mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-01-31 20:51:52 +01:00
0792e8ab30
This patch fixes the latency/throughput of LEA instructions in the BtVer2 scheduling model. On Jaguar, A 3-operands LEA has a latency of 2cy, and a reciprocal throughput of 1. That is because it uses one cycle of SAGU followed by 1cy of ALU1. An LEA with a "Scale" operand is also slow, and it has the same latency profile as the 3-operands LEA. An LEA16r has a latency of 3cy, and a throughput of 0.5 (i.e. RThrouhgput of 2.0). This patch adds a new TIIPredicate named IsThreeOperandsLEAFn to X86Schedule.td. The tablegen backend (for instruction-info) expands that definition into this (file X86GenInstrInfo.inc): ``` static bool isThreeOperandsLEA(const MachineInstr &MI) { return ( ( MI.getOpcode() == X86::LEA32r || MI.getOpcode() == X86::LEA64r || MI.getOpcode() == X86::LEA64_32r || MI.getOpcode() == X86::LEA16r ) && MI.getOperand(1).isReg() && MI.getOperand(1).getReg() != 0 && MI.getOperand(3).isReg() && MI.getOperand(3).getReg() != 0 && ( ( MI.getOperand(4).isImm() && MI.getOperand(4).getImm() != 0 ) || (MI.getOperand(4).isGlobal()) ) ); } ``` A similar method is generated in the X86_MC namespace, and included into X86MCTargetDesc.cpp (the declaration lives in X86MCTargetDesc.h). Back to the BtVer2 scheduling model: A new scheduling predicate named JSlowLEAPredicate now checks if either the instruction is a three-operands LEA, or it is an LEA with a Scale value different than 1. A variant scheduling class uses that new predicate to correctly select the appropriate latency profile. Differential Revision: https://reviews.llvm.org/D49436 llvm-svn: 337469