1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/include/llvm/IR/ValueMap.h
David Blaikie 95e59129ca -Wdeprecated-clean: Fix cases of violating the rule of 5 in ways that are deprecated in C++11
Various value handles needed to be copy constructible and copy
assignable (mostly for their use in DenseMap). But to avoid an API that
might allow accidental slicing, make these members protected in the base
class and make derived classes final (the special members become
implicitly public there - but disallowing further derived classes that
might be sliced to the intermediate type).

Might be worth having a warning a bit like -Wnon-virtual-dtor that
catches public move/copy assign/ctors in classes with virtual functions.
(suppressable in the same way - by making them protected in the base,
and making the derived classes final) Could be fancier and only diagnose
them when they're actually called, potentially.

Also allow a few default implementations where custom implementations
(especially with non-standard return types) were implemented.

llvm-svn: 243909
2015-08-03 22:30:24 +00:00

399 lines
13 KiB
C++

//===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ValueMap class. ValueMap maps Value* or any subclass
// to an arbitrary other type. It provides the DenseMap interface but updates
// itself to remain safe when keys are RAUWed or deleted. By default, when a
// key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
// mapping V2->target is added. If V2 already existed, its old target is
// overwritten. When a key is deleted, its mapping is removed.
//
// You can override a ValueMap's Config parameter to control exactly what
// happens on RAUW and destruction and to get called back on each event. It's
// legal to call back into the ValueMap from a Config's callbacks. Config
// parameters should inherit from ValueMapConfig<KeyT> to get default
// implementations of all the methods ValueMap uses. See ValueMapConfig for
// documentation of the functions you can override.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_VALUEMAP_H
#define LLVM_IR_VALUEMAP_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/TrackingMDRef.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/UniqueLock.h"
#include "llvm/Support/type_traits.h"
#include <iterator>
#include <memory>
namespace llvm {
template<typename KeyT, typename ValueT, typename Config>
class ValueMapCallbackVH;
template<typename DenseMapT, typename KeyT>
class ValueMapIterator;
template<typename DenseMapT, typename KeyT>
class ValueMapConstIterator;
/// This class defines the default behavior for configurable aspects of
/// ValueMap<>. User Configs should inherit from this class to be as compatible
/// as possible with future versions of ValueMap.
template<typename KeyT, typename MutexT = sys::Mutex>
struct ValueMapConfig {
typedef MutexT mutex_type;
/// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
/// false, the ValueMap will leave the original mapping in place.
enum { FollowRAUW = true };
// All methods will be called with a first argument of type ExtraData. The
// default implementations in this class take a templated first argument so
// that users' subclasses can use any type they want without having to
// override all the defaults.
struct ExtraData {};
template<typename ExtraDataT>
static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
template<typename ExtraDataT>
static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
/// Returns a mutex that should be acquired around any changes to the map.
/// This is only acquired from the CallbackVH (and held around calls to onRAUW
/// and onDelete) and not inside other ValueMap methods. NULL means that no
/// mutex is necessary.
template<typename ExtraDataT>
static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
};
/// See the file comment.
template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT> >
class ValueMap {
friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
typedef ValueMapCallbackVH<KeyT, ValueT, Config> ValueMapCVH;
typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH> > MapT;
typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
typedef typename Config::ExtraData ExtraData;
MapT Map;
std::unique_ptr<MDMapT> MDMap;
ExtraData Data;
ValueMap(const ValueMap&) = delete;
ValueMap& operator=(const ValueMap&) = delete;
public:
typedef KeyT key_type;
typedef ValueT mapped_type;
typedef std::pair<KeyT, ValueT> value_type;
typedef unsigned size_type;
explicit ValueMap(unsigned NumInitBuckets = 64)
: Map(NumInitBuckets), Data() {}
explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
: Map(NumInitBuckets), Data(Data) {}
bool hasMD() const { return MDMap; }
MDMapT &MD() {
if (!MDMap)
MDMap.reset(new MDMapT);
return *MDMap;
}
typedef ValueMapIterator<MapT, KeyT> iterator;
typedef ValueMapConstIterator<MapT, KeyT> const_iterator;
inline iterator begin() { return iterator(Map.begin()); }
inline iterator end() { return iterator(Map.end()); }
inline const_iterator begin() const { return const_iterator(Map.begin()); }
inline const_iterator end() const { return const_iterator(Map.end()); }
bool empty() const { return Map.empty(); }
size_type size() const { return Map.size(); }
/// Grow the map so that it has at least Size buckets. Does not shrink
void resize(size_t Size) { Map.resize(Size); }
void clear() {
Map.clear();
MDMap.reset();
}
/// Return 1 if the specified key is in the map, 0 otherwise.
size_type count(const KeyT &Val) const {
return Map.find_as(Val) == Map.end() ? 0 : 1;
}
iterator find(const KeyT &Val) {
return iterator(Map.find_as(Val));
}
const_iterator find(const KeyT &Val) const {
return const_iterator(Map.find_as(Val));
}
/// lookup - Return the entry for the specified key, or a default
/// constructed value if no such entry exists.
ValueT lookup(const KeyT &Val) const {
typename MapT::const_iterator I = Map.find_as(Val);
return I != Map.end() ? I->second : ValueT();
}
// Inserts key,value pair into the map if the key isn't already in the map.
// If the key is already in the map, it returns false and doesn't update the
// value.
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
return std::make_pair(iterator(MapResult.first), MapResult.second);
}
std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
auto MapResult =
Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
return std::make_pair(iterator(MapResult.first), MapResult.second);
}
/// insert - Range insertion of pairs.
template<typename InputIt>
void insert(InputIt I, InputIt E) {
for (; I != E; ++I)
insert(*I);
}
bool erase(const KeyT &Val) {
typename MapT::iterator I = Map.find_as(Val);
if (I == Map.end())
return false;
Map.erase(I);
return true;
}
void erase(iterator I) {
return Map.erase(I.base());
}
value_type& FindAndConstruct(const KeyT &Key) {
return Map.FindAndConstruct(Wrap(Key));
}
ValueT &operator[](const KeyT &Key) {
return Map[Wrap(Key)];
}
/// isPointerIntoBucketsArray - Return true if the specified pointer points
/// somewhere into the ValueMap's array of buckets (i.e. either to a key or
/// value in the ValueMap).
bool isPointerIntoBucketsArray(const void *Ptr) const {
return Map.isPointerIntoBucketsArray(Ptr);
}
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
/// array. In conjunction with the previous method, this can be used to
/// determine whether an insertion caused the ValueMap to reallocate.
const void *getPointerIntoBucketsArray() const {
return Map.getPointerIntoBucketsArray();
}
private:
// Takes a key being looked up in the map and wraps it into a
// ValueMapCallbackVH, the actual key type of the map. We use a helper
// function because ValueMapCVH is constructed with a second parameter.
ValueMapCVH Wrap(KeyT key) const {
// The only way the resulting CallbackVH could try to modify *this (making
// the const_cast incorrect) is if it gets inserted into the map. But then
// this function must have been called from a non-const method, making the
// const_cast ok.
return ValueMapCVH(key, const_cast<ValueMap*>(this));
}
};
// This CallbackVH updates its ValueMap when the contained Value changes,
// according to the user's preferences expressed through the Config object.
template <typename KeyT, typename ValueT, typename Config>
class ValueMapCallbackVH final : public CallbackVH {
friend class ValueMap<KeyT, ValueT, Config>;
friend struct DenseMapInfo<ValueMapCallbackVH>;
typedef ValueMap<KeyT, ValueT, Config> ValueMapT;
typedef typename std::remove_pointer<KeyT>::type KeySansPointerT;
ValueMapT *Map;
ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
: CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
Map(Map) {}
// Private constructor used to create empty/tombstone DenseMap keys.
ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
public:
KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
void deleted() override {
// Make a copy that won't get changed even when *this is destroyed.
ValueMapCallbackVH Copy(*this);
typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
unique_lock<typename Config::mutex_type> Guard;
if (M)
Guard = unique_lock<typename Config::mutex_type>(*M);
Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this.
Copy.Map->Map.erase(Copy); // Definitely destroys *this.
}
void allUsesReplacedWith(Value *new_key) override {
assert(isa<KeySansPointerT>(new_key) &&
"Invalid RAUW on key of ValueMap<>");
// Make a copy that won't get changed even when *this is destroyed.
ValueMapCallbackVH Copy(*this);
typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
unique_lock<typename Config::mutex_type> Guard;
if (M)
Guard = unique_lock<typename Config::mutex_type>(*M);
KeyT typed_new_key = cast<KeySansPointerT>(new_key);
// Can destroy *this:
Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
if (Config::FollowRAUW) {
typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
// I could == Copy.Map->Map.end() if the onRAUW callback already
// removed the old mapping.
if (I != Copy.Map->Map.end()) {
ValueT Target(std::move(I->second));
Copy.Map->Map.erase(I); // Definitely destroys *this.
Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
}
}
}
};
template<typename KeyT, typename ValueT, typename Config>
struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config> > {
typedef ValueMapCallbackVH<KeyT, ValueT, Config> VH;
static inline VH getEmptyKey() {
return VH(DenseMapInfo<Value *>::getEmptyKey());
}
static inline VH getTombstoneKey() {
return VH(DenseMapInfo<Value *>::getTombstoneKey());
}
static unsigned getHashValue(const VH &Val) {
return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
}
static unsigned getHashValue(const KeyT &Val) {
return DenseMapInfo<KeyT>::getHashValue(Val);
}
static bool isEqual(const VH &LHS, const VH &RHS) {
return LHS == RHS;
}
static bool isEqual(const KeyT &LHS, const VH &RHS) {
return LHS == RHS.getValPtr();
}
};
template<typename DenseMapT, typename KeyT>
class ValueMapIterator :
public std::iterator<std::forward_iterator_tag,
std::pair<KeyT, typename DenseMapT::mapped_type>,
ptrdiff_t> {
typedef typename DenseMapT::iterator BaseT;
typedef typename DenseMapT::mapped_type ValueT;
BaseT I;
public:
ValueMapIterator() : I() {}
ValueMapIterator(BaseT I) : I(I) {}
BaseT base() const { return I; }
struct ValueTypeProxy {
const KeyT first;
ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const {
return std::make_pair(first, second);
}
};
ValueTypeProxy operator*() const {
ValueTypeProxy Result = {I->first.Unwrap(), I->second};
return Result;
}
ValueTypeProxy operator->() const {
return operator*();
}
bool operator==(const ValueMapIterator &RHS) const {
return I == RHS.I;
}
bool operator!=(const ValueMapIterator &RHS) const {
return I != RHS.I;
}
inline ValueMapIterator& operator++() { // Preincrement
++I;
return *this;
}
ValueMapIterator operator++(int) { // Postincrement
ValueMapIterator tmp = *this; ++*this; return tmp;
}
};
template<typename DenseMapT, typename KeyT>
class ValueMapConstIterator :
public std::iterator<std::forward_iterator_tag,
std::pair<KeyT, typename DenseMapT::mapped_type>,
ptrdiff_t> {
typedef typename DenseMapT::const_iterator BaseT;
typedef typename DenseMapT::mapped_type ValueT;
BaseT I;
public:
ValueMapConstIterator() : I() {}
ValueMapConstIterator(BaseT I) : I(I) {}
ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
: I(Other.base()) {}
BaseT base() const { return I; }
struct ValueTypeProxy {
const KeyT first;
const ValueT& second;
ValueTypeProxy *operator->() { return this; }
operator std::pair<KeyT, ValueT>() const {
return std::make_pair(first, second);
}
};
ValueTypeProxy operator*() const {
ValueTypeProxy Result = {I->first.Unwrap(), I->second};
return Result;
}
ValueTypeProxy operator->() const {
return operator*();
}
bool operator==(const ValueMapConstIterator &RHS) const {
return I == RHS.I;
}
bool operator!=(const ValueMapConstIterator &RHS) const {
return I != RHS.I;
}
inline ValueMapConstIterator& operator++() { // Preincrement
++I;
return *this;
}
ValueMapConstIterator operator++(int) { // Postincrement
ValueMapConstIterator tmp = *this; ++*this; return tmp;
}
};
} // end namespace llvm
#endif