1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/X86/InstPrinter/X86InstComments.cpp
Bruno Cardoso Lopes ba1a2a9135 Add support for 256-bit versions of VPERMIL instruction. This is a new
instruction introduced in AVX, which can operate on 128 and 256-bit vectors.
It considers a 256-bit vector as two independent 128-bit lanes. It can permute
any 32 or 64 elements inside a lane, and restricts the second lane to
have the same permutation of the first one. With the improved splat support
introduced early today, adding codegen for this instruction enable more
efficient 256-bit code:

Instead of:
  vextractf128  $0, %ymm0, %xmm0
  punpcklbw %xmm0, %xmm0
  punpckhbw %xmm0, %xmm0
  vinsertf128 $0, %xmm0, %ymm0, %ymm1
  vinsertf128 $1, %xmm0, %ymm1, %ymm0
  vextractf128  $1, %ymm0, %xmm1
  shufps  $1, %xmm1, %xmm1
  movss %xmm1, 28(%rsp)
  movss %xmm1, 24(%rsp)
  movss %xmm1, 20(%rsp)
  movss %xmm1, 16(%rsp)
  vextractf128  $0, %ymm0, %xmm0
  shufps  $1, %xmm0, %xmm0
  movss %xmm0, 12(%rsp)
  movss %xmm0, 8(%rsp)
  movss %xmm0, 4(%rsp)
  movss %xmm0, (%rsp)
  vmovaps (%rsp), %ymm0
We get:
  vextractf128  $0, %ymm0, %xmm0
  punpcklbw %xmm0, %xmm0
  punpckhbw %xmm0, %xmm0
  vinsertf128 $0, %xmm0, %ymm0, %ymm1
  vinsertf128 $1, %xmm0, %ymm1, %ymm0
  vpermilps $85, %ymm0, %ymm0

llvm-svn: 135662
2011-07-21 01:55:47 +00:00

271 lines
9.0 KiB
C++

//===-- X86InstComments.cpp - Generate verbose-asm comments for instrs ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines functionality used to emit comments about X86 instructions to
// an output stream for -fverbose-asm.
//
//===----------------------------------------------------------------------===//
#include "X86InstComments.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/raw_ostream.h"
#include "../Utils/X86ShuffleDecode.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
/// EmitAnyX86InstComments - This function decodes x86 instructions and prints
/// newline terminated strings to the specified string if desired. This
/// information is shown in disassembly dumps when verbose assembly is enabled.
void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
const char *(*getRegName)(unsigned)) {
// If this is a shuffle operation, the switch should fill in this state.
SmallVector<unsigned, 8> ShuffleMask;
const char *DestName = 0, *Src1Name = 0, *Src2Name = 0;
switch (MI->getOpcode()) {
case X86::INSERTPSrr:
Src1Name = getRegName(MI->getOperand(1).getReg());
Src2Name = getRegName(MI->getOperand(2).getReg());
DecodeINSERTPSMask(MI->getOperand(3).getImm(), ShuffleMask);
break;
case X86::MOVLHPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodeMOVLHPSMask(2, ShuffleMask);
break;
case X86::MOVHLPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodeMOVHLPSMask(2, ShuffleMask);
break;
case X86::PSHUFDri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFDmi:
DestName = getRegName(MI->getOperand(0).getReg());
DecodePSHUFMask(4, MI->getOperand(MI->getNumOperands()-1).getImm(),
ShuffleMask);
break;
case X86::PSHUFHWri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFHWmi:
DestName = getRegName(MI->getOperand(0).getReg());
DecodePSHUFHWMask(MI->getOperand(MI->getNumOperands()-1).getImm(),
ShuffleMask);
break;
case X86::PSHUFLWri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFLWmi:
DestName = getRegName(MI->getOperand(0).getReg());
DecodePSHUFLWMask(MI->getOperand(MI->getNumOperands()-1).getImm(),
ShuffleMask);
break;
case X86::PUNPCKHBWrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHBWrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKHMask(16, ShuffleMask);
break;
case X86::PUNPCKHWDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHWDrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKHMask(8, ShuffleMask);
break;
case X86::PUNPCKHDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKHMask(4, ShuffleMask);
break;
case X86::PUNPCKHQDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHQDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKHMask(2, ShuffleMask);
break;
case X86::PUNPCKLBWrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLBWrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKLBWMask(16, ShuffleMask);
break;
case X86::PUNPCKLWDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLWDrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKLWDMask(8, ShuffleMask);
break;
case X86::PUNPCKLDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKLDQMask(4, ShuffleMask);
break;
case X86::PUNPCKLQDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLQDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKLQDQMask(2, ShuffleMask);
break;
case X86::SHUFPDrri:
DecodeSHUFPSMask(2, MI->getOperand(3).getImm(), ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
Src2Name = getRegName(MI->getOperand(2).getReg());
break;
case X86::SHUFPSrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::SHUFPSrmi:
DecodeSHUFPSMask(4, MI->getOperand(3).getImm(), ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::UNPCKLPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKLPDrm:
DecodeUNPCKLPDMask(2, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VUNPCKLPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPDrm:
DecodeUNPCKLPDMask(2, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::VUNPCKLPDYrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPDYrm:
DecodeUNPCKLPDMask(4, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::UNPCKLPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKLPSrm:
DecodeUNPCKLPSMask(4, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VUNPCKLPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPSrm:
DecodeUNPCKLPSMask(4, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::VUNPCKLPSYrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPSYrm:
DecodeUNPCKLPSMask(8, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::UNPCKHPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKHPDrm:
DecodeUNPCKHPMask(2, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::UNPCKHPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKHPSrm:
DecodeUNPCKHPMask(4, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPSYri:
DecodeVPERMILPSMask(8, MI->getOperand(2).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPDYri:
DecodeVPERMILPSMask(4, MI->getOperand(2).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
}
// If this was a shuffle operation, print the shuffle mask.
if (!ShuffleMask.empty()) {
if (DestName == 0) DestName = Src1Name;
OS << (DestName ? DestName : "mem") << " = ";
// If the two sources are the same, canonicalize the input elements to be
// from the first src so that we get larger element spans.
if (Src1Name == Src2Name) {
for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
if ((int)ShuffleMask[i] >= 0 && // Not sentinel.
ShuffleMask[i] >= e) // From second mask.
ShuffleMask[i] -= e;
}
}
// The shuffle mask specifies which elements of the src1/src2 fill in the
// destination, with a few sentinel values. Loop through and print them
// out.
for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
if (i != 0)
OS << ',';
if (ShuffleMask[i] == SM_SentinelZero) {
OS << "zero";
continue;
}
// Otherwise, it must come from src1 or src2. Print the span of elements
// that comes from this src.
bool isSrc1 = ShuffleMask[i] < ShuffleMask.size();
const char *SrcName = isSrc1 ? Src1Name : Src2Name;
OS << (SrcName ? SrcName : "mem") << '[';
bool IsFirst = true;
while (i != e &&
(int)ShuffleMask[i] >= 0 &&
(ShuffleMask[i] < ShuffleMask.size()) == isSrc1) {
if (!IsFirst)
OS << ',';
else
IsFirst = false;
OS << ShuffleMask[i] % ShuffleMask.size();
++i;
}
OS << ']';
--i; // For loop increments element #.
}
//MI->print(OS, 0);
OS << "\n";
}
}