1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-01 16:33:37 +01:00
llvm-mirror/lib/Transforms/IPO/FunctionAttrs.cpp
Duncan Sands a254acd1d3 Remove alloca tracking from nocapture analysis. Not only
was it not very helpful, it was also wrong!  The problem
is shown in the testcase: the alloca might be passed to
a nocapture callee which dereferences it and returns the
original pointer.  But because it was a nocapture call we
think we don't need to track its uses, but we do.

llvm-svn: 61876
2009-01-07 19:39:06 +00:00

295 lines
10 KiB
C++

//===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple interprocedural pass which walks the
// call-graph, looking for functions which do not access or only read
// non-local memory, and marking them readnone/readonly. In addition,
// it marks function arguments (of pointer type) 'nocapture' if a call
// to the function does not create any copies of the pointer value that
// outlive the call. This more or less means that the pointer is only
// dereferenced, and not returned from the function or stored in a global.
// This pass is implemented as a bottom-up traversal of the call-graph.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "functionattrs"
#include "llvm/Transforms/IPO.h"
#include "llvm/CallGraphSCCPass.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/InstIterator.h"
using namespace llvm;
STATISTIC(NumReadNone, "Number of functions marked readnone");
STATISTIC(NumReadOnly, "Number of functions marked readonly");
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
namespace {
struct VISIBILITY_HIDDEN FunctionAttrs : public CallGraphSCCPass {
static char ID; // Pass identification, replacement for typeid
FunctionAttrs() : CallGraphSCCPass(&ID) {}
// runOnSCC - Analyze the SCC, performing the transformation if possible.
bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
bool AddReadAttrs(const std::vector<CallGraphNode *> &SCC);
// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
bool AddNoCaptureAttrs(const std::vector<CallGraphNode *> &SCC);
// isCaptured - Return true if this pointer value may be captured.
bool isCaptured(Function &F, Value *V);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
CallGraphSCCPass::getAnalysisUsage(AU);
}
bool PointsToLocalMemory(Value *V);
};
}
char FunctionAttrs::ID = 0;
static RegisterPass<FunctionAttrs>
X("functionattrs", "Deduce function attributes");
Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
/// PointsToLocalMemory - Returns whether the given pointer value points to
/// memory that is local to the function. Global constants are considered
/// local to all functions.
bool FunctionAttrs::PointsToLocalMemory(Value *V) {
V = V->getUnderlyingObject();
// An alloca instruction defines local memory.
if (isa<AllocaInst>(V))
return true;
// A global constant counts as local memory for our purposes.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return GV->isConstant();
// Could look through phi nodes and selects here, but it doesn't seem
// to be useful in practice.
return false;
}
/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
bool FunctionAttrs::AddReadAttrs(const std::vector<CallGraphNode *> &SCC) {
SmallPtrSet<CallGraphNode*, 8> SCCNodes;
CallGraph &CG = getAnalysis<CallGraph>();
// Fill SCCNodes with the elements of the SCC. Used for quickly
// looking up whether a given CallGraphNode is in this SCC.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
SCCNodes.insert(SCC[i]);
// Check if any of the functions in the SCC read or write memory. If they
// write memory then they can't be marked readnone or readonly.
bool ReadsMemory = false;
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
Function *F = SCC[i]->getFunction();
if (F == 0)
// External node - may write memory. Just give up.
return false;
if (F->doesNotAccessMemory())
// Already perfect!
continue;
// Definitions with weak linkage may be overridden at linktime with
// something that writes memory, so treat them like declarations.
if (F->isDeclaration() || F->mayBeOverridden()) {
if (!F->onlyReadsMemory())
// May write memory. Just give up.
return false;
ReadsMemory = true;
continue;
}
// Scan the function body for instructions that may read or write memory.
for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
Instruction *I = &*II;
// Some instructions can be ignored even if they read or write memory.
// Detect these now, skipping to the next instruction if one is found.
CallSite CS = CallSite::get(I);
if (CS.getInstruction()) {
// Ignore calls to functions in the same SCC.
if (SCCNodes.count(CG[CS.getCalledFunction()]))
continue;
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
// Ignore loads from local memory.
if (PointsToLocalMemory(LI->getPointerOperand()))
continue;
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Ignore stores to local memory.
if (PointsToLocalMemory(SI->getPointerOperand()))
continue;
}
// Any remaining instructions need to be taken seriously! Check if they
// read or write memory.
if (I->mayWriteToMemory())
// Writes memory. Just give up.
return false;
// If this instruction may read memory, remember that.
ReadsMemory |= I->mayReadFromMemory();
}
}
// Success! Functions in this SCC do not access memory, or only read memory.
// Give them the appropriate attribute.
bool MadeChange = false;
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
Function *F = SCC[i]->getFunction();
if (F->doesNotAccessMemory())
// Already perfect!
continue;
if (F->onlyReadsMemory() && ReadsMemory)
// No change.
continue;
MadeChange = true;
// Clear out any existing attributes.
F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
// Add in the new attribute.
F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone);
if (ReadsMemory)
++NumReadOnly;
else
++NumReadNone;
}
return MadeChange;
}
/// isCaptured - Return true if this pointer value may be captured.
bool FunctionAttrs::isCaptured(Function &F, Value *V) {
SmallVector<Use*, 16> Worklist;
SmallSet<Use*, 16> Visited;
for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
++UI) {
Use *U = &UI.getUse();
Visited.insert(U);
Worklist.push_back(U);
}
while (!Worklist.empty()) {
Use *U = Worklist.pop_back_val();
Instruction *I = cast<Instruction>(U->getUser());
V = U->get();
switch (I->getOpcode()) {
case Instruction::Call:
case Instruction::Invoke: {
CallSite CS = CallSite::get(I);
// Not captured if the callee is readonly and doesn't return a copy
// through its return value.
if (CS.onlyReadsMemory() && I->getType() == Type::VoidTy)
break;
// Not captured if only passed via 'nocapture' arguments. Note that
// calling a function pointer does not in itself cause the pointer to
// be captured. This is a subtle point considering that (for example)
// the callee might return its own address. It is analogous to saying
// that loading a value from a pointer does not cause the pointer to be
// captured, even though the loaded value might be the pointer itself
// (think of self-referential objects).
CallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
for (CallSite::arg_iterator A = B; A != E; ++A)
if (A->get() == V && !CS.paramHasAttr(A - B + 1, Attribute::NoCapture))
// The parameter is not marked 'nocapture' - captured.
return true;
// Only passed via 'nocapture' arguments, or is the called function - not
// captured.
break;
}
case Instruction::Free:
// Freeing a pointer does not cause it to be captured.
break;
case Instruction::Load:
// Loading from a pointer does not cause it to be captured.
break;
case Instruction::Store:
if (V == I->getOperand(0))
// Stored the pointer - it may be captured.
return true;
// Storing to the pointee does not cause the pointer to be captured.
break;
case Instruction::BitCast:
case Instruction::GetElementPtr:
case Instruction::PHI:
case Instruction::Select:
// The original value is not captured via this if the new value isn't.
for (Instruction::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
Use *U = &UI.getUse();
if (Visited.insert(U))
Worklist.push_back(U);
}
break;
default:
// Something else - be conservative and say it is captured.
return true;
}
}
// All uses examined - not captured.
return false;
}
/// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
bool FunctionAttrs::AddNoCaptureAttrs(const std::vector<CallGraphNode *> &SCC) {
bool Changed = false;
// Check each function in turn, determining which pointer arguments are not
// captured.
for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
Function *F = SCC[i]->getFunction();
if (F == 0)
// External node - skip it;
continue;
// Definitions with weak linkage may be overridden at linktime with
// something that writes memory, so treat them like declarations.
if (F->isDeclaration() || F->mayBeOverridden())
continue;
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
if (isa<PointerType>(A->getType()) && !A->hasNoCaptureAttr() &&
!isCaptured(*F, A)) {
A->addAttr(Attribute::NoCapture);
++NumNoCapture;
Changed = true;
}
}
return Changed;
}
bool FunctionAttrs::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
bool Changed = AddReadAttrs(SCC);
Changed |= AddNoCaptureAttrs(SCC);
return Changed;
}