1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 18:42:46 +02:00
llvm-mirror/tools/bugpoint/BugDriver.cpp
Justin Bogner ed0c6b769f bugpoint: Return Errors instead of passing around strings
This replaces the threading of `std::string &Error` through all of
these APIs with checked Error returns instead. There are very few
places here that actually emit any errors right now, but threading the
APIs through will allow us to replace a bunch of exit(1)'s that are
scattered through this code with proper error handling.

This is more or less NFC, but does move around where a couple of error
messages are printed out.

llvm-svn: 280720
2016-09-06 17:18:22 +00:00

248 lines
8.4 KiB
C++

//===- BugDriver.cpp - Top-Level BugPoint class implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class contains all of the shared state and information that is used by
// the BugPoint tool to track down errors in optimizations. This class is the
// main driver class that invokes all sub-functionality.
//
//===----------------------------------------------------------------------===//
#include "BugDriver.h"
#include "ToolRunner.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Linker/Linker.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
using namespace llvm;
namespace llvm {
Triple TargetTriple;
}
// Anonymous namespace to define command line options for debugging.
//
namespace {
// Output - The user can specify a file containing the expected output of the
// program. If this filename is set, it is used as the reference diff source,
// otherwise the raw input run through an interpreter is used as the reference
// source.
//
cl::opt<std::string> OutputFile("output",
cl::desc("Specify a reference program output "
"(for miscompilation detection)"));
}
/// setNewProgram - If we reduce or update the program somehow, call this method
/// to update bugdriver with it. This deletes the old module and sets the
/// specified one as the current program.
void BugDriver::setNewProgram(Module *M) {
delete Program;
Program = M;
}
/// getPassesString - Turn a list of passes into a string which indicates the
/// command line options that must be passed to add the passes.
///
std::string llvm::getPassesString(const std::vector<std::string> &Passes) {
std::string Result;
for (unsigned i = 0, e = Passes.size(); i != e; ++i) {
if (i)
Result += " ";
Result += "-";
Result += Passes[i];
}
return Result;
}
BugDriver::BugDriver(const char *toolname, bool find_bugs, unsigned timeout,
unsigned memlimit, bool use_valgrind, LLVMContext &ctxt)
: Context(ctxt), ToolName(toolname), ReferenceOutputFile(OutputFile),
Program(nullptr), Interpreter(nullptr), SafeInterpreter(nullptr),
cc(nullptr), run_find_bugs(find_bugs), Timeout(timeout),
MemoryLimit(memlimit), UseValgrind(use_valgrind) {}
BugDriver::~BugDriver() {
delete Program;
if (Interpreter != SafeInterpreter)
delete Interpreter;
delete SafeInterpreter;
delete cc;
}
std::unique_ptr<Module> llvm::parseInputFile(StringRef Filename,
LLVMContext &Ctxt) {
SMDiagnostic Err;
std::unique_ptr<Module> Result = parseIRFile(Filename, Err, Ctxt);
if (!Result) {
Err.print("bugpoint", errs());
return Result;
}
if (verifyModule(*Result, &errs())) {
errs() << "bugpoint: " << Filename << ": error: input module is broken!\n";
return std::unique_ptr<Module>();
}
// If we don't have an override triple, use the first one to configure
// bugpoint, or use the host triple if none provided.
if (TargetTriple.getTriple().empty()) {
Triple TheTriple(Result->getTargetTriple());
if (TheTriple.getTriple().empty())
TheTriple.setTriple(sys::getDefaultTargetTriple());
TargetTriple.setTriple(TheTriple.getTriple());
}
Result->setTargetTriple(TargetTriple.getTriple()); // override the triple
return Result;
}
// This method takes the specified list of LLVM input files, attempts to load
// them, either as assembly or bitcode, then link them together. It returns
// true on failure (if, for example, an input bitcode file could not be
// parsed), and false on success.
//
bool BugDriver::addSources(const std::vector<std::string> &Filenames) {
assert(!Program && "Cannot call addSources multiple times!");
assert(!Filenames.empty() && "Must specify at least on input filename!");
// Load the first input file.
Program = parseInputFile(Filenames[0], Context).release();
if (!Program)
return true;
outs() << "Read input file : '" << Filenames[0] << "'\n";
for (unsigned i = 1, e = Filenames.size(); i != e; ++i) {
std::unique_ptr<Module> M = parseInputFile(Filenames[i], Context);
if (!M.get())
return true;
outs() << "Linking in input file: '" << Filenames[i] << "'\n";
if (Linker::linkModules(*Program, std::move(M)))
return true;
}
outs() << "*** All input ok\n";
// All input files read successfully!
return false;
}
/// run - The top level method that is invoked after all of the instance
/// variables are set up from command line arguments.
///
Error BugDriver::run() {
if (run_find_bugs) {
// Rearrange the passes and apply them to the program. Repeat this process
// until the user kills the program or we find a bug.
return runManyPasses(PassesToRun);
}
// If we're not running as a child, the first thing that we must do is
// determine what the problem is. Does the optimization series crash the
// compiler, or does it produce illegal code? We make the top-level
// decision by trying to run all of the passes on the input program,
// which should generate a bitcode file. If it does generate a bitcode
// file, then we know the compiler didn't crash, so try to diagnose a
// miscompilation.
if (!PassesToRun.empty()) {
outs() << "Running selected passes on program to test for crash: ";
if (runPasses(Program, PassesToRun))
return debugOptimizerCrash();
}
// Set up the execution environment, selecting a method to run LLVM bitcode.
if (Error E = initializeExecutionEnvironment())
return E;
// Test to see if we have a code generator crash.
outs() << "Running the code generator to test for a crash: ";
if (Error E = compileProgram(Program)) {
outs() << toString(std::move(E));
return debugCodeGeneratorCrash();
}
outs() << '\n';
// Run the raw input to see where we are coming from. If a reference output
// was specified, make sure that the raw output matches it. If not, it's a
// problem in the front-end or the code generator.
//
bool CreatedOutput = false;
if (ReferenceOutputFile.empty()) {
outs() << "Generating reference output from raw program: ";
if (Error E = createReferenceFile(Program)) {
errs() << toString(std::move(E));
return debugCodeGeneratorCrash();
}
CreatedOutput = true;
}
// Make sure the reference output file gets deleted on exit from this
// function, if appropriate.
std::string ROF(ReferenceOutputFile);
FileRemover RemoverInstance(ROF, CreatedOutput && !SaveTemps);
// Diff the output of the raw program against the reference output. If it
// matches, then we assume there is a miscompilation bug and try to
// diagnose it.
outs() << "*** Checking the code generator...\n";
Expected<bool> Diff = diffProgram(Program, "", "", false);
if (Error E = Diff.takeError()) {
errs() << toString(std::move(E));
return debugCodeGeneratorCrash();
}
if (!*Diff) {
outs() << "\n*** Output matches: Debugging miscompilation!\n";
if (Error E = debugMiscompilation()) {
errs() << toString(std::move(E));
return debugCodeGeneratorCrash();
}
return Error::success();
}
outs() << "\n*** Input program does not match reference diff!\n";
outs() << "Debugging code generator problem!\n";
if (Error E = debugCodeGenerator()) {
errs() << toString(std::move(E));
return debugCodeGeneratorCrash();
}
return Error::success();
}
void llvm::PrintFunctionList(const std::vector<Function *> &Funcs) {
unsigned NumPrint = Funcs.size();
if (NumPrint > 10)
NumPrint = 10;
for (unsigned i = 0; i != NumPrint; ++i)
outs() << " " << Funcs[i]->getName();
if (NumPrint < Funcs.size())
outs() << "... <" << Funcs.size() << " total>";
outs().flush();
}
void llvm::PrintGlobalVariableList(const std::vector<GlobalVariable *> &GVs) {
unsigned NumPrint = GVs.size();
if (NumPrint > 10)
NumPrint = 10;
for (unsigned i = 0; i != NumPrint; ++i)
outs() << " " << GVs[i]->getName();
if (NumPrint < GVs.size())
outs() << "... <" << GVs.size() << " total>";
outs().flush();
}