback),
(ins !cast<RegisterOperand>(veclist # "8h"):$Vt,
GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
def v4s_POST : BaseSIMDLdStPost<1, 0, opcode, 0b10, asm,
(outs GPR64sp:$wback),
(ins !cast<RegisterOperand>(veclist # "4s"):$Vt,
GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
def v2d_POST : BaseSIMDLdStPost<1, 0, opcode, 0b11, asm,
(outs GPR64sp:$wback),
(ins !cast<RegisterOperand>(veclist # "2d"):$Vt,
GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset128):$Xm)>;
def v8b_POST : BaseSIMDLdStPost<0, 0, opcode, 0b00, asm,
(outs GPR64sp:$wback),
(ins !cast<RegisterOperand>(veclist # "8b"):$Vt,
GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
def v4h_POST : BaseSIMDLdStPost<0, 0, opcode, 0b01, asm,
(outs GPR64sp:$wback),
(ins !cast<RegisterOperand>(veclist # "4h"):$Vt,
GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
def v2s_POST : BaseSIMDLdStPost<0, 0, opcode, 0b10, asm,
(outs GPR64sp:$wback),
(ins !cast<RegisterOperand>(veclist # "2s"):$Vt,
GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
}
defm : SIMDLdStAliases<BaseName, asm, "16b", Count, Offset128, 128>;
defm : SIMDLdStAliases<BaseName, asm, "8h", Count, Offset128, 128>;
defm : SIMDLdStAliases<BaseName, asm, "4s", Count, Offset128, 128>;
defm : SIMDLdStAliases<BaseName, asm, "2d", Count, Offset128, 128>;
defm : SIMDLdStAliases<BaseName, asm, "8b", Count, Offset64, 64>;
defm : SIMDLdStAliases<BaseName, asm, "4h", Count, Offset64, 64>;
defm : SIMDLdStAliases<BaseName, asm, "2s", Count, Offset64, 64>;
}
multiclass BaseSIMDLd1<string BaseName, string Count, string asm, string veclist,
int Offset128, int Offset64, bits<4> opcode>
: BaseSIMDLdN<BaseName, Count, asm, veclist, Offset128, Offset64, opcode> {
// LD1 instructions have extra "1d" variants.
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in {
def v1d : BaseSIMDLdSt<0, 1, opcode, 0b11, asm,
(outs !cast<RegisterOperand>(veclist # "1d"):$Vt),
(ins GPR64sp:$Rn), []>;
def v1d_POST : BaseSIMDLdStPost<0, 1, opcode, 0b11, asm,
(outs GPR64sp:$wback,
!cast<RegisterOperand>(veclist # "1d"):$Vt),
(ins GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
}
defm : SIMDLdStAliases<BaseName, asm, "1d", Count, Offset64, 64>;
}
multiclass BaseSIMDSt1<string BaseName, string Count, string asm, string veclist,
int Offset128, int Offset64, bits<4> opcode>
: BaseSIMDStN<BaseName, Count, asm, veclist, Offset128, Offset64, opcode> {
// ST1 instructions have extra "1d" variants.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in {
def v1d : BaseSIMDLdSt<0, 0, opcode, 0b11, asm, (outs),
(ins !cast<RegisterOperand>(veclist # "1d"):$Vt,
GPR64sp:$Rn), []>;
def v1d_POST : BaseSIMDLdStPost<0, 0, opcode, 0b11, asm,
(outs GPR64sp:$wback),
(ins !cast<RegisterOperand>(veclist # "1d"):$Vt,
GPR64sp:$Rn,
!cast<RegisterOperand>("GPR64pi" # Offset64):$Xm)>;
}
defm : SIMDLdStAliases<BaseName, asm, "1d", Count, Offset64, 64>;
}
multiclass SIMDLd1Multiple<string asm> {
defm One : BaseSIMDLd1<NAME, "One", asm, "VecListOne", 16, 8, 0b0111>;
defm Two : BaseSIMDLd1<NAME, "Two", asm, "VecListTwo", 32, 16, 0b1010>;
defm Three : BaseSIMDLd1<NAME, "Three", asm, "VecListThree", 48, 24, 0b0110>;
defm Four : BaseSIMDLd1<NAME, "Four", asm, "VecListFour", 64, 32, 0b0010>;
}
multiclass SIMDSt1Multiple<string asm> {
defm One : BaseSIMDSt1<NAME, "One", asm, "VecListOne", 16, 8, 0b0111>;
defm Two : BaseSIMDSt1<NAME, "Two", asm, "VecListTwo", 32, 16, 0b1010>;
defm Three : BaseSIMDSt1<NAME, "Three", asm, "VecListThree", 48, 24, 0b0110>;
defm Four : BaseSIMDSt1<NAME, "Four", asm, "VecListFour", 64, 32, 0b0010>;
}
multiclass SIMDLd2Multiple<string asm> {
defm Two : BaseSIMDLdN<NAME, "Two", asm, "VecListTwo", 32, 16, 0b1000>;
}
multiclass SIMDSt2Multiple<string asm> {
defm Two : BaseSIMDStN<NAME, "Two", asm, "VecListTwo", 32, 16, 0b1000>;
}
multiclass SIMDLd3Multiple<string asm> {
defm Three : BaseSIMDLdN<NAME, "Three", asm, "VecListThree", 48, 24, 0b0100>;
}
multiclass SIMDSt3Multiple<string asm> {
defm Three : BaseSIMDStN<NAME, "Three", asm, "VecListThree", 48, 24, 0b0100>;
}
multiclass SIMDLd4Multiple<string asm> {
defm Four : BaseSIMDLdN<NAME, "Four", asm, "VecListFour", 64, 32, 0b0000>;
}
multiclass SIMDSt4Multiple<string asm> {
defm Four : BaseSIMDStN<NAME, "Four", asm, "VecListFour", 64, 32, 0b0000>;
}
//---
// AdvSIMD Load/store single-element
//---
class BaseSIMDLdStSingle<bit L, bit R, bits<3> opcode,
string asm, string operands, string cst,
dag oops, dag iops, list<dag> pattern>
: I<oops, iops, asm, operands, cst, pattern> {
bits<5> Vt;
bits<5> Rn;
let Inst{31} = 0;
let Inst{29-24} = 0b001101;
let Inst{22} = L;
let Inst{21} = R;
let Inst{15-13} = opcode;
let Inst{9-5} = Rn;
let Inst{4-0} = Vt;
}
class BaseSIMDLdStSingleTied<bit L, bit R, bits<3> opcode,
string asm, string operands, string cst,
dag oops, dag iops, list<dag> pattern>
: I<oops, iops, asm, operands, "$Vt = $dst," # cst, pattern> {
bits<5> Vt;
bits<5> Rn;
let Inst{31} = 0;
let Inst{29-24} = 0b001101;
let Inst{22} = L;
let Inst{21} = R;
let Inst{15-13} = opcode;
let Inst{9-5} = Rn;
let Inst{4-0} = Vt;
}
let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDLdR<bit Q, bit R, bits<3> opcode, bit S, bits<2> size, string asm,
DAGOperand listtype>
: BaseSIMDLdStSingle<1, R, opcode, asm, "\t$Vt, [$Rn]", "",
(outs listtype:$Vt), (ins GPR64sp:$Rn),
[]> {
let Inst{30} = Q;
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = S;
let Inst{11-10} = size;
}
let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDLdRPost<bit Q, bit R, bits<3> opcode, bit S, bits<2> size,
string asm, DAGOperand listtype, DAGOperand GPR64pi>
: BaseSIMDLdStSingle<1, R, opcode, asm, "\t$Vt, [$Rn], $Xm",
"$Rn = $wback",
(outs GPR64sp:$wback, listtype:$Vt),
(ins GPR64sp:$Rn, GPR64pi:$Xm), []> {
bits<5> Xm;
let Inst{30} = Q;
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = S;
let Inst{11-10} = size;
}
multiclass SIMDLdrAliases<string BaseName, string asm, string layout, string Count,
int Offset, int Size> {
// E.g. "ld1r { v0.8b }, [x1], #1"
// "ld1r.8b\t$Vt, [$Rn], #1"
// may get mapped to
// (LD1Rv8b_POST VecListOne8b:$Vt, GPR64sp:$Rn, XZR)
def : InstAlias<asm # "\t$Vt, [$Rn], #" # Offset,
(!cast<Instruction>(BaseName # "v" # layout # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # layout):$Vt,
XZR), 1>;
// E.g. "ld1r.8b { v0 }, [x1], #1"
// "ld1r.8b\t$Vt, [$Rn], #1"
// may get mapped to
// (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, XZR)
def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], #" # Offset,
(!cast<Instruction>(BaseName # "v" # layout # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # Size):$Vt,
XZR), 0>;
// E.g. "ld1r.8b { v0 }, [x1]"
// "ld1r.8b\t$Vt, [$Rn]"
// may get mapped to
// (LD1Rv8b VecListOne64:$Vt, GPR64sp:$Rn)
def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn]",
(!cast<Instruction>(BaseName # "v" # layout)
!cast<RegisterOperand>("VecList" # Count # Size):$Vt,
GPR64sp:$Rn), 0>;
// E.g. "ld1r.8b { v0 }, [x1], x2"
// "ld1r.8b\t$Vt, [$Rn], $Xm"
// may get mapped to
// (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, GPR64pi1:$Xm)
def : InstAlias<asm # "." # layout # "\t$Vt, [$Rn], $Xm",
(!cast<Instruction>(BaseName # "v" # layout # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # Size):$Vt,
!cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>;
}
multiclass SIMDLdR<bit R, bits<3> opcode, bit S, string asm, string Count,
int Offset1, int Offset2, int Offset4, int Offset8> {
def v8b : BaseSIMDLdR<0, R, opcode, S, 0b00, asm,
!cast<DAGOperand>("VecList" # Count # "8b")>;
def v16b: BaseSIMDLdR<1, R, opcode, S, 0b00, asm,
!cast<DAGOperand>("VecList" # Count #"16b")>;
def v4h : BaseSIMDLdR<0, R, opcode, S, 0b01, asm,
!cast<DAGOperand>("VecList" # Count #"4h")>;
def v8h : BaseSIMDLdR<1, R, opcode, S, 0b01, asm,
!cast<DAGOperand>("VecList" # Count #"8h")>;
def v2s : BaseSIMDLdR<0, R, opcode, S, 0b10, asm,
!cast<DAGOperand>("VecList" # Count #"2s")>;
def v4s : BaseSIMDLdR<1, R, opcode, S, 0b10, asm,
!cast<DAGOperand>("VecList" # Count #"4s")>;
def v1d : BaseSIMDLdR<0, R, opcode, S, 0b11, asm,
!cast<DAGOperand>("VecList" # Count #"1d")>;
def v2d : BaseSIMDLdR<1, R, opcode, S, 0b11, asm,
!cast<DAGOperand>("VecList" # Count #"2d")>;
def v8b_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b00, asm,
!cast<DAGOperand>("VecList" # Count # "8b"),
!cast<DAGOperand>("GPR64pi" # Offset1)>;
def v16b_POST: BaseSIMDLdRPost<1, R, opcode, S, 0b00, asm,
!cast<DAGOperand>("VecList" # Count # "16b"),
!cast<DAGOperand>("GPR64pi" # Offset1)>;
def v4h_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b01, asm,
!cast<DAGOperand>("VecList" # Count # "4h"),
!cast<DAGOperand>("GPR64pi" # Offset2)>;
def v8h_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b01, asm,
!cast<DAGOperand>("VecList" # Count # "8h"),
!cast<DAGOperand>("GPR64pi" # Offset2)>;
def v2s_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b10, asm,
!cast<DAGOperand>("VecList" # Count # "2s"),
!cast<DAGOperand>("GPR64pi" # Offset4)>;
def v4s_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b10, asm,
!cast<DAGOperand>("VecList" # Count # "4s"),
!cast<DAGOperand>("GPR64pi" # Offset4)>;
def v1d_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b11, asm,
!cast<DAGOperand>("VecList" # Count # "1d"),
!cast<DAGOperand>("GPR64pi" # Offset8)>;
def v2d_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b11, asm,
!cast<DAGOperand>("VecList" # Count # "2d"),
!cast<DAGOperand>("GPR64pi" # Offset8)>;
defm : SIMDLdrAliases<NAME, asm, "8b", Count, Offset1, 64>;
defm : SIMDLdrAliases<NAME, asm, "16b", Count, Offset1, 128>;
defm : SIMDLdrAliases<NAME, asm, "4h", Count, Offset2, 64>;
defm : SIMDLdrAliases<NAME, asm, "8h", Count, Offset2, 128>;
defm : SIMDLdrAliases<NAME, asm, "2s", Count, Offset4, 64>;
defm : SIMDLdrAliases<NAME, asm, "4s", Count, Offset4, 128>;
defm : SIMDLdrAliases<NAME, asm, "1d", Count, Offset8, 64>;
defm : SIMDLdrAliases<NAME, asm, "2d", Count, Offset8, 128>;
}
class SIMDLdStSingleB<bit L, bit R, bits<3> opcode, string asm,
dag oops, dag iops, list<dag> pattern>
: BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops,
pattern> {
// idx encoded in Q:S:size fields.
bits<4> idx;
let Inst{30} = idx{3};
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = idx{2};
let Inst{11-10} = idx{1-0};
}
class SIMDLdStSingleBTied<bit L, bit R, bits<3> opcode, string asm,
dag oops, dag iops, list<dag> pattern>
: BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "",
oops, iops, pattern> {
// idx encoded in Q:S:size fields.
bits<4> idx;
let Inst{30} = idx{3};
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = idx{2};
let Inst{11-10} = idx{1-0};
}
class SIMDLdStSingleBPost<bit L, bit R, bits<3> opcode, string asm,
dag oops, dag iops>
: BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
"$Rn = $wback", oops, iops, []> {
// idx encoded in Q:S:size fields.
bits<4> idx;
bits<5> Xm;
let Inst{30} = idx{3};
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = idx{2};
let Inst{11-10} = idx{1-0};
}
class SIMDLdStSingleBTiedPost<bit L, bit R, bits<3> opcode, string asm,
dag oops, dag iops>
: BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
"$Rn = $wback", oops, iops, []> {
// idx encoded in Q:S:size fields.
bits<4> idx;
bits<5> Xm;
let Inst{30} = idx{3};
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = idx{2};
let Inst{11-10} = idx{1-0};
}
class SIMDLdStSingleH<bit L, bit R, bits<3> opcode, bit size, string asm,
dag oops, dag iops, list<dag> pattern>
: BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops,
pattern> {
// idx encoded in Q:S:size<1> fields.
bits<3> idx;
let Inst{30} = idx{2};
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = idx{1};
let Inst{11} = idx{0};
let Inst{10} = size;
}
class SIMDLdStSingleHTied<bit L, bit R, bits<3> opcode, bit size, string asm,
dag oops, dag iops, list<dag> pattern>
: BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "",
oops, iops, pattern> {
// idx encoded in Q:S:size<1> fields.
bits<3> idx;
let Inst{30} = idx{2};
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = idx{1};
let Inst{11} = idx{0};
let Inst{10} = size;
}
class SIMDLdStSingleHPost<bit L, bit R, bits<3> opcode, bit size, string asm,
dag oops, dag iops>
: BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
"$Rn = $wback", oops, iops, []> {
// idx encoded in Q:S:size<1> fields.
bits<3> idx;
bits<5> Xm;
let Inst{30} = idx{2};
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = idx{1};
let Inst{11} = idx{0};
let Inst{10} = size;
}
class SIMDLdStSingleHTiedPost<bit L, bit R, bits<3> opcode, bit size, string asm,
dag oops, dag iops>
: BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
"$Rn = $wback", oops, iops, []> {
// idx encoded in Q:S:size<1> fields.
bits<3> idx;
bits<5> Xm;
let Inst{30} = idx{2};
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = idx{1};
let Inst{11} = idx{0};
let Inst{10} = size;
}
class SIMDLdStSingleS<bit L, bit R, bits<3> opcode, bits<2> size, string asm,
dag oops, dag iops, list<dag> pattern>
: BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops,
pattern> {
// idx encoded in Q:S fields.
bits<2> idx;
let Inst{30} = idx{1};
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = idx{0};
let Inst{11-10} = size;
}
class SIMDLdStSingleSTied<bit L, bit R, bits<3> opcode, bits<2> size, string asm,
dag oops, dag iops, list<dag> pattern>
: BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "",
oops, iops, pattern> {
// idx encoded in Q:S fields.
bits<2> idx;
let Inst{30} = idx{1};
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = idx{0};
let Inst{11-10} = size;
}
class SIMDLdStSingleSPost<bit L, bit R, bits<3> opcode, bits<2> size,
string asm, dag oops, dag iops>
: BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
"$Rn = $wback", oops, iops, []> {
// idx encoded in Q:S fields.
bits<2> idx;
bits<5> Xm;
let Inst{30} = idx{1};
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = idx{0};
let Inst{11-10} = size;
}
class SIMDLdStSingleSTiedPost<bit L, bit R, bits<3> opcode, bits<2> size,
string asm, dag oops, dag iops>
: BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
"$Rn = $wback", oops, iops, []> {
// idx encoded in Q:S fields.
bits<2> idx;
bits<5> Xm;
let Inst{30} = idx{1};
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = idx{0};
let Inst{11-10} = size;
}
class SIMDLdStSingleD<bit L, bit R, bits<3> opcode, bits<2> size, string asm,
dag oops, dag iops, list<dag> pattern>
: BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "", oops, iops,
pattern> {
// idx encoded in Q field.
bits<1> idx;
let Inst{30} = idx;
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = 0;
let Inst{11-10} = size;
}
class SIMDLdStSingleDTied<bit L, bit R, bits<3> opcode, bits<2> size, string asm,
dag oops, dag iops, list<dag> pattern>
: BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn]", "",
oops, iops, pattern> {
// idx encoded in Q field.
bits<1> idx;
let Inst{30} = idx;
let Inst{23} = 0;
let Inst{20-16} = 0b00000;
let Inst{12} = 0;
let Inst{11-10} = size;
}
class SIMDLdStSingleDPost<bit L, bit R, bits<3> opcode, bits<2> size,
string asm, dag oops, dag iops>
: BaseSIMDLdStSingle<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
"$Rn = $wback", oops, iops, []> {
// idx encoded in Q field.
bits<1> idx;
bits<5> Xm;
let Inst{30} = idx;
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = 0;
let Inst{11-10} = size;
}
class SIMDLdStSingleDTiedPost<bit L, bit R, bits<3> opcode, bits<2> size,
string asm, dag oops, dag iops>
: BaseSIMDLdStSingleTied<L, R, opcode, asm, "\t$Vt$idx, [$Rn], $Xm",
"$Rn = $wback", oops, iops, []> {
// idx encoded in Q field.
bits<1> idx;
bits<5> Xm;
let Inst{30} = idx;
let Inst{23} = 1;
let Inst{20-16} = Xm;
let Inst{12} = 0;
let Inst{11-10} = size;
}
let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
multiclass SIMDLdSingleBTied<bit R, bits<3> opcode, string asm,
RegisterOperand listtype,
RegisterOperand GPR64pi> {
def i8 : SIMDLdStSingleBTied<1, R, opcode, asm,
(outs listtype:$dst),
(ins listtype:$Vt, VectorIndexB:$idx,
GPR64sp:$Rn), []>;
def i8_POST : SIMDLdStSingleBTiedPost<1, R, opcode, asm,
(outs GPR64sp:$wback, listtype:$dst),
(ins listtype:$Vt, VectorIndexB:$idx,
GPR64sp:$Rn, GPR64pi:$Xm)>;
}
let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
multiclass SIMDLdSingleHTied<bit R, bits<3> opcode, bit size, string asm,
RegisterOperand listtype,
RegisterOperand GPR64pi> {
def i16 : SIMDLdStSingleHTied<1, R, opcode, size, asm,
(outs listtype:$dst),
(ins listtype:$Vt, VectorIndexH:$idx,
GPR64sp:$Rn), []>;
def i16_POST : SIMDLdStSingleHTiedPost<1, R, opcode, size, asm,
(outs GPR64sp:$wback, listtype:$dst),
(ins listtype:$Vt, VectorIndexH:$idx,
GPR64sp:$Rn, GPR64pi:$Xm)>;
}
let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
multiclass SIMDLdSingleSTied<bit R, bits<3> opcode, bits<2> size,string asm,
RegisterOperand listtype,
RegisterOperand GPR64pi> {
def i32 : SIMDLdStSingleSTied<1, R, opcode, size, asm,
(outs listtype:$dst),
(ins listtype:$Vt, VectorIndexS:$idx,
GPR64sp:$Rn), []>;
def i32_POST : SIMDLdStSingleSTiedPost<1, R, opcode, size, asm,
(outs GPR64sp:$wback, listtype:$dst),
(ins listtype:$Vt, VectorIndexS:$idx,
GPR64sp:$Rn, GPR64pi:$Xm)>;
}
let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in
multiclass SIMDLdSingleDTied<bit R, bits<3> opcode, bits<2> size, string asm,
RegisterOperand listtype, RegisterOperand GPR64pi> {
def i64 : SIMDLdStSingleDTied<1, R, opcode, size, asm,
(outs listtype:$dst),
(ins listtype:$Vt, VectorIndexD:$idx,
GPR64sp:$Rn), []>;
def i64_POST : SIMDLdStSingleDTiedPost<1, R, opcode, size, asm,
(outs GPR64sp:$wback, listtype:$dst),
(ins listtype:$Vt, VectorIndexD:$idx,
GPR64sp:$Rn, GPR64pi:$Xm)>;
}
let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
multiclass SIMDStSingleB<bit R, bits<3> opcode, string asm,
RegisterOperand listtype, RegisterOperand GPR64pi> {
def i8 : SIMDLdStSingleB<0, R, opcode, asm,
(outs), (ins listtype:$Vt, VectorIndexB:$idx,
GPR64sp:$Rn), []>;
def i8_POST : SIMDLdStSingleBPost<0, R, opcode, asm,
(outs GPR64sp:$wback),
(ins listtype:$Vt, VectorIndexB:$idx,
GPR64sp:$Rn, GPR64pi:$Xm)>;
}
let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
multiclass SIMDStSingleH<bit R, bits<3> opcode, bit size, string asm,
RegisterOperand listtype, RegisterOperand GPR64pi> {
def i16 : SIMDLdStSingleH<0, R, opcode, size, asm,
(outs), (ins listtype:$Vt, VectorIndexH:$idx,
GPR64sp:$Rn), []>;
def i16_POST : SIMDLdStSingleHPost<0, R, opcode, size, asm,
(outs GPR64sp:$wback),
(ins listtype:$Vt, VectorIndexH:$idx,
GPR64sp:$Rn, GPR64pi:$Xm)>;
}
let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
multiclass SIMDStSingleS<bit R, bits<3> opcode, bits<2> size,string asm,
RegisterOperand listtype, RegisterOperand GPR64pi> {
def i32 : SIMDLdStSingleS<0, R, opcode, size, asm,
(outs), (ins listtype:$Vt, VectorIndexS:$idx,
GPR64sp:$Rn), []>;
def i32_POST : SIMDLdStSingleSPost<0, R, opcode, size, asm,
(outs GPR64sp:$wback),
(ins listtype:$Vt, VectorIndexS:$idx,
GPR64sp:$Rn, GPR64pi:$Xm)>;
}
let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in
multiclass SIMDStSingleD<bit R, bits<3> opcode, bits<2> size, string asm,
RegisterOperand listtype, RegisterOperand GPR64pi> {
def i64 : SIMDLdStSingleD<0, R, opcode, size, asm,
(outs), (ins listtype:$Vt, VectorIndexD:$idx,
GPR64sp:$Rn), []>;
def i64_POST : SIMDLdStSingleDPost<0, R, opcode, size, asm,
(outs GPR64sp:$wback),
(ins listtype:$Vt, VectorIndexD:$idx,
GPR64sp:$Rn, GPR64pi:$Xm)>;
}
multiclass SIMDLdStSingleAliases<string asm, string layout, string Type,
string Count, int Offset, Operand idxtype> {
// E.g. "ld1 { v0.8b }[0], [x1], #1"
// "ld1\t$Vt, [$Rn], #1"
// may get mapped to
// (LD1Rv8b_POST VecListOne8b:$Vt, GPR64sp:$Rn, XZR)
def : InstAlias<asm # "\t$Vt$idx, [$Rn], #" # Offset,
(!cast<Instruction>(NAME # Type # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # layout):$Vt,
idxtype:$idx, XZR), 1>;
// E.g. "ld1.8b { v0 }[0], [x1], #1"
// "ld1.8b\t$Vt, [$Rn], #1"
// may get mapped to
// (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, XZR)
def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn], #" # Offset,
(!cast<Instruction>(NAME # Type # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # "128"):$Vt,
idxtype:$idx, XZR), 0>;
// E.g. "ld1.8b { v0 }[0], [x1]"
// "ld1.8b\t$Vt, [$Rn]"
// may get mapped to
// (LD1Rv8b VecListOne64:$Vt, GPR64sp:$Rn)
def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn]",
(!cast<Instruction>(NAME # Type)
!cast<RegisterOperand>("VecList" # Count # "128"):$Vt,
idxtype:$idx, GPR64sp:$Rn), 0>;
// E.g. "ld1.8b { v0 }[0], [x1], x2"
// "ld1.8b\t$Vt, [$Rn], $Xm"
// may get mapped to
// (LD1Rv8b_POST VecListOne64:$Vt, GPR64sp:$Rn, GPR64pi1:$Xm)
def : InstAlias<asm # "." # layout # "\t$Vt$idx, [$Rn], $Xm",
(!cast<Instruction>(NAME # Type # "_POST")
GPR64sp:$Rn,
!cast<RegisterOperand>("VecList" # Count # "128"):$Vt,
idxtype:$idx,
!cast<RegisterOperand>("GPR64pi" # Offset):$Xm), 0>;
}
multiclass SIMDLdSt1SingleAliases<string asm> {
defm "" : SIMDLdStSingleAliases<asm, "b", "i8", "One", 1, VectorIndexB>;
defm "" : SIMDLdStSingleAliases<asm, "h", "i16", "One", 2, VectorIndexH>;
defm "" : SIMDLdStSingleAliases<asm, "s", "i32", "One", 4, VectorIndexS>;
defm "" : SIMDLdStSingleAliases<asm, "d", "i64", "One", 8, VectorIndexD>;
}
multiclass SIMDLdSt2SingleAliases<string asm> {
defm "" : SIMDLdStSingleAliases<asm, "b", "i8", "Two", 2, VectorIndexB>;
defm "" : SIMDLdStSingleAliases<asm, "h", "i16", "Two", 4, VectorIndexH>;
defm "" : SIMDLdStSingleAliases<asm, "s", "i32", "Two", 8, VectorIndexS>;
defm "" : SIMDLdStSingleAliases<asm, "d", "i64", "Two", 16, VectorIndexD>;
}
multiclass SIMDLdSt3SingleAliases<string asm> {
defm "" : SIMDLdStSingleAliases<asm, "b", "i8", "Three", 3, VectorIndexB>;
defm "" : SIMDLdStSingleAliases<asm, "h", "i16", "Three", 6, VectorIndexH>;
defm "" : SIMDLdStSingleAliases<asm, "s", "i32", "Three", 12, VectorIndexS>;
defm "" : SIMDLdStSingleAliases<asm, "d", "i64", "Three", 24, VectorIndexD>;
}
multiclass SIMDLdSt4SingleAliases<string asm> {
defm "" : SIMDLdStSingleAliases<asm, "b", "i8", "Four", 4, VectorIndexB>;
defm "" : SIMDLdStSingleAliases<asm, "h", "i16", "Four", 8, VectorIndexH>;
defm "" : SIMDLdStSingleAliases<asm, "s", "i32", "Four", 16, VectorIndexS>;
defm "" : SIMDLdStSingleAliases<asm, "d", "i64", "Four", 32, VectorIndexD>;
}
} // end of 'let Predicates = [HasNEON]'
//----------------------------------------------------------------------------
// AdvSIMD v8.1 Rounding Double Multiply Add/Subtract
//----------------------------------------------------------------------------
let Predicates = [HasNEON, HasRDM] in {
class BaseSIMDThreeSameVectorTiedR0<bit Q, bit U, bits<2> size, bits<5> opcode,
RegisterOperand regtype, string asm,
string kind, list<dag> pattern>
: BaseSIMDThreeSameVectorTied<Q, U, {size,0}, opcode, regtype, asm, kind,
pattern> {
}
multiclass SIMDThreeSameVectorSQRDMLxHTiedHS<bit U, bits<5> opc, string asm,
SDPatternOperator Accum> {
def v4i16 : BaseSIMDThreeSameVectorTiedR0<0, U, 0b01, opc, V64, asm, ".4h",
[(set (v4i16 V64:$dst),
(Accum (v4i16 V64:$Rd),
(v4i16 (int_aarch64_neon_sqrdmulh (v4i16 V64:$Rn),
(v4i16 V64:$Rm)))))]>;
def v8i16 : BaseSIMDThreeSameVectorTiedR0<1, U, 0b01, opc, V128, asm, ".8h",
[(set (v8i16 V128:$dst),
(Accum (v8i16 V128:$Rd),
(v8i16 (int_aarch64_neon_sqrdmulh (v8i16 V128:$Rn),
(v8i16 V128:$Rm)))))]>;
def v2i32 : BaseSIMDThreeSameVectorTiedR0<0, U, 0b10, opc, V64, asm, ".2s",
[(set (v2i32 V64:$dst),
(Accum (v2i32 V64:$Rd),
(v2i32 (int_aarch64_neon_sqrdmulh (v2i32 V64:$Rn),
(v2i32 V64:$Rm)))))]>;
def v4i32 : BaseSIMDThreeSameVectorTiedR0<1, U, 0b10, opc, V128, asm, ".4s",
[(set (v4i32 V128:$dst),
(Accum (v4i32 V128:$Rd),
(v4i32 (int_aarch64_neon_sqrdmulh (v4i32 V128:$Rn),
(v4i32 V128:$Rm)))))]>;
}
multiclass SIMDIndexedSQRDMLxHSDTied<bit U, bits<4> opc, string asm,
SDPatternOperator Accum> {
def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc,
V64, V64, V128_lo, VectorIndexH,
asm, ".4h", ".4h", ".4h", ".h",
[(set (v4i16 V64:$dst),
(Accum (v4i16 V64:$Rd),
(v4i16 (int_aarch64_neon_sqrdmulh
(v4i16 V64:$Rn),
(v4i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
VectorIndexH:$idx))))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc,
V128, V128, V128_lo, VectorIndexH,
asm, ".8h", ".8h", ".8h", ".h",
[(set (v8i16 V128:$dst),
(Accum (v8i16 V128:$Rd),
(v8i16 (int_aarch64_neon_sqrdmulh
(v8i16 V128:$Rn),
(v8i16 (AArch64duplane16 (v8i16 V128_lo:$Rm),
VectorIndexH:$idx))))))]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc,
V64, V64, V128, VectorIndexS,
asm, ".2s", ".2s", ".2s", ".s",
[(set (v2i32 V64:$dst),
(Accum (v2i32 V64:$Rd),
(v2i32 (int_aarch64_neon_sqrdmulh
(v2i32 V64:$Rn),
(v2i32 (AArch64duplane32 (v4i32 V128:$Rm),
VectorIndexS:$idx))))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
// FIXME: it would be nice to use the scalar (v1i32) instruction here, but
// an intermediate EXTRACT_SUBREG would be untyped.
// FIXME: direct EXTRACT_SUBREG from v2i32 to i32 is illegal, that's why we
// got it lowered here as (i32 vector_extract (v4i32 insert_subvector(..)))
def : Pat<(i32 (Accum (i32 FPR32Op:$Rd),
(i32 (vector_extract
(v4i32 (insert_subvector
(undef),
(v2i32 (int_aarch64_neon_sqrdmulh
(v2i32 V64:$Rn),
(v2i32 (AArch64duplane32
(v4i32 V128:$Rm),
VectorIndexS:$idx)))),
(i64 0))),
(i64 0))))),
(EXTRACT_SUBREG
(v2i32 (!cast<Instruction>(NAME # v2i32_indexed)
(v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
FPR32Op:$Rd,
ssub)),
V64:$Rn,
V128:$Rm,
VectorIndexS:$idx)),
ssub)>;
def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc,
V128, V128, V128, VectorIndexS,
asm, ".4s", ".4s", ".4s", ".s",
[(set (v4i32 V128:$dst),
(Accum (v4i32 V128:$Rd),
(v4i32 (int_aarch64_neon_sqrdmulh
(v4i32 V128:$Rn),
(v4i32 (AArch64duplane32 (v4i32 V128:$Rm),
VectorIndexS:$idx))))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
// FIXME: it would be nice to use the scalar (v1i32) instruction here, but
// an intermediate EXTRACT_SUBREG would be untyped.
def : Pat<(i32 (Accum (i32 FPR32Op:$Rd),
(i32 (vector_extract
(v4i32 (int_aarch64_neon_sqrdmulh
(v4i32 V128:$Rn),
(v4i32 (AArch64duplane32
(v4i32 V128:$Rm),
VectorIndexS:$idx)))),
(i64 0))))),
(EXTRACT_SUBREG
(v4i32 (!cast<Instruction>(NAME # v4i32_indexed)
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
FPR32Op:$Rd,
ssub)),
V128:$Rn,
V128:$Rm,
VectorIndexS:$idx)),
ssub)>;
def i16_indexed : BaseSIMDIndexedTied<1, U, 1, 0b01, opc,
FPR16Op, FPR16Op, V128_lo,
VectorIndexH, asm, ".h", "", "", ".h",
[]> {
bits<3> idx;
let Inst{11} = idx{2};
let Inst{21} = idx{1};
let Inst{20} = idx{0};
}
def i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc,
FPR32Op, FPR32Op, V128, VectorIndexS,
asm, ".s", "", "", ".s",
[(set (i32 FPR32Op:$dst),
(Accum (i32 FPR32Op:$Rd),
(i32 (int_aarch64_neon_sqrdmulh
(i32 FPR32Op:$Rn),
(i32 (vector_extract (v4i32 V128:$Rm),
VectorIndexS:$idx))))))]> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
}
} // let Predicates = [HasNeon, HasRDM]
//----------------------------------------------------------------------------
// ARMv8.3 Complex ADD/MLA instructions
//----------------------------------------------------------------------------
class ComplexRotationOperand<int Angle, int Remainder, string Type>
: AsmOperandClass {
let PredicateMethod = "isComplexRotation<" # Angle # ", " # Remainder # ">";
let DiagnosticType = "InvalidComplexRotation" # Type;
let Name = "ComplexRotation" # Type;
}
def complexrotateop : Operand<i32>, TImmLeaf<i32, [{ return Imm >= 0 && Imm <= 270; }],
SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((N->getSExtValue() / 90), SDLoc(N), MVT::i32);
}]>> {
let ParserMatchClass = ComplexRotationOperand<90, 0, "Even">;
let PrintMethod = "printComplexRotationOp<90, 0>";
}
def complexrotateopodd : Operand<i32>, TImmLeaf<i32, [{ return Imm >= 0 && Imm <= 270; }],
SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(((N->getSExtValue() - 90) / 180), SDLoc(N), MVT::i32);
}]>> {
let ParserMatchClass = ComplexRotationOperand<180, 90, "Odd">;
let PrintMethod = "printComplexRotationOp<180, 90>";
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDThreeSameVectorComplex<bit Q, bit U, bits<2> size, bits<3> opcode,
RegisterOperand regtype, Operand rottype,
string asm, string kind, list<dag> pattern>
: I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, rottype:$rot), asm,
"{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # ", $rot"
"|" # kind # "\t$Rd, $Rn, $Rm, $rot}", "", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<1> rot;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21} = 0;
let Inst{20-16} = Rm;
let Inst{15-13} = opcode;
// Non-tied version (FCADD) only has one rotation bit
let Inst{12} = rot;
let Inst{11} = 0;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
//8.3 CompNum - Floating-point complex number support
multiclass SIMDThreeSameVectorComplexHSD<bit U, bits<3> opcode, Operand rottype,
string asm, SDPatternOperator OpNode>{
let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
def v4f16 : BaseSIMDThreeSameVectorComplex<0, U, 0b01, opcode, V64, rottype,
asm, ".4h",
[(set (v4f16 V64:$dst), (OpNode (v4f16 V64:$Rd),
(v4f16 V64:$Rn),
(v4f16 V64:$Rm),
(i32 rottype:$rot)))]>;
def v8f16 : BaseSIMDThreeSameVectorComplex<1, U, 0b01, opcode, V128, rottype,
asm, ".8h",
[(set (v8f16 V128:$dst), (OpNode (v8f16 V128:$Rd),
(v8f16 V128:$Rn),
(v8f16 V128:$Rm),
(i32 rottype:$rot)))]>;
}
let Predicates = [HasComplxNum, HasNEON] in {
def v2f32 : BaseSIMDThreeSameVectorComplex<0, U, 0b10, opcode, V64, rottype,
asm, ".2s",
[(set (v2f32 V64:$dst), (OpNode (v2f32 V64:$Rd),
(v2f32 V64:$Rn),
(v2f32 V64:$Rm),
(i32 rottype:$rot)))]>;
def v4f32 : BaseSIMDThreeSameVectorComplex<1, U, 0b10, opcode, V128, rottype,
asm, ".4s",
[(set (v4f32 V128:$dst), (OpNode (v4f32 V128:$Rd),
(v4f32 V128:$Rn),
(v4f32 V128:$Rm),
(i32 rottype:$rot)))]>;
def v2f64 : BaseSIMDThreeSameVectorComplex<1, U, 0b11, opcode, V128, rottype,
asm, ".2d",
[(set (v2f64 V128:$dst), (OpNode (v2f64 V128:$Rd),
(v2f64 V128:$Rn),
(v2f64 V128:$Rm),
(i32 rottype:$rot)))]>;
}
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDThreeSameVectorTiedComplex<bit Q, bit U, bits<2> size,
bits<3> opcode,
RegisterOperand regtype,
Operand rottype, string asm,
string kind, list<dag> pattern>
: I<(outs regtype:$dst),
(ins regtype:$Rd, regtype:$Rn, regtype:$Rm, rottype:$rot), asm,
"{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # ", $rot"
"|" # kind # "\t$Rd, $Rn, $Rm, $rot}", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<2> rot;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28-24} = 0b01110;
let Inst{23-22} = size;
let Inst{21} = 0;
let Inst{20-16} = Rm;
let Inst{15-13} = opcode;
let Inst{12-11} = rot;
let Inst{10} = 1;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
multiclass SIMDThreeSameVectorTiedComplexHSD<bit U, bits<3> opcode,
Operand rottype, string asm,
SDPatternOperator OpNode> {
let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
def v4f16 : BaseSIMDThreeSameVectorTiedComplex<0, U, 0b01, opcode, V64,
rottype, asm, ".4h",
[(set (v4f16 V64:$dst), (OpNode (v4f16 V64:$Rd),
(v4f16 V64:$Rn),
(v4f16 V64:$Rm),
(i32 rottype:$rot)))]>;
def v8f16 : BaseSIMDThreeSameVectorTiedComplex<1, U, 0b01, opcode, V128,
rottype, asm, ".8h",
[(set (v8f16 V128:$dst), (OpNode (v8f16 V128:$Rd),
(v8f16 V128:$Rn),
(v8f16 V128:$Rm),
(i32 rottype:$rot)))]>;
}
let Predicates = [HasComplxNum, HasNEON] in {
def v2f32 : BaseSIMDThreeSameVectorTiedComplex<0, U, 0b10, opcode, V64,
rottype, asm, ".2s",
[(set (v2f32 V64:$dst), (OpNode (v2f32 V64:$Rd),
(v2f32 V64:$Rn),
(v2f32 V64:$Rm),
(i32 rottype:$rot)))]>;
def v4f32 : BaseSIMDThreeSameVectorTiedComplex<1, U, 0b10, opcode, V128,
rottype, asm, ".4s",
[(set (v4f32 V128:$dst), (OpNode (v4f32 V128:$Rd),
(v4f32 V128:$Rn),
(v4f32 V128:$Rm),
(i32 rottype:$rot)))]>;
def v2f64 : BaseSIMDThreeSameVectorTiedComplex<1, U, 0b11, opcode, V128,
rottype, asm, ".2d",
[(set (v2f64 V128:$dst), (OpNode (v2f64 V128:$Rd),
(v2f64 V128:$Rn),
(v2f64 V128:$Rm),
(i32 rottype:$rot)))]>;
}
}
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class BaseSIMDIndexedTiedComplex<bit Q, bit U, bit Scalar, bits<2> size,
bit opc1, bit opc2, RegisterOperand dst_reg,
RegisterOperand lhs_reg,
RegisterOperand rhs_reg, Operand vec_idx,
Operand rottype, string asm, string apple_kind,
string dst_kind, string lhs_kind,
string rhs_kind, list<dag> pattern>
: I<(outs dst_reg:$dst),
(ins dst_reg:$Rd, lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx, rottype:$rot),
asm,
"{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind #
"$idx, $rot" # "|" # apple_kind #
"\t$Rd, $Rn, $Rm$idx, $rot}", "$Rd = $dst", pattern>,
Sched<[WriteV]> {
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
bits<2> rot;
let Inst{31} = 0;
let Inst{30} = Q;
let Inst{29} = U;
let Inst{28} = Scalar;
let Inst{27-24} = 0b1111;
let Inst{23-22} = size;
// Bit 21 must be set by the derived class.
let Inst{20-16} = Rm;
let Inst{15} = opc1;
let Inst{14-13} = rot;
let Inst{12} = opc2;
// Bit 11 must be set by the derived class.
let Inst{10} = 0;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
// The complex instructions index by pairs of elements, so the VectorIndexes
// don't match the lane types, and the index bits are different to the other
// classes.
multiclass SIMDIndexedTiedComplexHSD<bit U, bit opc1, bit opc2, Operand rottype,
string asm, SDPatternOperator OpNode> {
let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
def v4f16_indexed : BaseSIMDIndexedTiedComplex<0, 1, 0, 0b01, opc1, opc2, V64,
V64, V128, VectorIndexD, rottype, asm, ".4h", ".4h",
".4h", ".h", []> {
bits<1> idx;
let Inst{11} = 0;
let Inst{21} = idx{0};
}
def v8f16_indexed : BaseSIMDIndexedTiedComplex<1, 1, 0, 0b01, opc1, opc2,
V128, V128, V128, VectorIndexS, rottype, asm, ".8h",
".8h", ".8h", ".h", []> {
bits<2> idx;
let Inst{11} = idx{1};
let Inst{21} = idx{0};
}
} // Predicates = HasComplxNum, HasNEON, HasFullFP16]
let Predicates = [HasComplxNum, HasNEON] in {
def v4f32_indexed : BaseSIMDIndexedTiedComplex<1, 1, 0, 0b10, opc1, opc2,
V128, V128, V128, VectorIndexD, rottype, asm, ".4s",
".4s", ".4s", ".s", []> {
bits<1> idx;
let Inst{11} = idx{0};
let Inst{21} = 0;
}
} // Predicates = [HasComplxNum, HasNEON]
}
//----------------------------------------------------------------------------
// Crypto extensions
//----------------------------------------------------------------------------
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class AESBase<bits<4> opc, string asm, dag outs, dag ins, string cstr,
list<dag> pat>
: I<outs, ins, asm, "{\t$Rd.16b, $Rn.16b|.16b\t$Rd, $Rn}", cstr, pat>,
Sched<[WriteV]>{
bits<5> Rd;
bits<5> Rn;
let Inst{31-16} = 0b0100111000101000;
let Inst{15-12} = opc;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class AESInst<bits<4> opc, string asm, Intrinsic OpNode>
: AESBase<opc, asm, (outs V128:$Rd), (ins V128:$Rn), "",
[(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>;
class AESTiedInst<bits<4> opc, string asm, Intrinsic OpNode>
: AESBase<opc, asm, (outs V128:$dst), (ins V128:$Rd, V128:$Rn),
"$Rd = $dst",
[(set (v16i8 V128:$dst),
(OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn)))]>;
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class SHA3OpTiedInst<bits<3> opc, string asm, string dst_lhs_kind,
dag oops, dag iops, list<dag> pat>
: I<oops, iops, asm,
"{\t$Rd" # dst_lhs_kind # ", $Rn" # dst_lhs_kind # ", $Rm.4s" #
"|.4s\t$Rd, $Rn, $Rm}", "$Rd = $dst", pat>,
Sched<[WriteV]>{
bits<5> Rd;
bits<5> Rn;
bits<5> Rm;
let Inst{31-21} = 0b01011110000;
let Inst{20-16} = Rm;
let Inst{15} = 0;
let Inst{14-12} = opc;
let Inst{11-10} = 0b00;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class SHATiedInstQSV<bits<3> opc, string asm, Intrinsic OpNode>
: SHA3OpTiedInst<opc, asm, "", (outs FPR128:$dst),
(ins FPR128:$Rd, FPR32:$Rn, V128:$Rm),
[(set (v4i32 FPR128:$dst),
(OpNode (v4i32 FPR128:$Rd), (i32 FPR32:$Rn),
(v4i32 V128:$Rm)))]>;
class SHATiedInstVVV<bits<3> opc, string asm, Intrinsic OpNode>
: SHA3OpTiedInst<opc, asm, ".4s", (outs V128:$dst),
(ins V128:$Rd, V128:$Rn, V128:$Rm),
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn),
(v4i32 V128:$Rm)))]>;
class SHATiedInstQQV<bits<3> opc, string asm, Intrinsic OpNode>
: SHA3OpTiedInst<opc, asm, "", (outs FPR128:$dst),
(ins FPR128:$Rd, FPR128:$Rn, V128:$Rm),
[(set (v4i32 FPR128:$dst),
(OpNode (v4i32 FPR128:$Rd), (v4i32 FPR128:$Rn),
(v4i32 V128:$Rm)))]>;
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
class SHA2OpInst<bits<4> opc, string asm, string kind,
string cstr, dag oops, dag iops,
list<dag> pat>
: I<oops, iops, asm, "{\t$Rd" # kind # ", $Rn" # kind #
"|" # kind # "\t$Rd, $Rn}", cstr, pat>,
Sched<[WriteV]>{
bits<5> Rd;
bits<5> Rn;
let Inst{31-16} = 0b0101111000101000;
let Inst{15-12} = opc;
let Inst{11-10} = 0b10;
let Inst{9-5} = Rn;
let Inst{4-0} = Rd;
}
class SHATiedInstVV<bits<4> opc, string asm, Intrinsic OpNode>
: SHA2OpInst<opc, asm, ".4s", "$Rd = $dst", (outs V128:$dst),
(ins V128:$Rd, V128:$Rn),
[(set (v4i32 V128:$dst),
(OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn)))]>;
class SHAInstSS<bits<4> opc, string asm, Intrinsic OpNode>
: SHA2OpInst<opc, asm, "", "", (outs FPR32:$Rd), (ins FPR32:$Rn),
[(set (i32 FPR32:$Rd), (OpNode (i32 FPR32:$Rn)))]>;
// Armv8.2-A Crypto extensions
class BaseCryptoV82<dag oops, dag iops, string asm, string asmops, string cst,
list<dag> pattern>
: I <oops, iops, asm, asmops, cst, pattern>, Sched<[WriteV]> {
bits<5> Vd;
bits<5> Vn;
let Inst{31-25} = 0b1100111;
let Inst{9-5} = Vn;
let Inst{4-0} = Vd;
}
class CryptoRRTied<bits<1>op0, bits<2>op1, string asm, string asmops>
: BaseCryptoV82<(outs V128:$Vdst), (ins V128:$Vd, V128:$Vn), asm, asmops,
"$Vd = $Vdst", []> {
let Inst{31-25} = 0b1100111;
let Inst{24-21} = 0b0110;
let Inst{20-15} = 0b000001;
let Inst{14} = op0;
let Inst{13-12} = 0b00;
let Inst{11-10} = op1;
}
class CryptoRRTied_2D<bits<1>op0, bits<2>op1, string asm>
: CryptoRRTied<op0, op1, asm, "{\t$Vd.2d, $Vn.2d|.2d\t$Vd, $Vn}">;
class CryptoRRTied_4S<bits<1>op0, bits<2>op1, string asm>
: CryptoRRTied<op0, op1, asm, "{\t$Vd.4s, $Vn.4s|.4s\t$Vd, $Vn}">;
class CryptoRRR<bits<1> op0, bits<2>op1, dag oops, dag iops, string asm,
string asmops, string cst>
: BaseCryptoV82<oops, iops, asm , asmops, cst, []> {
bits<5> Vm;
let Inst{24-21} = 0b0011;
let Inst{20-16} = Vm;
let Inst{15} = 0b1;
let Inst{14} = op0;
let Inst{13-12} = 0b00;
let Inst{11-10} = op1;
}
class CryptoRRR_2D<bits<1> op0, bits<2>op1, string asm>
: CryptoRRR<op0, op1, (outs V128:$Vd), (ins V128:$Vn, V128:$Vm), asm,
"{\t$Vd.2d, $Vn.2d, $Vm.2d|.2d\t$Vd, $Vn, $Vm}", "">;
class CryptoRRRTied_2D<bits<1> op0, bits<2>op1, string asm>
: CryptoRRR<op0, op1, (outs V128:$Vdst), (ins V128:$Vd, V128:$Vn, V128:$Vm), asm,
"{\t$Vd.2d, $Vn.2d, $Vm.2d|.2d\t$Vd, $Vn, $Vm}", "$Vd = $Vdst">;
class CryptoRRR_4S<bits<1> op0, bits<2>op1, string asm>
: CryptoRRR<op0, op1, (outs V128:$Vd), (ins V128:$Vn, V128:$Vm), asm,
"{\t$Vd.4s, $Vn.4s, $Vm.4s|.4s\t$Vd, $Vn, $Vm}", "">;
class CryptoRRRTied_4S<bits<1> op0, bits<2>op1, string asm>
: CryptoRRR<op0, op1, (outs V128:$Vdst), (ins V128:$Vd, V128:$Vn, V128:$Vm), asm,
"{\t$Vd.4s, $Vn.4s, $Vm.4s|.4s\t$Vd, $Vn, $Vm}", "$Vd = $Vdst">;
class CryptoRRRTied<bits<1> op0, bits<2>op1, string asm>
: CryptoRRR<op0, op1, (outs FPR128:$Vdst), (ins FPR128:$Vd, FPR128:$Vn, V128:$Vm),
asm, "{\t$Vd, $Vn, $Vm.2d|.2d\t$Vd, $Vn, $Vm}", "$Vd = $Vdst">;
class CryptoRRRR<bits<2>op0, string asm, string asmops>
: BaseCryptoV82<(outs V128:$Vd), (ins V128:$Vn, V128:$Vm, V128:$Va), asm,
asmops, "", []> {
bits<5> Vm;
bits<5> Va;
let Inst{24-23} = 0b00;
let Inst{22-21} = op0;
let Inst{20-16} = Vm;
let Inst{15} = 0b0;
let Inst{14-10} = Va;
}
class CryptoRRRR_16B<bits<2>op0, string asm>
: CryptoRRRR<op0, asm, "{\t$Vd.16b, $Vn.16b, $Vm.16b, $Va.16b" #
"|.16b\t$Vd, $Vn, $Vm, $Va}"> {
}
class CryptoRRRR_4S<bits<2>op0, string asm>
: CryptoRRRR<op0, asm, "{\t$Vd.4s, $Vn.4s, $Vm.4s, $Va.4s" #
"|.4s\t$Vd, $Vn, $Vm, $Va}"> {
}
class CryptoRRRi6<string asm>
: BaseCryptoV82<(outs V128:$Vd), (ins V128:$Vn, V128:$Vm, uimm6:$imm), asm,
"{\t$Vd.2d, $Vn.2d, $Vm.2d, $imm" #
"|.2d\t$Vd, $Vn, $Vm, $imm}", "", []> {
bits<6> imm;
bits<5> Vm;
let Inst{24-21} = 0b0100;
let Inst{20-16} = Vm;
let Inst{15-10} = imm;
let Inst{9-5} = Vn;
let Inst{4-0} = Vd;
}
class CryptoRRRi2Tied<bits<1>op0, bits<2>op1, string asm>
: BaseCryptoV82<(outs V128:$Vdst),
(ins V128:$Vd, V128:$Vn, V128:$Vm, VectorIndexS:$imm),
asm, "{\t$Vd.4s, $Vn.4s, $Vm.s$imm" #
"|.4s\t$Vd, $Vn, $Vm$imm}", "$Vd = $Vdst", []> {
bits<2> imm;
bits<5> Vm;
let Inst{24-21} = 0b0010;
let Inst{20-16} = Vm;
let Inst{15} = 0b1;
let Inst{14} = op0;
let Inst{13-12} = imm;
let Inst{11-10} = op1;
}
//----------------------------------------------------------------------------
// v8.1 atomic instructions extension:
// * CAS
// * CASP
// * SWP
// * LDOPregister<OP>, and aliases STOPregister<OP>
// Instruction encodings:
//
// 31 30|29 24|23|22|21|20 16|15|14 10|9 5|4 0
// CAS SZ |001000|1 |A |1 |Rs |R |11111 |Rn |Rt
// CASP 0|SZ|001000|0 |A |1 |Rs |R |11111 |Rn |Rt
// SWP SZ |111000|A |R |1 |Rs |1 |OPC|00|Rn |Rt
// LD SZ |111000|A |R |1 |Rs |0 |OPC|00|Rn |Rt
// ST SZ |111000|A |R |1 |Rs |0 |OPC|00|Rn |11111
// Instruction syntax:
//
// CAS{<order>}[<size>] <Ws>, <Wt>, [<Xn|SP>]
// CAS{<order>} <Xs>, <Xt>, [<Xn|SP>]
// CASP{<order>} <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>]
// CASP{<order>} <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>]
// SWP{<order>}[<size>] <Ws>, <Wt>, [<Xn|SP>]
// SWP{<order>} <Xs>, <Xt>, [<Xn|SP>]
// LD<OP>{<order>}[<size>] <Ws>, <Wt>, [<Xn|SP>]
// LD<OP>{<order>} <Xs>, <Xt>, [<Xn|SP>]
// ST<OP>{<order>}[<size>] <Ws>, [<Xn|SP>]
// ST<OP>{<order>} <Xs>, [<Xn|SP>]
let Predicates = [HasLSE], mayLoad = 1, mayStore = 1, hasSideEffects = 1 in
class BaseCASEncoding<dag oops, dag iops, string asm, string operands,
string cstr, list<dag> pattern>
: I<oops, iops, asm, operands, cstr, pattern> {
bits<2> Sz;
bit NP;
bit Acq;
bit Rel;
bits<5> Rs;
bits<5> Rn;
bits<5> Rt;
let Inst{31-30} = Sz;
let Inst{29-24} = 0b001000;
let Inst{23} = NP;
let Inst{22} = Acq;
let Inst{21} = 0b1;
let Inst{20-16} = Rs;
let Inst{15} = Rel;
let Inst{14-10} = 0b11111;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let Predicates = [HasLSE];
}
class BaseCAS<string order, string size, RegisterClass RC>
: BaseCASEncoding<(outs RC:$out),(ins RC:$Rs, RC:$Rt, GPR64sp:$Rn),
"cas" # order # size, "\t$Rs, $Rt, [$Rn]",
"$out = $Rs",[]>,
Sched<[WriteAtomic]> {
let NP = 1;
}
multiclass CompareAndSwap<bits<1> Acq, bits<1> Rel, string order> {
let Sz = 0b00, Acq = Acq, Rel = Rel in def B : BaseCAS<order, "b", GPR32>;
let Sz = 0b01, Acq = Acq, Rel = Rel in def H : BaseCAS<order, "h", GPR32>;
let Sz = 0b10, Acq = Acq, Rel = Rel in def W : BaseCAS<order, "", GPR32>;
let Sz = 0b11, Acq = Acq, Rel = Rel in def X : BaseCAS<order, "", GPR64>;
}
class BaseCASP<string order, string size, RegisterOperand RC>
: BaseCASEncoding<(outs RC:$out),(ins RC:$Rs, RC:$Rt, GPR64sp:$Rn),
"casp" # order # size, "\t$Rs, $Rt, [$Rn]",
"$out = $Rs",[]>,
Sched<[WriteAtomic]> {
let NP = 0;
}
multiclass CompareAndSwapPair<bits<1> Acq, bits<1> Rel, string order> {
let Sz = 0b00, Acq = Acq, Rel = Rel in
def W : BaseCASP<order, "", WSeqPairClassOperand>;
let Sz = 0b01, Acq = Acq, Rel = Rel in
def X : BaseCASP<order, "", XSeqPairClassOperand>;
}
let Predicates = [HasLSE] in
class BaseSWP<string order, string size, RegisterClass RC>
: I<(outs RC:$Rt),(ins RC:$Rs, GPR64sp:$Rn), "swp" # order # size,
"\t$Rs, $Rt, [$Rn]","",[]>,
Sched<[WriteAtomic]> {
bits<2> Sz;
bit Acq;
bit Rel;
bits<5> Rs;
bits<3> opc = 0b000;
bits<5> Rn;
bits<5> Rt;
let Inst{31-30} = Sz;
let Inst{29-24} = 0b111000;
let Inst{23} = Acq;
let Inst{22} = Rel;
let Inst{21} = 0b1;
let Inst{20-16} = Rs;
let Inst{15} = 0b1;
let Inst{14-12} = opc;
let Inst{11-10} = 0b00;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let Predicates = [HasLSE];
}
multiclass Swap<bits<1> Acq, bits<1> Rel, string order> {
let Sz = 0b00, Acq = Acq, Rel = Rel in def B : BaseSWP<order, "b", GPR32>;
let Sz = 0b01, Acq = Acq, Rel = Rel in def H : BaseSWP<order, "h", GPR32>;
let Sz = 0b10, Acq = Acq, Rel = Rel in def W : BaseSWP<order, "", GPR32>;
let Sz = 0b11, Acq = Acq, Rel = Rel in def X : BaseSWP<order, "", GPR64>;
}
let Predicates = [HasLSE], mayLoad = 1, mayStore = 1, hasSideEffects = 1 in
class BaseLDOPregister<string op, string order, string size, RegisterClass RC>
: I<(outs RC:$Rt),(ins RC:$Rs, GPR64sp:$Rn), "ld" # op # order # size,
"\t$Rs, $Rt, [$Rn]","",[]>,
Sched<[WriteAtomic]> {
bits<2> Sz;
bit Acq;
bit Rel;
bits<5> Rs;
bits<3> opc;
bits<5> Rn;
bits<5> Rt;
let Inst{31-30} = Sz;
let Inst{29-24} = 0b111000;
let Inst{23} = Acq;
let Inst{22} = Rel;
let Inst{21} = 0b1;
let Inst{20-16} = Rs;
let Inst{15} = 0b0;
let Inst{14-12} = opc;
let Inst{11-10} = 0b00;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let Predicates = [HasLSE];
}
multiclass LDOPregister<bits<3> opc, string op, bits<1> Acq, bits<1> Rel,
string order> {
let Sz = 0b00, Acq = Acq, Rel = Rel, opc = opc in
def B : BaseLDOPregister<op, order, "b", GPR32>;
let Sz = 0b01, Acq = Acq, Rel = Rel, opc = opc in
def H : BaseLDOPregister<op, order, "h", GPR32>;
let Sz = 0b10, Acq = Acq, Rel = Rel, opc = opc in
def W : BaseLDOPregister<op, order, "", GPR32>;
let Sz = 0b11, Acq = Acq, Rel = Rel, opc = opc in
def X : BaseLDOPregister<op, order, "", GPR64>;
}
// Differing SrcRHS and DstRHS allow you to cover CLR & SUB by giving a more
// complex DAG for DstRHS.
let Predicates = [HasLSE] in
multiclass LDOPregister_patterns_ord_dag<string inst, string suffix, string op,
string size, dag SrcRHS, dag DstRHS> {
def : Pat<(!cast<PatFrag>(op#"_"#size#"_monotonic") GPR64sp:$Rn, SrcRHS),
(!cast<Instruction>(inst # suffix) DstRHS, GPR64sp:$Rn)>;
def : Pat<(!cast<PatFrag>(op#"_"#size#"_acquire") GPR64sp:$Rn, SrcRHS),
(!cast<Instruction>(inst # "A" # suffix) DstRHS, GPR64sp:$Rn)>;
def : Pat<(!cast<PatFrag>(op#"_"#size#"_release") GPR64sp:$Rn, SrcRHS),
(!cast<Instruction>(inst # "L" # suffix) DstRHS, GPR64sp:$Rn)>;
def : Pat<(!cast<PatFrag>(op#"_"#size#"_acq_rel") GPR64sp:$Rn, SrcRHS),
(!cast<Instruction>(inst # "AL" # suffix) DstRHS, GPR64sp:$Rn)>;
def : Pat<(!cast<PatFrag>(op#"_"#size#"_seq_cst") GPR64sp:$Rn, SrcRHS),
(!cast<Instruction>(inst # "AL" # suffix) DstRHS, GPR64sp:$Rn)>;
}
multiclass LDOPregister_patterns_ord<string inst, string suffix, string op,
string size, dag RHS> {
defm : LDOPregister_patterns_ord_dag<inst, suffix, op, size, RHS, RHS>;
}
multiclass LDOPregister_patterns_ord_mod<string inst, string suffix, string op,
string size, dag LHS, dag RHS> {
defm : LDOPregister_patterns_ord_dag<inst, suffix, op, size, LHS, RHS>;
}
multiclass LDOPregister_patterns<string inst, string op> {
defm : LDOPregister_patterns_ord<inst, "X", op, "64", (i64 GPR64:$Rm)>;
defm : LDOPregister_patterns_ord<inst, "W", op, "32", (i32 GPR32:$Rm)>;
defm : LDOPregister_patterns_ord<inst, "H", op, "16", (i32 GPR32:$Rm)>;
defm : LDOPregister_patterns_ord<inst, "B", op, "8", (i32 GPR32:$Rm)>;
}
multiclass LDOPregister_patterns_mod<string inst, string op, string mod> {
defm : LDOPregister_patterns_ord_mod<inst, "X", op, "64",
(i64 GPR64:$Rm),
(i64 (!cast<Instruction>(mod#Xrr) XZR, GPR64:$Rm))>;
defm : LDOPregister_patterns_ord_mod<inst, "W", op, "32",
(i32 GPR32:$Rm),
(i32 (!cast<Instruction>(mod#Wrr) WZR, GPR32:$Rm))>;
defm : LDOPregister_patterns_ord_mod<inst, "H", op, "16",
(i32 GPR32:$Rm),
(i32 (!cast<Instruction>(mod#Wrr) WZR, GPR32:$Rm))>;
defm : LDOPregister_patterns_ord_mod<inst, "B", op, "8",
(i32 GPR32:$Rm),
(i32 (!cast<Instruction>(mod#Wrr) WZR, GPR32:$Rm))>;
}
let Predicates = [HasLSE] in
multiclass CASregister_patterns_ord_dag<string inst, string suffix, string op,
string size, dag OLD, dag NEW> {
def : Pat<(!cast<PatFrag>(op#"_"#size#"_monotonic") GPR64sp:$Rn, OLD, NEW),
(!cast<Instruction>(inst # suffix) OLD, NEW, GPR64sp:$Rn)>;
def : Pat<(!cast<PatFrag>(op#"_"#size#"_acquire") GPR64sp:$Rn, OLD, NEW),
(!cast<Instruction>(inst # "A" # suffix) OLD, NEW, GPR64sp:$Rn)>;
def : Pat<(!cast<PatFrag>(op#"_"#size#"_release") GPR64sp:$Rn, OLD, NEW),
(!cast<Instruction>(inst # "L" # suffix) OLD, NEW, GPR64sp:$Rn)>;
def : Pat<(!cast<PatFrag>(op#"_"#size#"_acq_rel") GPR64sp:$Rn, OLD, NEW),
(!cast<Instruction>(inst # "AL" # suffix) OLD, NEW, GPR64sp:$Rn)>;
def : Pat<(!cast<PatFrag>(op#"_"#size#"_seq_cst") GPR64sp:$Rn, OLD, NEW),
(!cast<Instruction>(inst # "AL" # suffix) OLD, NEW, GPR64sp:$Rn)>;
}
multiclass CASregister_patterns_ord<string inst, string suffix, string op,
string size, dag OLD, dag NEW> {
defm : CASregister_patterns_ord_dag<inst, suffix, op, size, OLD, NEW>;
}
multiclass CASregister_patterns<string inst, string op> {
defm : CASregister_patterns_ord<inst, "X", op, "64",
(i64 GPR64:$Rold), (i64 GPR64:$Rnew)>;
defm : CASregister_patterns_ord<inst, "W", op, "32",
(i32 GPR32:$Rold), (i32 GPR32:$Rnew)>;
defm : CASregister_patterns_ord<inst, "H", op, "16",
(i32 GPR32:$Rold), (i32 GPR32:$Rnew)>;
defm : CASregister_patterns_ord<inst, "B", op, "8",
(i32 GPR32:$Rold), (i32 GPR32:$Rnew)>;
}
let Predicates = [HasLSE] in
class BaseSTOPregister<string asm, RegisterClass OP, Register Reg,
Instruction inst> :
InstAlias<asm # "\t$Rs, [$Rn]", (inst Reg, OP:$Rs, GPR64sp:$Rn)>;
multiclass STOPregister<string asm, string instr> {
def : BaseSTOPregister<asm # "lb", GPR32, WZR,
!cast<Instruction>(instr # "LB")>;
def : BaseSTOPregister<asm # "lh", GPR32, WZR,
!cast<Instruction>(instr # "LH")>;
def : BaseSTOPregister<asm # "l", GPR32, WZR,
!cast<Instruction>(instr # "LW")>;
def : BaseSTOPregister<asm # "l", GPR64, XZR,
!cast<Instruction>(instr # "LX")>;
def : BaseSTOPregister<asm # "b", GPR32, WZR,
!cast<Instruction>(instr # "B")>;
def : BaseSTOPregister<asm # "h", GPR32, WZR,
!cast<Instruction>(instr # "H")>;
def : BaseSTOPregister<asm, GPR32, WZR,
!cast<Instruction>(instr # "W")>;
def : BaseSTOPregister<asm, GPR64, XZR,
!cast<Instruction>(instr # "X")>;
}
class LoadStore64B_base<bits<3> opc, string asm_inst, string asm_ops,
dag iops, dag oops, list<dag> pat>
: I<oops, iops, asm_inst, asm_ops, "", pat>,
Sched<[]> /* FIXME: fill in scheduling details once known */ {
bits<5> Rt;
bits<5> Rn;
let Inst{31-21} = 0b11111000001;
let Inst{15} = 1;
let Inst{14-12} = opc;
let Inst{11-10} = 0b00;
let Inst{9-5} = Rn;
let Inst{4-0} = Rt;
let Predicates = [HasV8_7a];
}
class LoadStore64B<bits<3> opc, string asm_inst, dag iops, dag oops,
list<dag> pat = []>
: LoadStore64B_base<opc, asm_inst, "\t$Rt, [$Rn]", iops, oops, pat> {
let Inst{20-16} = 0b11111;
}
class Store64BV<bits<3> opc, string asm_inst, list<dag> pat = []>
: LoadStore64B_base<opc, asm_inst, "\t$Rs, $Rt, [$Rn]",
(ins GPR64x8:$Rt, GPR64sp:$Rn), (outs GPR64:$Rs), pat> {
bits<5> Rs;
let Inst{20-16} = Rs;
}
//----------------------------------------------------------------------------
// Allow the size specifier tokens to be upper case, not just lower.
def : TokenAlias<".4B", ".4b">; // Add dot product
def : TokenAlias<".8B", ".8b">;
def : TokenAlias<".4H", ".4h">;
def : TokenAlias<".2S", ".2s">;
def : TokenAlias<".1D", ".1d">;
def : TokenAlias<".16B", ".16b">;
def : TokenAlias<".8H", ".8h">;
def : TokenAlias<".4S", ".4s">;
def : TokenAlias<".2D", ".2d">;
def : TokenAlias<".1Q", ".1q">;
def : TokenAlias<".2H", ".2h">;
def : TokenAlias<".B", ".b">;
def : TokenAlias<".H", ".h">;
def : TokenAlias<".S", ".s">;
def : TokenAlias<".D", ".d">;
def : TokenAlias<".Q", ".q">;