1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/include/llvm/LTO/LTO.h
2016-08-16 20:22:49 +00:00

401 lines
14 KiB
C++

//===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares functions and classes used to support LTO. It is intended
// to be used both by LTO classes as well as by clients (gold-plugin) that
// don't utilize the LTO code generator interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LTO_LTO_H
#define LLVM_LTO_LTO_H
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/LTO/Config.h"
#include "llvm/Linker/IRMover.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Support/thread.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
namespace llvm {
class Error;
class LLVMContext;
class MemoryBufferRef;
class Module;
class Target;
class raw_pwrite_stream;
/// Helper to load a module from bitcode.
std::unique_ptr<Module> loadModuleFromBuffer(const MemoryBufferRef &Buffer,
LLVMContext &Context, bool Lazy);
/// Provide a "loader" for the FunctionImporter to access function from other
/// modules.
class ModuleLoader {
/// The context that will be used for importing.
LLVMContext &Context;
/// Map from Module identifier to MemoryBuffer. Used by clients like the
/// FunctionImported to request loading a Module.
StringMap<MemoryBufferRef> &ModuleMap;
public:
ModuleLoader(LLVMContext &Context, StringMap<MemoryBufferRef> &ModuleMap)
: Context(Context), ModuleMap(ModuleMap) {}
/// Load a module on demand.
std::unique_ptr<Module> operator()(StringRef Identifier) {
return loadModuleFromBuffer(ModuleMap[Identifier], Context, /*Lazy*/ true);
}
};
/// Resolve Weak and LinkOnce values in the \p Index. Linkage changes recorded
/// in the index and the ThinLTO backends must apply the changes to the Module
/// via thinLTOResolveWeakForLinkerModule.
///
/// This is done for correctness (if value exported, ensure we always
/// emit a copy), and compile-time optimization (allow drop of duplicates).
void thinLTOResolveWeakForLinkerInIndex(
ModuleSummaryIndex &Index,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing,
function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
recordNewLinkage);
/// Update the linkages in the given \p Index to mark exported values
/// as external and non-exported values as internal. The ThinLTO backends
/// must apply the changes to the Module via thinLTOInternalizeModule.
void thinLTOInternalizeAndPromoteInIndex(
ModuleSummaryIndex &Index,
function_ref<bool(StringRef, GlobalValue::GUID)> isExported);
namespace lto {
class LTO;
struct SymbolResolution;
class ThinBackendProc;
/// An input file. This is a wrapper for IRObjectFile that exposes only the
/// information that an LTO client should need in order to do symbol resolution.
class InputFile {
// FIXME: Remove LTO class friendship once we have bitcode symbol tables.
friend LTO;
InputFile() = default;
// FIXME: Remove the LLVMContext once we have bitcode symbol tables.
LLVMContext Ctx;
std::unique_ptr<object::IRObjectFile> Obj;
public:
/// Create an InputFile.
static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
class symbol_iterator;
/// This is a wrapper for object::basic_symbol_iterator that exposes only the
/// information that an LTO client should need in order to do symbol
/// resolution.
///
/// This object is ephemeral; it is only valid as long as an iterator obtained
/// from symbols() refers to it.
class Symbol {
friend symbol_iterator;
friend LTO;
object::basic_symbol_iterator I;
const GlobalValue *GV;
uint32_t Flags;
SmallString<64> Name;
bool shouldSkip() {
return !(Flags & object::BasicSymbolRef::SF_Global) ||
(Flags & object::BasicSymbolRef::SF_FormatSpecific);
}
void skip() {
const object::SymbolicFile *Obj = I->getObject();
auto E = Obj->symbol_end();
while (I != E) {
Flags = I->getFlags();
if (!shouldSkip())
break;
++I;
}
if (I == E)
return;
Name.clear();
{
raw_svector_ostream OS(Name);
I->printName(OS);
}
GV = cast<object::IRObjectFile>(Obj)->getSymbolGV(I->getRawDataRefImpl());
}
public:
Symbol(object::basic_symbol_iterator I) : I(I) { skip(); }
StringRef getName() const { return Name; }
StringRef getIRName() const {
if (GV)
return GV->getName();
return StringRef();
}
uint32_t getFlags() const { return Flags; }
GlobalValue::VisibilityTypes getVisibility() const {
if (GV)
return GV->getVisibility();
return GlobalValue::DefaultVisibility;
}
bool canBeOmittedFromSymbolTable() const {
return GV && llvm::canBeOmittedFromSymbolTable(GV);
}
Expected<const Comdat *> getComdat() const {
const GlobalObject *GO;
if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
GO = GA->getBaseObject();
if (!GO)
return make_error<StringError>("Unable to determine comdat of alias!",
inconvertibleErrorCode());
} else {
GO = cast<GlobalObject>(GV);
}
if (GV)
return GV->getComdat();
return nullptr;
}
uint64_t getCommonSize() const {
assert(Flags & object::BasicSymbolRef::SF_Common);
if (!GV)
return 0;
return GV->getParent()->getDataLayout().getTypeAllocSize(
GV->getType()->getElementType());
}
unsigned getCommonAlignment() const {
assert(Flags & object::BasicSymbolRef::SF_Common);
if (!GV)
return 0;
return GV->getAlignment();
}
};
class symbol_iterator {
Symbol Sym;
public:
symbol_iterator(object::basic_symbol_iterator I) : Sym(I) {}
symbol_iterator &operator++() {
++Sym.I;
Sym.skip();
return *this;
}
symbol_iterator operator++(int) {
symbol_iterator I = *this;
++*this;
return I;
}
const Symbol &operator*() const { return Sym; }
const Symbol *operator->() const { return &Sym; }
bool operator!=(const symbol_iterator &Other) const {
return Sym.I != Other.Sym.I;
}
};
/// A range over the symbols in this InputFile.
iterator_range<symbol_iterator> symbols() {
return llvm::make_range(symbol_iterator(Obj->symbol_begin()),
symbol_iterator(Obj->symbol_end()));
}
StringRef getSourceFileName() const {
return Obj->getModule().getSourceFileName();
}
};
/// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
/// The details of this type definition aren't important; clients can only
/// create a ThinBackend using one of the create*ThinBackend() functions below.
typedef std::function<std::unique_ptr<ThinBackendProc>(
Config &C, ModuleSummaryIndex &CombinedIndex,
StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
AddStreamFn AddStream)>
ThinBackend;
/// This ThinBackend runs the individual backend jobs in-process.
ThinBackend createInProcessThinBackend(unsigned ParallelismLevel);
/// This ThinBackend writes individual module indexes to files, instead of
/// running the individual backend jobs. This backend is for distributed builds
/// where separate processes will invoke the real backends.
///
/// To find the path to write the index to, the backend checks if the path has a
/// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
/// appends ".thinlto.bc" and writes the index to that path. If
/// ShouldEmitImportsFiles is true it also writes a list of imported files to a
/// similar path with ".imports" appended instead.
ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
std::string NewPrefix,
bool ShouldEmitImportsFiles,
std::string LinkedObjectsFile);
/// This class implements a resolution-based interface to LLVM's LTO
/// functionality. It supports regular LTO, parallel LTO code generation and
/// ThinLTO. You can use it from a linker in the following way:
/// - Set hooks and code generation options (see lto::Config struct defined in
/// Config.h), and use the lto::Config object to create an lto::LTO object.
/// - Create lto::InputFile objects using lto::InputFile::create(), then use
/// the symbols() function to enumerate its symbols and compute a resolution
/// for each symbol (see SymbolResolution below).
/// - After the linker has visited each input file (and each regular object
/// file) and computed a resolution for each symbol, take each lto::InputFile
/// and pass it and an array of symbol resolutions to the add() function.
/// - Call the getMaxTasks() function to get an upper bound on the number of
/// native object files that LTO may add to the link.
/// - Call the run() function. This function will use the supplied AddStream
/// function to add up to getMaxTasks() native object files to the link.
class LTO {
friend InputFile;
public:
/// Create an LTO object. A default constructed LTO object has a reasonable
/// production configuration, but you can customize it by passing arguments to
/// this constructor.
/// FIXME: We do currently require the DiagHandler field to be set in Conf.
/// Until that is fixed, a Config argument is required.
LTO(Config Conf, ThinBackend Backend = nullptr,
unsigned ParallelCodeGenParallelismLevel = 1);
/// Add an input file to the LTO link, using the provided symbol resolutions.
/// The symbol resolutions must appear in the enumeration order given by
/// InputFile::symbols().
Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
/// Returns an upper bound on the number of tasks that the client may expect.
/// This may only be called after all IR object files have been added. For a
/// full description of tasks see LTOBackend.h.
unsigned getMaxTasks() const;
/// Runs the LTO pipeline. This function calls the supplied AddStream function
/// to add native object files to the link.
Error run(AddStreamFn AddStream);
private:
Config Conf;
struct RegularLTOState {
RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf);
unsigned ParallelCodeGenParallelismLevel;
LTOLLVMContext Ctx;
bool HasModule = false;
std::unique_ptr<Module> CombinedModule;
IRMover Mover;
} RegularLTO;
struct ThinLTOState {
ThinLTOState(ThinBackend Backend);
ThinBackend Backend;
ModuleSummaryIndex CombinedIndex;
MapVector<StringRef, MemoryBufferRef> ModuleMap;
DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
} ThinLTO;
// The global resolution for a particular (mangled) symbol name. This is in
// particular necessary to track whether each symbol can be internalized.
// Because any input file may introduce a new cross-partition reference, we
// cannot make any final internalization decisions until all input files have
// been added and the client has called run(). During run() we apply
// internalization decisions either directly to the module (for regular LTO)
// or to the combined index (for ThinLTO).
struct GlobalResolution {
/// The unmangled name of the global.
std::string IRName;
bool UnnamedAddr = true;
/// This field keeps track of the partition number of this global. The
/// regular LTO object is partition 0, while each ThinLTO object has its own
/// partition number from 1 onwards.
///
/// Any global that is defined or used by more than one partition, or that
/// is referenced externally, may not be internalized.
///
/// Partitions generally have a one-to-one correspondence with tasks, except
/// that we use partition 0 for all parallel LTO code generation partitions.
/// Any partitioning of the combined LTO object is done internally by the
/// LTO backend.
unsigned Partition = Unknown;
/// Special partition numbers.
enum : unsigned {
/// A partition number has not yet been assigned to this global.
Unknown = -1u,
/// This global is either used by more than one partition or has an
/// external reference, and therefore cannot be internalized.
External = -2u,
};
};
// Global mapping from mangled symbol names to resolutions.
StringMap<GlobalResolution> GlobalResolutions;
void writeToResolutionFile(InputFile *Input, ArrayRef<SymbolResolution> Res);
void addSymbolToGlobalRes(object::IRObjectFile *Obj,
SmallPtrSet<GlobalValue *, 8> &Used,
const InputFile::Symbol &Sym, SymbolResolution Res,
unsigned Partition);
Error addRegularLTO(std::unique_ptr<InputFile> Input,
ArrayRef<SymbolResolution> Res);
Error addThinLTO(std::unique_ptr<InputFile> Input,
ArrayRef<SymbolResolution> Res);
Error runRegularLTO(AddStreamFn AddStream);
Error runThinLTO(AddStreamFn AddStream);
mutable bool CalledGetMaxTasks = false;
};
/// The resolution for a symbol. The linker must provide a SymbolResolution for
/// each global symbol based on its internal resolution of that symbol.
struct SymbolResolution {
SymbolResolution()
: Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0) {
}
/// The linker has chosen this definition of the symbol.
unsigned Prevailing : 1;
/// The definition of this symbol is unpreemptable at runtime and is known to
/// be in this linkage unit.
unsigned FinalDefinitionInLinkageUnit : 1;
/// The definition of this symbol is visible outside of the LTO unit.
unsigned VisibleToRegularObj : 1;
};
} // namespace lto
} // namespace llvm
#endif