1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-25 05:52:53 +02:00
llvm-mirror/test/CodeGen/CellSPU/sp_farith.ll
Dan Gohman 5f6f8101d5 Split the Add, Sub, and Mul instruction opcodes into separate
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.

For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.

This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt

llvm-svn: 72897
2009-06-04 22:49:04 +00:00

91 lines
3.2 KiB
LLVM

; RUN: llvm-as -o - %s | llc -march=cellspu -enable-unsafe-fp-math > %t1.s
; RUN: grep fa %t1.s | count 2
; RUN: grep fs %t1.s | count 2
; RUN: grep fm %t1.s | count 6
; RUN: grep fma %t1.s | count 2
; RUN: grep fms %t1.s | count 2
; RUN: grep fnms %t1.s | count 3
;
; This file includes standard floating point arithmetic instructions
; NOTE fdiv is tested separately since it is a compound operation
target datalayout = "E-p:32:32:128-f64:64:128-f32:32:128-i64:32:128-i32:32:128-i16:16:128-i8:8:128-i1:8:128-a0:0:128-v128:128:128-s0:128:128"
target triple = "spu"
define float @fp_add(float %arg1, float %arg2) {
%A = fadd float %arg1, %arg2 ; <float> [#uses=1]
ret float %A
}
define <4 x float> @fp_add_vec(<4 x float> %arg1, <4 x float> %arg2) {
%A = fadd <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
ret <4 x float> %A
}
define float @fp_sub(float %arg1, float %arg2) {
%A = fsub float %arg1, %arg2 ; <float> [#uses=1]
ret float %A
}
define <4 x float> @fp_sub_vec(<4 x float> %arg1, <4 x float> %arg2) {
%A = fsub <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
ret <4 x float> %A
}
define float @fp_mul(float %arg1, float %arg2) {
%A = fmul float %arg1, %arg2 ; <float> [#uses=1]
ret float %A
}
define <4 x float> @fp_mul_vec(<4 x float> %arg1, <4 x float> %arg2) {
%A = fmul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
ret <4 x float> %A
}
define float @fp_mul_add(float %arg1, float %arg2, float %arg3) {
%A = fmul float %arg1, %arg2 ; <float> [#uses=1]
%B = fadd float %A, %arg3 ; <float> [#uses=1]
ret float %B
}
define <4 x float> @fp_mul_add_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) {
%A = fmul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
%B = fadd <4 x float> %A, %arg3 ; <<4 x float>> [#uses=1]
ret <4 x float> %B
}
define float @fp_mul_sub(float %arg1, float %arg2, float %arg3) {
%A = fmul float %arg1, %arg2 ; <float> [#uses=1]
%B = fsub float %A, %arg3 ; <float> [#uses=1]
ret float %B
}
define <4 x float> @fp_mul_sub_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) {
%A = fmul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
%B = fsub <4 x float> %A, %arg3 ; <<4 x float>> [#uses=1]
ret <4 x float> %B
}
; Test the straightforward way of getting fnms
; c - a * b
define float @fp_neg_mul_sub_1(float %arg1, float %arg2, float %arg3) {
%A = fmul float %arg1, %arg2
%B = fsub float %arg3, %A
ret float %B
}
; Test another way of getting fnms
; - ( a *b -c ) = c - a * b
define float @fp_neg_mul_sub_2(float %arg1, float %arg2, float %arg3) {
%A = fmul float %arg1, %arg2
%B = fsub float %A, %arg3
%C = fsub float -0.0, %B
ret float %C
}
define <4 x float> @fp_neg_mul_sub_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) {
%A = fmul <4 x float> %arg1, %arg2
%B = fsub <4 x float> %A, %arg3
%D = fsub <4 x float> < float -0.0, float -0.0, float -0.0, float -0.0 >, %B
ret <4 x float> %D
}