1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-01 16:33:37 +01:00
llvm-mirror/lib/CodeGen/MachineSink.cpp
Nick Lewycky 2b8400628d Remove includes of Support/Compiler.h that are no longer needed after the
VISIBILITY_HIDDEN removal.

llvm-svn: 85043
2009-10-25 06:57:41 +00:00

281 lines
10 KiB
C++

//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass moves instructions into successor blocks, when possible, so that
// they aren't executed on paths where their results aren't needed.
//
// This pass is not intended to be a replacement or a complete alternative
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-sink"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumSunk, "Number of machine instructions sunk");
namespace {
class MachineSinking : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineRegisterInfo *RegInfo; // Machine register information
MachineDominatorTree *DT; // Machine dominator tree
AliasAnalysis *AA;
BitVector AllocatableSet; // Which physregs are allocatable?
public:
static char ID; // Pass identification
MachineSinking() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<AliasAnalysis>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
private:
bool ProcessBlock(MachineBasicBlock &MBB);
bool SinkInstruction(MachineInstr *MI, bool &SawStore);
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
};
} // end anonymous namespace
char MachineSinking::ID = 0;
static RegisterPass<MachineSinking>
X("machine-sink", "Machine code sinking");
FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
/// occur in blocks dominated by the specified block.
bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
MachineBasicBlock *MBB) const {
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Only makes sense for vregs");
for (MachineRegisterInfo::use_iterator I = RegInfo->use_begin(Reg),
E = RegInfo->use_end(); I != E; ++I) {
// Determine the block of the use.
MachineInstr *UseInst = &*I;
MachineBasicBlock *UseBlock = UseInst->getParent();
if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
// PHI nodes use the operand in the predecessor block, not the block with
// the PHI.
UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
}
// Check that it dominates.
if (!DT->dominates(MBB, UseBlock))
return false;
}
return true;
}
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
DEBUG(errs() << "******** Machine Sinking ********\n");
const TargetMachine &TM = MF.getTarget();
TII = TM.getInstrInfo();
TRI = TM.getRegisterInfo();
RegInfo = &MF.getRegInfo();
DT = &getAnalysis<MachineDominatorTree>();
AA = &getAnalysis<AliasAnalysis>();
AllocatableSet = TRI->getAllocatableSet(MF);
bool EverMadeChange = false;
while (1) {
bool MadeChange = false;
// Process all basic blocks.
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
I != E; ++I)
MadeChange |= ProcessBlock(*I);
// If this iteration over the code changed anything, keep iterating.
if (!MadeChange) break;
EverMadeChange = true;
}
return EverMadeChange;
}
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
// Can't sink anything out of a block that has less than two successors.
if (MBB.succ_size() <= 1 || MBB.empty()) return false;
bool MadeChange = false;
// Walk the basic block bottom-up. Remember if we saw a store.
MachineBasicBlock::iterator I = MBB.end();
--I;
bool ProcessedBegin, SawStore = false;
do {
MachineInstr *MI = I; // The instruction to sink.
// Predecrement I (if it's not begin) so that it isn't invalidated by
// sinking.
ProcessedBegin = I == MBB.begin();
if (!ProcessedBegin)
--I;
if (SinkInstruction(MI, SawStore))
++NumSunk, MadeChange = true;
// If we just processed the first instruction in the block, we're done.
} while (!ProcessedBegin);
return MadeChange;
}
/// SinkInstruction - Determine whether it is safe to sink the specified machine
/// instruction out of its current block into a successor.
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
// Check if it's safe to move the instruction.
if (!MI->isSafeToMove(TII, SawStore, AA))
return false;
// FIXME: This should include support for sinking instructions within the
// block they are currently in to shorten the live ranges. We often get
// instructions sunk into the top of a large block, but it would be better to
// also sink them down before their first use in the block. This xform has to
// be careful not to *increase* register pressure though, e.g. sinking
// "x = y + z" down if it kills y and z would increase the live ranges of y
// and z and only shrink the live range of x.
// Loop over all the operands of the specified instruction. If there is
// anything we can't handle, bail out.
MachineBasicBlock *ParentBlock = MI->getParent();
// SuccToSinkTo - This is the successor to sink this instruction to, once we
// decide.
MachineBasicBlock *SuccToSinkTo = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg()) continue; // Ignore non-register operands.
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
if (!RegInfo->def_empty(Reg))
return false;
if (AllocatableSet.test(Reg))
return false;
// Check for a def among the register's aliases too.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
if (!RegInfo->def_empty(AliasReg))
return false;
if (AllocatableSet.test(AliasReg))
return false;
}
} else if (!MO.isDead()) {
// A def that isn't dead. We can't move it.
return false;
}
} else {
// Virtual register uses are always safe to sink.
if (MO.isUse()) continue;
// If it's not safe to move defs of the register class, then abort.
if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
return false;
// FIXME: This picks a successor to sink into based on having one
// successor that dominates all the uses. However, there are cases where
// sinking can happen but where the sink point isn't a successor. For
// example:
// x = computation
// if () {} else {}
// use x
// the instruction could be sunk over the whole diamond for the
// if/then/else (or loop, etc), allowing it to be sunk into other blocks
// after that.
// Virtual register defs can only be sunk if all their uses are in blocks
// dominated by one of the successors.
if (SuccToSinkTo) {
// If a previous operand picked a block to sink to, then this operand
// must be sinkable to the same block.
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
return false;
continue;
}
// Otherwise, we should look at all the successors and decide which one
// we should sink to.
for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
E = ParentBlock->succ_end(); SI != E; ++SI) {
if (AllUsesDominatedByBlock(Reg, *SI)) {
SuccToSinkTo = *SI;
break;
}
}
// If we couldn't find a block to sink to, ignore this instruction.
if (SuccToSinkTo == 0)
return false;
}
}
// If there are no outputs, it must have side-effects.
if (SuccToSinkTo == 0)
return false;
// It's not safe to sink instructions to EH landing pad. Control flow into
// landing pad is implicitly defined.
if (SuccToSinkTo->isLandingPad())
return false;
// It is not possible to sink an instruction into its own block. This can
// happen with loops.
if (MI->getParent() == SuccToSinkTo)
return false;
DEBUG(errs() << "Sink instr " << *MI);
DEBUG(errs() << "to block " << *SuccToSinkTo);
// If the block has multiple predecessors, this would introduce computation on
// a path that it doesn't already exist. We could split the critical edge,
// but for now we just punt.
// FIXME: Split critical edges if not backedges.
if (SuccToSinkTo->pred_size() > 1) {
DEBUG(errs() << " *** PUNTING: Critical edge found\n");
return false;
}
// Determine where to insert into. Skip phi nodes.
MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
while (InsertPos != SuccToSinkTo->end() &&
InsertPos->getOpcode() == TargetInstrInfo::PHI)
++InsertPos;
// Move the instruction.
SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
++MachineBasicBlock::iterator(MI));
return true;
}