1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 18:42:46 +02:00
llvm-mirror/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

150 lines
5.4 KiB
C++

//===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Local-dynamic access to thread-local variables proceeds in three stages.
//
// 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated
// in much the same way as a general-dynamic TLS-descriptor access against
// the special symbol _TLS_MODULE_BASE.
// 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using
// instructions with "dtprel" modifiers.
// 3. These two are added, together with TPIDR_EL0, to obtain the variable's
// true address.
//
// This is only better than general-dynamic access to the variable if two or
// more of the first stage TLS-descriptor calculations can be combined. This
// pass looks through a function and performs such combinations.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define TLSCLEANUP_PASS_NAME "AArch64 Local Dynamic TLS Access Clean-up"
namespace {
struct LDTLSCleanup : public MachineFunctionPass {
static char ID;
LDTLSCleanup() : MachineFunctionPass(ID) {
initializeLDTLSCleanupPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
if (AFI->getNumLocalDynamicTLSAccesses() < 2) {
// No point folding accesses if there isn't at least two.
return false;
}
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
return VisitNode(DT->getRootNode(), 0);
}
// Visit the dominator subtree rooted at Node in pre-order.
// If TLSBaseAddrReg is non-null, then use that to replace any
// TLS_base_addr instructions. Otherwise, create the register
// when the first such instruction is seen, and then use it
// as we encounter more instructions.
bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
MachineBasicBlock *BB = Node->getBlock();
bool Changed = false;
// Traverse the current block.
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
++I) {
switch (I->getOpcode()) {
case AArch64::TLSDESC_CALLSEQ:
// Make sure it's a local dynamic access.
if (!I->getOperand(0).isSymbol() ||
strcmp(I->getOperand(0).getSymbolName(), "_TLS_MODULE_BASE_"))
break;
if (TLSBaseAddrReg)
I = replaceTLSBaseAddrCall(*I, TLSBaseAddrReg);
else
I = setRegister(*I, &TLSBaseAddrReg);
Changed = true;
break;
default:
break;
}
}
// Visit the children of this block in the dominator tree.
for (MachineDomTreeNode *N : *Node) {
Changed |= VisitNode(N, TLSBaseAddrReg);
}
return Changed;
}
// Replace the TLS_base_addr instruction I with a copy from
// TLSBaseAddrReg, returning the new instruction.
MachineInstr *replaceTLSBaseAddrCall(MachineInstr &I,
unsigned TLSBaseAddrReg) {
MachineFunction *MF = I.getParent()->getParent();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
// Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
// code sequence assumes the address will be.
MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII->get(TargetOpcode::COPY), AArch64::X0)
.addReg(TLSBaseAddrReg);
// Erase the TLS_base_addr instruction.
I.eraseFromParent();
return Copy;
}
// Create a virtual register in *TLSBaseAddrReg, and populate it by
// inserting a copy instruction after I. Returns the new instruction.
MachineInstr *setRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) {
MachineFunction *MF = I.getParent()->getParent();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
// Create a virtual register for the TLS base address.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
*TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass);
// Insert a copy from X0 to TLSBaseAddrReg for later.
MachineInstr *Copy =
BuildMI(*I.getParent(), ++I.getIterator(), I.getDebugLoc(),
TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
.addReg(AArch64::X0);
return Copy;
}
StringRef getPassName() const override { return TLSCLEANUP_PASS_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
INITIALIZE_PASS(LDTLSCleanup, "aarch64-local-dynamic-tls-cleanup",
TLSCLEANUP_PASS_NAME, false, false)
char LDTLSCleanup::ID = 0;
FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() {
return new LDTLSCleanup();
}