1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 02:52:53 +02:00
llvm-mirror/lib/Analysis/TargetTransformInfo.cpp
David Green 49873f2449 [Analysis] TTI: Add CastContextHint for getCastInstrCost
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types.  Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization.  Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.

For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.

To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.

Original patch by Pierre van Houtryve

Differential Revision: https://reviews.llvm.org/D79162
2020-07-29 13:32:53 +01:00

1407 lines
50 KiB
C++

//===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/TargetTransformInfoImpl.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "tti"
static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
cl::Hidden,
cl::desc("Recognize reduction patterns."));
namespace {
/// No-op implementation of the TTI interface using the utility base
/// classes.
///
/// This is used when no target specific information is available.
struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
explicit NoTTIImpl(const DataLayout &DL)
: TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
};
} // namespace
bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
// If the loop has irreducible control flow, it can not be converted to
// Hardware loop.
LoopBlocksRPO RPOT(L);
RPOT.perform(&LI);
if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
return false;
return true;
}
IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) :
II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) {
FunctionType *FTy = I.getCalledFunction()->getFunctionType();
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end());
if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
FMF = FPMO->getFastMathFlags();
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
const CallBase &CI) :
II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id) {
if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
FMF = FPMO->getFastMathFlags();
FunctionType *FTy =
CI.getCalledFunction()->getFunctionType();
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
const CallBase &CI,
unsigned Factor) :
RetTy(CI.getType()), IID(Id), VF(Factor) {
if (auto *FPMO = dyn_cast<FPMathOperator>(&CI))
FMF = FPMO->getFastMathFlags();
Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
FunctionType *FTy =
CI.getCalledFunction()->getFunctionType();
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
const CallBase &CI,
unsigned Factor,
unsigned ScalarCost) :
RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) {
if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
FMF = FPMO->getFastMathFlags();
Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
FunctionType *FTy =
CI.getCalledFunction()->getFunctionType();
ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<Type *> Tys,
FastMathFlags Flags) :
RetTy(RTy), IID(Id), FMF(Flags) {
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<Type *> Tys,
FastMathFlags Flags,
unsigned ScalarCost) :
RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<Type *> Tys,
FastMathFlags Flags,
unsigned ScalarCost,
const IntrinsicInst *I) :
II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<Type *> Tys) :
RetTy(RTy), IID(Id) {
ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
}
IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
ArrayRef<const Value *> Args)
: RetTy(Ty), IID(Id) {
Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
ParamTys.reserve(Arguments.size());
for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
ParamTys.push_back(Arguments[Idx]->getType());
}
bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
LoopInfo &LI, DominatorTree &DT,
bool ForceNestedLoop,
bool ForceHardwareLoopPHI) {
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *BB : ExitingBlocks) {
// If we pass the updated counter back through a phi, we need to know
// which latch the updated value will be coming from.
if (!L->isLoopLatch(BB)) {
if (ForceHardwareLoopPHI || CounterInReg)
continue;
}
const SCEV *EC = SE.getExitCount(L, BB);
if (isa<SCEVCouldNotCompute>(EC))
continue;
if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
if (ConstEC->getValue()->isZero())
continue;
} else if (!SE.isLoopInvariant(EC, L))
continue;
if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
continue;
// If this exiting block is contained in a nested loop, it is not eligible
// for insertion of the branch-and-decrement since the inner loop would
// end up messing up the value in the CTR.
if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
continue;
// We now have a loop-invariant count of loop iterations (which is not the
// constant zero) for which we know that this loop will not exit via this
// existing block.
// We need to make sure that this block will run on every loop iteration.
// For this to be true, we must dominate all blocks with backedges. Such
// blocks are in-loop predecessors to the header block.
bool NotAlways = false;
for (BasicBlock *Pred : predecessors(L->getHeader())) {
if (!L->contains(Pred))
continue;
if (!DT.dominates(BB, Pred)) {
NotAlways = true;
break;
}
}
if (NotAlways)
continue;
// Make sure this blocks ends with a conditional branch.
Instruction *TI = BB->getTerminator();
if (!TI)
continue;
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (!BI->isConditional())
continue;
ExitBranch = BI;
} else
continue;
// Note that this block may not be the loop latch block, even if the loop
// has a latch block.
ExitBlock = BB;
ExitCount = EC;
break;
}
if (!ExitBlock)
return false;
return true;
}
TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
: TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
TargetTransformInfo::~TargetTransformInfo() {}
TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
: TTIImpl(std::move(Arg.TTIImpl)) {}
TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
TTIImpl = std::move(RHS.TTIImpl);
return *this;
}
unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
return TTIImpl->getInliningThresholdMultiplier();
}
int TargetTransformInfo::getInlinerVectorBonusPercent() const {
return TTIImpl->getInlinerVectorBonusPercent();
}
int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) const {
return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
}
unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) const {
return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
}
int TargetTransformInfo::getUserCost(const User *U,
ArrayRef<const Value *> Operands,
enum TargetCostKind CostKind) const {
int Cost = TTIImpl->getUserCost(U, Operands, CostKind);
assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
"TTI should not produce negative costs!");
return Cost;
}
bool TargetTransformInfo::hasBranchDivergence() const {
return TTIImpl->hasBranchDivergence();
}
bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
return TTIImpl->useGPUDivergenceAnalysis();
}
bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
return TTIImpl->isSourceOfDivergence(V);
}
bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
return TTIImpl->isAlwaysUniform(V);
}
unsigned TargetTransformInfo::getFlatAddressSpace() const {
return TTIImpl->getFlatAddressSpace();
}
bool TargetTransformInfo::collectFlatAddressOperands(
SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
}
bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
unsigned ToAS) const {
return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
}
Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
IntrinsicInst *II, Value *OldV, Value *NewV) const {
return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
}
bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
return TTIImpl->isLoweredToCall(F);
}
bool TargetTransformInfo::isHardwareLoopProfitable(
Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
}
bool TargetTransformInfo::preferPredicateOverEpilogue(
Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
TargetLibraryInfo *TLI, DominatorTree *DT,
const LoopAccessInfo *LAI) const {
return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
}
bool TargetTransformInfo::emitGetActiveLaneMask() const {
return TTIImpl->emitGetActiveLaneMask();
}
Optional<Instruction *>
TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) const {
return TTIImpl->instCombineIntrinsic(IC, II);
}
Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) const {
return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
KnownBitsComputed);
}
Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const {
return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
SimplifyAndSetOp);
}
void TargetTransformInfo::getUnrollingPreferences(
Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
return TTIImpl->getUnrollingPreferences(L, SE, UP);
}
void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
PeelingPreferences &PP) const {
return TTIImpl->getPeelingPreferences(L, SE, PP);
}
bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
return TTIImpl->isLegalAddImmediate(Imm);
}
bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
return TTIImpl->isLegalICmpImmediate(Imm);
}
bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace,
Instruction *I) const {
return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace, I);
}
bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
return TTIImpl->isLSRCostLess(C1, C2);
}
bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
return TTIImpl->isProfitableLSRChainElement(I);
}
bool TargetTransformInfo::canMacroFuseCmp() const {
return TTIImpl->canMacroFuseCmp();
}
bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) const {
return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
}
bool TargetTransformInfo::shouldFavorPostInc() const {
return TTIImpl->shouldFavorPostInc();
}
bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
return TTIImpl->shouldFavorBackedgeIndex(L);
}
bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalMaskedStore(DataType, Alignment);
}
bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
}
bool TargetTransformInfo::isLegalNTStore(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalNTStore(DataType, Alignment);
}
bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
return TTIImpl->isLegalNTLoad(DataType, Alignment);
}
bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalMaskedGather(DataType, Alignment);
}
bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
Align Alignment) const {
return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
}
bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
return TTIImpl->isLegalMaskedCompressStore(DataType);
}
bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
return TTIImpl->isLegalMaskedExpandLoad(DataType);
}
bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
return TTIImpl->hasDivRemOp(DataType, IsSigned);
}
bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
unsigned AddrSpace) const {
return TTIImpl->hasVolatileVariant(I, AddrSpace);
}
bool TargetTransformInfo::prefersVectorizedAddressing() const {
return TTIImpl->prefersVectorizedAddressing();
}
int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace) const {
int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
Scale, AddrSpace);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
bool TargetTransformInfo::LSRWithInstrQueries() const {
return TTIImpl->LSRWithInstrQueries();
}
bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
return TTIImpl->isTruncateFree(Ty1, Ty2);
}
bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
return TTIImpl->isProfitableToHoist(I);
}
bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
return TTIImpl->isTypeLegal(Ty);
}
bool TargetTransformInfo::shouldBuildLookupTables() const {
return TTIImpl->shouldBuildLookupTables();
}
bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
Constant *C) const {
return TTIImpl->shouldBuildLookupTablesForConstant(C);
}
bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
return TTIImpl->useColdCCForColdCall(F);
}
unsigned
TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract) const {
return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
}
unsigned TargetTransformInfo::getOperandsScalarizationOverhead(
ArrayRef<const Value *> Args, unsigned VF) const {
return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
}
bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
return TTIImpl->supportsEfficientVectorElementLoadStore();
}
bool TargetTransformInfo::enableAggressiveInterleaving(
bool LoopHasReductions) const {
return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
}
TargetTransformInfo::MemCmpExpansionOptions
TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
}
bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
return TTIImpl->enableInterleavedAccessVectorization();
}
bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
return TTIImpl->enableMaskedInterleavedAccessVectorization();
}
bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
return TTIImpl->isFPVectorizationPotentiallyUnsafe();
}
bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
unsigned BitWidth,
unsigned AddressSpace,
unsigned Alignment,
bool *Fast) const {
return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
AddressSpace, Alignment, Fast);
}
TargetTransformInfo::PopcntSupportKind
TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
return TTIImpl->getPopcntSupport(IntTyWidthInBit);
}
bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
return TTIImpl->haveFastSqrt(Ty);
}
bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
}
int TargetTransformInfo::getFPOpCost(Type *Ty) const {
int Cost = TTIImpl->getFPOpCost(Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
const APInt &Imm,
Type *Ty) const {
int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int
TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int
TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
return TTIImpl->getNumberOfRegisters(ClassID);
}
unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
Type *Ty) const {
return TTIImpl->getRegisterClassForType(Vector, Ty);
}
const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
return TTIImpl->getRegisterClassName(ClassID);
}
unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
return TTIImpl->getRegisterBitWidth(Vector);
}
unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
return TTIImpl->getMinVectorRegisterBitWidth();
}
bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
}
unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
return TTIImpl->getMinimumVF(ElemWidth);
}
bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
return TTIImpl->shouldConsiderAddressTypePromotion(
I, AllowPromotionWithoutCommonHeader);
}
unsigned TargetTransformInfo::getCacheLineSize() const {
return TTIImpl->getCacheLineSize();
}
llvm::Optional<unsigned>
TargetTransformInfo::getCacheSize(CacheLevel Level) const {
return TTIImpl->getCacheSize(Level);
}
llvm::Optional<unsigned>
TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
return TTIImpl->getCacheAssociativity(Level);
}
unsigned TargetTransformInfo::getPrefetchDistance() const {
return TTIImpl->getPrefetchDistance();
}
unsigned TargetTransformInfo::getMinPrefetchStride(
unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
unsigned NumPrefetches, bool HasCall) const {
return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
NumPrefetches, HasCall);
}
unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
return TTIImpl->getMaxPrefetchIterationsAhead();
}
bool TargetTransformInfo::enableWritePrefetching() const {
return TTIImpl->enableWritePrefetching();
}
unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
return TTIImpl->getMaxInterleaveFactor(VF);
}
TargetTransformInfo::OperandValueKind
TargetTransformInfo::getOperandInfo(const Value *V,
OperandValueProperties &OpProps) {
OperandValueKind OpInfo = OK_AnyValue;
OpProps = OP_None;
if (const auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->getValue().isPowerOf2())
OpProps = OP_PowerOf2;
return OK_UniformConstantValue;
}
// A broadcast shuffle creates a uniform value.
// TODO: Add support for non-zero index broadcasts.
// TODO: Add support for different source vector width.
if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
if (ShuffleInst->isZeroEltSplat())
OpInfo = OK_UniformValue;
const Value *Splat = getSplatValue(V);
// Check for a splat of a constant or for a non uniform vector of constants
// and check if the constant(s) are all powers of two.
if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
OpInfo = OK_NonUniformConstantValue;
if (Splat) {
OpInfo = OK_UniformConstantValue;
if (auto *CI = dyn_cast<ConstantInt>(Splat))
if (CI->getValue().isPowerOf2())
OpProps = OP_PowerOf2;
} else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
OpProps = OP_PowerOf2;
for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
if (CI->getValue().isPowerOf2())
continue;
OpProps = OP_None;
break;
}
}
}
// Check for a splat of a uniform value. This is not loop aware, so return
// true only for the obviously uniform cases (argument, globalvalue)
if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
OpInfo = OK_UniformValue;
return OpInfo;
}
int TargetTransformInfo::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
OperandValueKind Opd1Info,
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
const Instruction *CxtI) const {
int Cost = TTIImpl->getArithmeticInstrCost(
Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo,
Args, CxtI);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty,
int Index, VectorType *SubTp) const {
int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
TTI::CastContextHint
TargetTransformInfo::getCastContextHint(const Instruction *I) {
if (!I)
return CastContextHint::None;
auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
unsigned GatScatOp) {
const Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return CastContextHint::None;
if (I->getOpcode() == LdStOp)
return CastContextHint::Normal;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == MaskedOp)
return TTI::CastContextHint::Masked;
if (II->getIntrinsicID() == GatScatOp)
return TTI::CastContextHint::GatherScatter;
}
return TTI::CastContextHint::None;
};
switch (I->getOpcode()) {
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPExt:
return getLoadStoreKind(I->getOperand(0), Instruction::Load,
Intrinsic::masked_load, Intrinsic::masked_gather);
case Instruction::Trunc:
case Instruction::FPTrunc:
if (I->hasOneUse())
return getLoadStoreKind(*I->user_begin(), Instruction::Store,
Intrinsic::masked_store,
Intrinsic::masked_scatter);
break;
default:
return CastContextHint::None;
}
return TTI::CastContextHint::None;
}
int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) const {
int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) const {
assert((I == nullptr || I->getOpcode() == Opcode) &&
"Opcode should reflect passed instruction.");
int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMaskedMemoryOpCost(
unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind) const {
int Cost =
TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) const {
int Cost = TTIImpl->getInterleavedMemoryOpCost(
Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int
TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
return TTIImpl->getNumberOfParts(Tp);
}
int TargetTransformInfo::getAddressComputationCost(Type *Tp,
ScalarEvolution *SE,
const SCEV *Ptr) const {
int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
int Cost = TTIImpl->getMemcpyCost(I);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode,
VectorType *Ty,
bool IsPairwiseForm,
TTI::TargetCostKind CostKind) const {
int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
int TargetTransformInfo::getMinMaxReductionCost(
VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
TTI::TargetCostKind CostKind) const {
int Cost =
TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
CostKind);
assert(Cost >= 0 && "TTI should not produce negative costs!");
return Cost;
}
unsigned
TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
}
bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
return TTIImpl->getTgtMemIntrinsic(Inst, Info);
}
unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
}
Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
IntrinsicInst *Inst, Type *ExpectedType) const {
return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
}
Type *TargetTransformInfo::getMemcpyLoopLoweringType(
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
DestAddrSpace, SrcAlign, DestAlign);
}
void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign) const {
TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
SrcAddrSpace, DestAddrSpace,
SrcAlign, DestAlign);
}
bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
return TTIImpl->areInlineCompatible(Caller, Callee);
}
bool TargetTransformInfo::areFunctionArgsABICompatible(
const Function *Caller, const Function *Callee,
SmallPtrSetImpl<Argument *> &Args) const {
return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
}
bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
Type *Ty) const {
return TTIImpl->isIndexedLoadLegal(Mode, Ty);
}
bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
Type *Ty) const {
return TTIImpl->isIndexedStoreLegal(Mode, Ty);
}
unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
return TTIImpl->getLoadStoreVecRegBitWidth(AS);
}
bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
return TTIImpl->isLegalToVectorizeLoad(LI);
}
bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
return TTIImpl->isLegalToVectorizeStore(SI);
}
bool TargetTransformInfo::isLegalToVectorizeLoadChain(
unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool TargetTransformInfo::isLegalToVectorizeStoreChain(
unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
}
unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
}
bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const {
return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
}
bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
return TTIImpl->shouldExpandReduction(II);
}
unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
return TTIImpl->getGISelRematGlobalCost();
}
int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
return TTIImpl->getInstructionLatency(I);
}
static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
unsigned Level) {
// We don't need a shuffle if we just want to have element 0 in position 0 of
// the vector.
if (!SI && Level == 0 && IsLeft)
return true;
else if (!SI)
return false;
SmallVector<int, 32> Mask(
cast<FixedVectorType>(SI->getType())->getNumElements(), -1);
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
// we look at the left or right side.
for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
Mask[i] = val;
ArrayRef<int> ActualMask = SI->getShuffleMask();
return Mask == ActualMask;
}
static Optional<TTI::ReductionData> getReductionData(Instruction *I) {
Value *L, *R;
if (m_BinOp(m_Value(L), m_Value(R)).match(I))
return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R);
if (auto *SI = dyn_cast<SelectInst>(I)) {
if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
m_SMax(m_Value(L), m_Value(R)).match(SI) ||
m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
auto *CI = cast<CmpInst>(SI->getCondition());
return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R);
}
if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
m_UMax(m_Value(L), m_Value(R)).match(SI)) {
auto *CI = cast<CmpInst>(SI->getCondition());
return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R);
}
}
return llvm::None;
}
static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
unsigned Level,
unsigned NumLevels) {
// Match one level of pairwise operations.
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
if (!I)
return TTI::RK_None;
assert(I->getType()->isVectorTy() && "Expecting a vector type");
Optional<TTI::ReductionData> RD = getReductionData(I);
if (!RD)
return TTI::RK_None;
ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
if (!LS && Level)
return TTI::RK_None;
ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
if (!RS && Level)
return TTI::RK_None;
// On level 0 we can omit one shufflevector instruction.
if (!Level && !RS && !LS)
return TTI::RK_None;
// Shuffle inputs must match.
Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
Value *NextLevelOp = nullptr;
if (NextLevelOpR && NextLevelOpL) {
// If we have two shuffles their operands must match.
if (NextLevelOpL != NextLevelOpR)
return TTI::RK_None;
NextLevelOp = NextLevelOpL;
} else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
// On the first level we can omit the shufflevector <0, undef,...>. So the
// input to the other shufflevector <1, undef> must match with one of the
// inputs to the current binary operation.
// Example:
// %NextLevelOpL = shufflevector %R, <1, undef ...>
// %BinOp = fadd %NextLevelOpL, %R
if (NextLevelOpL && NextLevelOpL != RD->RHS)
return TTI::RK_None;
else if (NextLevelOpR && NextLevelOpR != RD->LHS)
return TTI::RK_None;
NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
} else
return TTI::RK_None;
// Check that the next levels binary operation exists and matches with the
// current one.
if (Level + 1 != NumLevels) {
if (!isa<Instruction>(NextLevelOp))
return TTI::RK_None;
Optional<TTI::ReductionData> NextLevelRD =
getReductionData(cast<Instruction>(NextLevelOp));
if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
return TTI::RK_None;
}
// Shuffle mask for pairwise operation must match.
if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
return TTI::RK_None;
} else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
return TTI::RK_None;
} else {
return TTI::RK_None;
}
if (++Level == NumLevels)
return RD->Kind;
// Match next level.
return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level,
NumLevels);
}
TTI::ReductionKind TTI::matchPairwiseReduction(
const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
if (!EnableReduxCost)
return TTI::RK_None;
// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return TTI::RK_None;
auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
if (!RdxStart)
return TTI::RK_None;
Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
if (!RD)
return TTI::RK_None;
auto *VecTy = cast<FixedVectorType>(RdxStart->getType());
unsigned NumVecElems = VecTy->getNumElements();
if (!isPowerOf2_32(NumVecElems))
return TTI::RK_None;
// We look for a sequence of shuffle,shuffle,add triples like the following
// that builds a pairwise reduction tree.
//
// (X0, X1, X2, X3)
// (X0 + X1, X2 + X3, undef, undef)
// ((X0 + X1) + (X2 + X3), undef, undef, undef)
//
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
// %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
// %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
// %r = extractelement <4 x float> %bin.rdx8, i32 0
if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
TTI::RK_None)
return TTI::RK_None;
Opcode = RD->Opcode;
Ty = VecTy;
return RD->Kind;
}
static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(Value *L, Value *R) {
ShuffleVectorInst *S = nullptr;
if ((S = dyn_cast<ShuffleVectorInst>(L)))
return std::make_pair(R, S);
S = dyn_cast<ShuffleVectorInst>(R);
return std::make_pair(L, S);
}
TTI::ReductionKind TTI::matchVectorSplittingReduction(
const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
if (!EnableReduxCost)
return TTI::RK_None;
// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return TTI::RK_None;
auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
if (!RdxStart)
return TTI::RK_None;
Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
if (!RD)
return TTI::RK_None;
auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType());
unsigned NumVecElems = VecTy->getNumElements();
if (!isPowerOf2_32(NumVecElems))
return TTI::RK_None;
// We look for a sequence of shuffles and adds like the following matching one
// fadd, shuffle vector pair at a time.
//
// %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
// %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
// %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
// %r = extractelement <4 x float> %bin.rdx8, i32 0
unsigned MaskStart = 1;
Instruction *RdxOp = RdxStart;
SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
unsigned NumVecElemsRemain = NumVecElems;
while (NumVecElemsRemain - 1) {
// Check for the right reduction operation.
if (!RdxOp)
return TTI::RK_None;
Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp);
if (!RDLevel || !RDLevel->hasSameData(*RD))
return TTI::RK_None;
Value *NextRdxOp;
ShuffleVectorInst *Shuffle;
std::tie(NextRdxOp, Shuffle) =
getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
// Check the current reduction operation and the shuffle use the same value.
if (Shuffle == nullptr)
return TTI::RK_None;
if (Shuffle->getOperand(0) != NextRdxOp)
return TTI::RK_None;
// Check that shuffle masks matches.
for (unsigned j = 0; j != MaskStart; ++j)
ShuffleMask[j] = MaskStart + j;
// Fill the rest of the mask with -1 for undef.
std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
ArrayRef<int> Mask = Shuffle->getShuffleMask();
if (ShuffleMask != Mask)
return TTI::RK_None;
RdxOp = dyn_cast<Instruction>(NextRdxOp);
NumVecElemsRemain /= 2;
MaskStart *= 2;
}
Opcode = RD->Opcode;
Ty = VecTy;
return RD->Kind;
}
int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
switch (I->getOpcode()) {
case Instruction::GetElementPtr:
case Instruction::Ret:
case Instruction::PHI:
case Instruction::Br:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::FNeg:
case Instruction::Select:
case Instruction::ICmp:
case Instruction::FCmp:
case Instruction::Store:
case Instruction::Load:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ExtractValue:
case Instruction::ShuffleVector:
case Instruction::Call:
return getUserCost(I, CostKind);
default:
// We don't have any information on this instruction.
return -1;
}
}
TargetTransformInfo::Concept::~Concept() {}
TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
TargetIRAnalysis::TargetIRAnalysis(
std::function<Result(const Function &)> TTICallback)
: TTICallback(std::move(TTICallback)) {}
TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
FunctionAnalysisManager &) {
return TTICallback(F);
}
AnalysisKey TargetIRAnalysis::Key;
TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
return Result(F.getParent()->getDataLayout());
}
// Register the basic pass.
INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
"Target Transform Information", false, true)
char TargetTransformInfoWrapperPass::ID = 0;
void TargetTransformInfoWrapperPass::anchor() {}
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
: ImmutablePass(ID) {
initializeTargetTransformInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
TargetIRAnalysis TIRA)
: ImmutablePass(ID), TIRA(std::move(TIRA)) {
initializeTargetTransformInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
FunctionAnalysisManager DummyFAM;
TTI = TIRA.run(F, DummyFAM);
return *TTI;
}
ImmutablePass *
llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
return new TargetTransformInfoWrapperPass(std::move(TIRA));
}