1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/include/llvm/CodeGen/TargetLowering.h
Bradley Smith ef187efe53 [TargetLowering][AArch64][SVE] Take into account accessed type when clamping address
When clamping the index for a memory access to a stacked vector we must
take into account the entire type being accessed, not just assume that
we are accessing only a single element.

Differential Revision: https://reviews.llvm.org/D105016
2021-06-30 13:30:18 +01:00

4673 lines
201 KiB
C++

//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file describes how to lower LLVM code to machine code. This has two
/// main components:
///
/// 1. Which ValueTypes are natively supported by the target.
/// 2. Which operations are supported for supported ValueTypes.
/// 3. Cost thresholds for alternative implementations of certain operations.
///
/// In addition it has a few other components, like information about FP
/// immediates.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_TARGETLOWERING_H
#define LLVM_CODEGEN_TARGETLOWERING_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstructionCost.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdint>
#include <iterator>
#include <map>
#include <string>
#include <utility>
#include <vector>
namespace llvm {
class BranchProbability;
class CCState;
class CCValAssign;
class Constant;
class FastISel;
class FunctionLoweringInfo;
class GlobalValue;
class GISelKnownBits;
class IntrinsicInst;
class IRBuilderBase;
struct KnownBits;
class LegacyDivergenceAnalysis;
class LLVMContext;
class MachineBasicBlock;
class MachineFunction;
class MachineInstr;
class MachineJumpTableInfo;
class MachineLoop;
class MachineRegisterInfo;
class MCContext;
class MCExpr;
class Module;
class ProfileSummaryInfo;
class TargetLibraryInfo;
class TargetMachine;
class TargetRegisterClass;
class TargetRegisterInfo;
class TargetTransformInfo;
class Value;
namespace Sched {
enum Preference {
None, // No preference
Source, // Follow source order.
RegPressure, // Scheduling for lowest register pressure.
Hybrid, // Scheduling for both latency and register pressure.
ILP, // Scheduling for ILP in low register pressure mode.
VLIW, // Scheduling for VLIW targets.
Fast, // Fast suboptimal list scheduling
Linearize // Linearize DAG, no scheduling
};
} // end namespace Sched
// MemOp models a memory operation, either memset or memcpy/memmove.
struct MemOp {
private:
// Shared
uint64_t Size;
bool DstAlignCanChange; // true if destination alignment can satisfy any
// constraint.
Align DstAlign; // Specified alignment of the memory operation.
bool AllowOverlap;
// memset only
bool IsMemset; // If setthis memory operation is a memset.
bool ZeroMemset; // If set clears out memory with zeros.
// memcpy only
bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
// constant so it does not need to be loaded.
Align SrcAlign; // Inferred alignment of the source or default value if the
// memory operation does not need to load the value.
public:
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
Align SrcAlign, bool IsVolatile,
bool MemcpyStrSrc = false) {
MemOp Op;
Op.Size = Size;
Op.DstAlignCanChange = DstAlignCanChange;
Op.DstAlign = DstAlign;
Op.AllowOverlap = !IsVolatile;
Op.IsMemset = false;
Op.ZeroMemset = false;
Op.MemcpyStrSrc = MemcpyStrSrc;
Op.SrcAlign = SrcAlign;
return Op;
}
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
bool IsZeroMemset, bool IsVolatile) {
MemOp Op;
Op.Size = Size;
Op.DstAlignCanChange = DstAlignCanChange;
Op.DstAlign = DstAlign;
Op.AllowOverlap = !IsVolatile;
Op.IsMemset = true;
Op.ZeroMemset = IsZeroMemset;
Op.MemcpyStrSrc = false;
return Op;
}
uint64_t size() const { return Size; }
Align getDstAlign() const {
assert(!DstAlignCanChange);
return DstAlign;
}
bool isFixedDstAlign() const { return !DstAlignCanChange; }
bool allowOverlap() const { return AllowOverlap; }
bool isMemset() const { return IsMemset; }
bool isMemcpy() const { return !IsMemset; }
bool isMemcpyWithFixedDstAlign() const {
return isMemcpy() && !DstAlignCanChange;
}
bool isZeroMemset() const { return isMemset() && ZeroMemset; }
bool isMemcpyStrSrc() const {
assert(isMemcpy() && "Must be a memcpy");
return MemcpyStrSrc;
}
Align getSrcAlign() const {
assert(isMemcpy() && "Must be a memcpy");
return SrcAlign;
}
bool isSrcAligned(Align AlignCheck) const {
return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
}
bool isDstAligned(Align AlignCheck) const {
return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
}
bool isAligned(Align AlignCheck) const {
return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
}
};
/// This base class for TargetLowering contains the SelectionDAG-independent
/// parts that can be used from the rest of CodeGen.
class TargetLoweringBase {
public:
/// This enum indicates whether operations are valid for a target, and if not,
/// what action should be used to make them valid.
enum LegalizeAction : uint8_t {
Legal, // The target natively supports this operation.
Promote, // This operation should be executed in a larger type.
Expand, // Try to expand this to other ops, otherwise use a libcall.
LibCall, // Don't try to expand this to other ops, always use a libcall.
Custom // Use the LowerOperation hook to implement custom lowering.
};
/// This enum indicates whether a types are legal for a target, and if not,
/// what action should be used to make them valid.
enum LegalizeTypeAction : uint8_t {
TypeLegal, // The target natively supports this type.
TypePromoteInteger, // Replace this integer with a larger one.
TypeExpandInteger, // Split this integer into two of half the size.
TypeSoftenFloat, // Convert this float to a same size integer type.
TypeExpandFloat, // Split this float into two of half the size.
TypeScalarizeVector, // Replace this one-element vector with its element.
TypeSplitVector, // Split this vector into two of half the size.
TypeWidenVector, // This vector should be widened into a larger vector.
TypePromoteFloat, // Replace this float with a larger one.
TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
// While it is theoretically possible to
// legalize operations on scalable types with a
// loop that handles the vscale * #lanes of the
// vector, this is non-trivial at SelectionDAG
// level and these types are better to be
// widened or promoted.
};
/// LegalizeKind holds the legalization kind that needs to happen to EVT
/// in order to type-legalize it.
using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
/// Enum that describes how the target represents true/false values.
enum BooleanContent {
UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
ZeroOrOneBooleanContent, // All bits zero except for bit 0.
ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
};
/// Enum that describes what type of support for selects the target has.
enum SelectSupportKind {
ScalarValSelect, // The target supports scalar selects (ex: cmov).
ScalarCondVectorVal, // The target supports selects with a scalar condition
// and vector values (ex: cmov).
VectorMaskSelect // The target supports vector selects with a vector
// mask (ex: x86 blends).
};
/// Enum that specifies what an atomic load/AtomicRMWInst is expanded
/// to, if at all. Exists because different targets have different levels of
/// support for these atomic instructions, and also have different options
/// w.r.t. what they should expand to.
enum class AtomicExpansionKind {
None, // Don't expand the instruction.
LLSC, // Expand the instruction into loadlinked/storeconditional; used
// by ARM/AArch64.
LLOnly, // Expand the (load) instruction into just a load-linked, which has
// greater atomic guarantees than a normal load.
CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
};
/// Enum that specifies when a multiplication should be expanded.
enum class MulExpansionKind {
Always, // Always expand the instruction.
OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
// or custom.
};
/// Enum that specifies when a float negation is beneficial.
enum class NegatibleCost {
Cheaper = 0, // Negated expression is cheaper.
Neutral = 1, // Negated expression has the same cost.
Expensive = 2 // Negated expression is more expensive.
};
class ArgListEntry {
public:
Value *Val = nullptr;
SDValue Node = SDValue();
Type *Ty = nullptr;
bool IsSExt : 1;
bool IsZExt : 1;
bool IsInReg : 1;
bool IsSRet : 1;
bool IsNest : 1;
bool IsByVal : 1;
bool IsByRef : 1;
bool IsInAlloca : 1;
bool IsPreallocated : 1;
bool IsReturned : 1;
bool IsSwiftSelf : 1;
bool IsSwiftAsync : 1;
bool IsSwiftError : 1;
bool IsCFGuardTarget : 1;
MaybeAlign Alignment = None;
Type *ByValType = nullptr;
Type *PreallocatedType = nullptr;
ArgListEntry()
: IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false),
IsNest(false), IsByVal(false), IsByRef(false), IsInAlloca(false),
IsPreallocated(false), IsReturned(false), IsSwiftSelf(false),
IsSwiftAsync(false), IsSwiftError(false), IsCFGuardTarget(false) {}
void setAttributes(const CallBase *Call, unsigned ArgIdx);
};
using ArgListTy = std::vector<ArgListEntry>;
virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
ArgListTy &Args) const {};
static ISD::NodeType getExtendForContent(BooleanContent Content) {
switch (Content) {
case UndefinedBooleanContent:
// Extend by adding rubbish bits.
return ISD::ANY_EXTEND;
case ZeroOrOneBooleanContent:
// Extend by adding zero bits.
return ISD::ZERO_EXTEND;
case ZeroOrNegativeOneBooleanContent:
// Extend by copying the sign bit.
return ISD::SIGN_EXTEND;
}
llvm_unreachable("Invalid content kind");
}
explicit TargetLoweringBase(const TargetMachine &TM);
TargetLoweringBase(const TargetLoweringBase &) = delete;
TargetLoweringBase &operator=(const TargetLoweringBase &) = delete;
virtual ~TargetLoweringBase() = default;
/// Return true if the target support strict float operation
bool isStrictFPEnabled() const {
return IsStrictFPEnabled;
}
protected:
/// Initialize all of the actions to default values.
void initActions();
public:
const TargetMachine &getTargetMachine() const { return TM; }
virtual bool useSoftFloat() const { return false; }
/// Return the pointer type for the given address space, defaults to
/// the pointer type from the data layout.
/// FIXME: The default needs to be removed once all the code is updated.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
}
/// Return the in-memory pointer type for the given address space, defaults to
/// the pointer type from the data layout. FIXME: The default needs to be
/// removed once all the code is updated.
MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
}
/// Return the type for frame index, which is determined by
/// the alloca address space specified through the data layout.
MVT getFrameIndexTy(const DataLayout &DL) const {
return getPointerTy(DL, DL.getAllocaAddrSpace());
}
/// Return the type for code pointers, which is determined by the program
/// address space specified through the data layout.
MVT getProgramPointerTy(const DataLayout &DL) const {
return getPointerTy(DL, DL.getProgramAddressSpace());
}
/// Return the type for operands of fence.
/// TODO: Let fence operands be of i32 type and remove this.
virtual MVT getFenceOperandTy(const DataLayout &DL) const {
return getPointerTy(DL);
}
/// EVT is not used in-tree, but is used by out-of-tree target.
/// A documentation for this function would be nice...
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
bool LegalTypes = true) const;
/// Return the preferred type to use for a shift opcode, given the shifted
/// amount type is \p ShiftValueTy.
LLVM_READONLY
virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
return ShiftValueTy;
}
/// Returns the type to be used for the index operand of:
/// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
/// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
virtual MVT getVectorIdxTy(const DataLayout &DL) const {
return getPointerTy(DL);
}
/// Returns the type to be used for the EVL/AVL operand of VP nodes:
/// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
/// and must be at least as large as i32. The EVL is implicitly zero-extended
/// to any larger type.
virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
/// This callback is used to inspect load/store instructions and add
/// target-specific MachineMemOperand flags to them. The default
/// implementation does nothing.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const {
return MachineMemOperand::MONone;
}
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI,
const DataLayout &DL) const;
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI,
const DataLayout &DL) const;
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI,
const DataLayout &DL) const;
virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
return true;
}
/// Return true if it is profitable to convert a select of FP constants into
/// a constant pool load whose address depends on the select condition. The
/// parameter may be used to differentiate a select with FP compare from
/// integer compare.
virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
return true;
}
/// Return true if multiple condition registers are available.
bool hasMultipleConditionRegisters() const {
return HasMultipleConditionRegisters;
}
/// Return true if the target has BitExtract instructions.
bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
/// Return the preferred vector type legalization action.
virtual TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const {
// The default action for one element vectors is to scalarize
if (VT.getVectorElementCount().isScalar())
return TypeScalarizeVector;
// The default action for an odd-width vector is to widen.
if (!VT.isPow2VectorType())
return TypeWidenVector;
// The default action for other vectors is to promote
return TypePromoteInteger;
}
// Return true if the half type should be passed around as i16, but promoted
// to float around arithmetic. The default behavior is to pass around as
// float and convert around loads/stores/bitcasts and other places where
// the size matters.
virtual bool softPromoteHalfType() const { return false; }
// There are two general methods for expanding a BUILD_VECTOR node:
// 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
// them together.
// 2. Build the vector on the stack and then load it.
// If this function returns true, then method (1) will be used, subject to
// the constraint that all of the necessary shuffles are legal (as determined
// by isShuffleMaskLegal). If this function returns false, then method (2) is
// always used. The vector type, and the number of defined values, are
// provided.
virtual bool
shouldExpandBuildVectorWithShuffles(EVT /* VT */,
unsigned DefinedValues) const {
return DefinedValues < 3;
}
/// Return true if integer divide is usually cheaper than a sequence of
/// several shifts, adds, and multiplies for this target.
/// The definition of "cheaper" may depend on whether we're optimizing
/// for speed or for size.
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
/// Return true if the target can handle a standalone remainder operation.
virtual bool hasStandaloneRem(EVT VT) const {
return true;
}
/// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
// Default behavior is to replace SQRT(X) with X*RSQRT(X).
return false;
}
/// Reciprocal estimate status values used by the functions below.
enum ReciprocalEstimate : int {
Unspecified = -1,
Disabled = 0,
Enabled = 1
};
/// Return a ReciprocalEstimate enum value for a square root of the given type
/// based on the function's attributes. If the operation is not overridden by
/// the function's attributes, "Unspecified" is returned and target defaults
/// are expected to be used for instruction selection.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const;
/// Return a ReciprocalEstimate enum value for a division of the given type
/// based on the function's attributes. If the operation is not overridden by
/// the function's attributes, "Unspecified" is returned and target defaults
/// are expected to be used for instruction selection.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const;
/// Return the refinement step count for a square root of the given type based
/// on the function's attributes. If the operation is not overridden by
/// the function's attributes, "Unspecified" is returned and target defaults
/// are expected to be used for instruction selection.
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
/// Return the refinement step count for a division of the given type based
/// on the function's attributes. If the operation is not overridden by
/// the function's attributes, "Unspecified" is returned and target defaults
/// are expected to be used for instruction selection.
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
/// Returns true if target has indicated at least one type should be bypassed.
bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
/// Returns map of slow types for division or remainder with corresponding
/// fast types
const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
return BypassSlowDivWidths;
}
/// Return true if Flow Control is an expensive operation that should be
/// avoided.
bool isJumpExpensive() const { return JumpIsExpensive; }
/// Return true if selects are only cheaper than branches if the branch is
/// unlikely to be predicted right.
bool isPredictableSelectExpensive() const {
return PredictableSelectIsExpensive;
}
virtual bool fallBackToDAGISel(const Instruction &Inst) const {
return false;
}
/// Return true if the following transform is beneficial:
/// fold (conv (load x)) -> (load (conv*)x)
/// On architectures that don't natively support some vector loads
/// efficiently, casting the load to a smaller vector of larger types and
/// loading is more efficient, however, this can be undone by optimizations in
/// dag combiner.
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
const SelectionDAG &DAG,
const MachineMemOperand &MMO) const {
// Don't do if we could do an indexed load on the original type, but not on
// the new one.
if (!LoadVT.isSimple() || !BitcastVT.isSimple())
return true;
MVT LoadMVT = LoadVT.getSimpleVT();
// Don't bother doing this if it's just going to be promoted again later, as
// doing so might interfere with other combines.
if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
return false;
bool Fast = false;
return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
MMO, &Fast) && Fast;
}
/// Return true if the following transform is beneficial:
/// (store (y (conv x)), y*)) -> (store x, (x*))
virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
const SelectionDAG &DAG,
const MachineMemOperand &MMO) const {
// Default to the same logic as loads.
return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
}
/// Return true if it is expected to be cheaper to do a store of a non-zero
/// vector constant with the given size and type for the address space than to
/// store the individual scalar element constants.
virtual bool storeOfVectorConstantIsCheap(EVT MemVT,
unsigned NumElem,
unsigned AddrSpace) const {
return false;
}
/// Allow store merging for the specified type after legalization in addition
/// to before legalization. This may transform stores that do not exist
/// earlier (for example, stores created from intrinsics).
virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
return true;
}
/// Returns if it's reasonable to merge stores to MemVT size.
virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
const SelectionDAG &DAG) const {
return true;
}
/// Return true if it is cheap to speculate a call to intrinsic cttz.
virtual bool isCheapToSpeculateCttz() const {
return false;
}
/// Return true if it is cheap to speculate a call to intrinsic ctlz.
virtual bool isCheapToSpeculateCtlz() const {
return false;
}
/// Return true if ctlz instruction is fast.
virtual bool isCtlzFast() const {
return false;
}
/// Return the maximum number of "x & (x - 1)" operations that can be done
/// instead of deferring to a custom CTPOP.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
return 1;
}
/// Return true if instruction generated for equality comparison is folded
/// with instruction generated for signed comparison.
virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
/// Return true if the heuristic to prefer icmp eq zero should be used in code
/// gen prepare.
virtual bool preferZeroCompareBranch() const { return false; }
/// Return true if it is safe to transform an integer-domain bitwise operation
/// into the equivalent floating-point operation. This should be set to true
/// if the target has IEEE-754-compliant fabs/fneg operations for the input
/// type.
virtual bool hasBitPreservingFPLogic(EVT VT) const {
return false;
}
/// Return true if it is cheaper to split the store of a merged int val
/// from a pair of smaller values into multiple stores.
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
return false;
}
/// Return if the target supports combining a
/// chain like:
/// \code
/// %andResult = and %val1, #mask
/// %icmpResult = icmp %andResult, 0
/// \endcode
/// into a single machine instruction of a form like:
/// \code
/// cc = test %register, #mask
/// \endcode
virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
return false;
}
/// Use bitwise logic to make pairs of compares more efficient. For example:
/// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
/// This should be true when it takes more than one instruction to lower
/// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
/// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
return false;
}
/// Return the preferred operand type if the target has a quick way to compare
/// integer values of the given size. Assume that any legal integer type can
/// be compared efficiently. Targets may override this to allow illegal wide
/// types to return a vector type if there is support to compare that type.
virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
MVT VT = MVT::getIntegerVT(NumBits);
return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE;
}
/// Return true if the target should transform:
/// (X & Y) == Y ---> (~X & Y) == 0
/// (X & Y) != Y ---> (~X & Y) != 0
///
/// This may be profitable if the target has a bitwise and-not operation that
/// sets comparison flags. A target may want to limit the transformation based
/// on the type of Y or if Y is a constant.
///
/// Note that the transform will not occur if Y is known to be a power-of-2
/// because a mask and compare of a single bit can be handled by inverting the
/// predicate, for example:
/// (X & 8) == 8 ---> (X & 8) != 0
virtual bool hasAndNotCompare(SDValue Y) const {
return false;
}
/// Return true if the target has a bitwise and-not operation:
/// X = ~A & B
/// This can be used to simplify select or other instructions.
virtual bool hasAndNot(SDValue X) const {
// If the target has the more complex version of this operation, assume that
// it has this operation too.
return hasAndNotCompare(X);
}
/// Return true if the target has a bit-test instruction:
/// (X & (1 << Y)) ==/!= 0
/// This knowledge can be used to prevent breaking the pattern,
/// or creating it if it could be recognized.
virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
/// There are two ways to clear extreme bits (either low or high):
/// Mask: x & (-1 << y) (the instcombine canonical form)
/// Shifts: x >> y << y
/// Return true if the variant with 2 variable shifts is preferred.
/// Return false if there is no preference.
virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const {
// By default, let's assume that no one prefers shifts.
return false;
}
/// Return true if it is profitable to fold a pair of shifts into a mask.
/// This is usually true on most targets. But some targets, like Thumb1,
/// have immediate shift instructions, but no immediate "and" instruction;
/// this makes the fold unprofitable.
virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N,
CombineLevel Level) const {
return true;
}
/// Should we tranform the IR-optimal check for whether given truncation
/// down into KeptBits would be truncating or not:
/// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
/// Into it's more traditional form:
/// ((%x << C) a>> C) dstcond %x
/// Return true if we should transform.
/// Return false if there is no preference.
virtual bool shouldTransformSignedTruncationCheck(EVT XVT,
unsigned KeptBits) const {
// By default, let's assume that no one prefers shifts.
return false;
}
/// Given the pattern
/// (X & (C l>>/<< Y)) ==/!= 0
/// return true if it should be transformed into:
/// ((X <</l>> Y) & C) ==/!= 0
/// WARNING: if 'X' is a constant, the fold may deadlock!
/// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
/// here because it can end up being not linked in.
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
SelectionDAG &DAG) const {
if (hasBitTest(X, Y)) {
// One interesting pattern that we'd want to form is 'bit test':
// ((1 << Y) & C) ==/!= 0
// But we also need to be careful not to try to reverse that fold.
// Is this '1 << Y' ?
if (OldShiftOpcode == ISD::SHL && CC->isOne())
return false; // Keep the 'bit test' pattern.
// Will it be '1 << Y' after the transform ?
if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
return true; // Do form the 'bit test' pattern.
}
// If 'X' is a constant, and we transform, then we will immediately
// try to undo the fold, thus causing endless combine loop.
// So by default, let's assume everyone prefers the fold
// iff 'X' is not a constant.
return !XC;
}
/// These two forms are equivalent:
/// sub %y, (xor %x, -1)
/// add (add %x, 1), %y
/// The variant with two add's is IR-canonical.
/// Some targets may prefer one to the other.
virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
// By default, let's assume that everyone prefers the form with two add's.
return true;
}
/// Return true if the target wants to use the optimization that
/// turns ext(promotableInst1(...(promotableInstN(load)))) into
/// promotedInst1(...(promotedInstN(ext(load)))).
bool enableExtLdPromotion() const { return EnableExtLdPromotion; }
/// Return true if the target can combine store(extractelement VectorTy,
/// Idx).
/// \p Cost[out] gives the cost of that transformation when this is true.
virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
unsigned &Cost) const {
return false;
}
/// Return true if inserting a scalar into a variable element of an undef
/// vector is more efficiently handled by splatting the scalar instead.
virtual bool shouldSplatInsEltVarIndex(EVT) const {
return false;
}
/// Return true if target always benefits from combining into FMA for a
/// given value type. This must typically return false on targets where FMA
/// takes more cycles to execute than FADD.
virtual bool enableAggressiveFMAFusion(EVT VT) const {
return false;
}
/// Return the ValueType of the result of SETCC operations.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const;
/// Return the ValueType for comparison libcalls. Comparions libcalls include
/// floating point comparion calls, and Ordered/Unordered check calls on
/// floating point numbers.
virtual
MVT::SimpleValueType getCmpLibcallReturnType() const;
/// For targets without i1 registers, this gives the nature of the high-bits
/// of boolean values held in types wider than i1.
///
/// "Boolean values" are special true/false values produced by nodes like
/// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
/// Not to be confused with general values promoted from i1. Some cpus
/// distinguish between vectors of boolean and scalars; the isVec parameter
/// selects between the two kinds. For example on X86 a scalar boolean should
/// be zero extended from i1, while the elements of a vector of booleans
/// should be sign extended from i1.
///
/// Some cpus also treat floating point types the same way as they treat
/// vectors instead of the way they treat scalars.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
if (isVec)
return BooleanVectorContents;
return isFloat ? BooleanFloatContents : BooleanContents;
}
BooleanContent getBooleanContents(EVT Type) const {
return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
}
/// Return target scheduling preference.
Sched::Preference getSchedulingPreference() const {
return SchedPreferenceInfo;
}
/// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
/// for different nodes. This function returns the preference (or none) for
/// the given node.
virtual Sched::Preference getSchedulingPreference(SDNode *) const {
return Sched::None;
}
/// Return the register class that should be used for the specified value
/// type.
virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
(void)isDivergent;
const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
assert(RC && "This value type is not natively supported!");
return RC;
}
/// Allows target to decide about the register class of the
/// specific value that is live outside the defining block.
/// Returns true if the value needs uniform register class.
virtual bool requiresUniformRegister(MachineFunction &MF,
const Value *) const {
return false;
}
/// Return the 'representative' register class for the specified value
/// type.
///
/// The 'representative' register class is the largest legal super-reg
/// register class for the register class of the value type. For example, on
/// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
/// register class is GR64 on x86_64.
virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
return RC;
}
/// Return the cost of the 'representative' register class for the specified
/// value type.
virtual uint8_t getRepRegClassCostFor(MVT VT) const {
return RepRegClassCostForVT[VT.SimpleTy];
}
/// Return true if SHIFT instructions should be expanded to SHIFT_PARTS
/// instructions, and false if a library call is preferred (e.g for code-size
/// reasons).
virtual bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
return true;
}
/// Return true if the target has native support for the specified value type.
/// This means that it has a register that directly holds it without
/// promotions or expansions.
bool isTypeLegal(EVT VT) const {
assert(!VT.isSimple() ||
(unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
}
class ValueTypeActionImpl {
/// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
/// that indicates how instruction selection should deal with the type.
LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
public:
ValueTypeActionImpl() {
std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
TypeLegal);
}
LegalizeTypeAction getTypeAction(MVT VT) const {
return ValueTypeActions[VT.SimpleTy];
}
void setTypeAction(MVT VT, LegalizeTypeAction Action) {
ValueTypeActions[VT.SimpleTy] = Action;
}
};
const ValueTypeActionImpl &getValueTypeActions() const {
return ValueTypeActions;
}
/// Return how we should legalize values of this type, either it is already
/// legal (return 'Legal') or we need to promote it to a larger type (return
/// 'Promote'), or we need to expand it into multiple registers of smaller
/// integer type (return 'Expand'). 'Custom' is not an option.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
return getTypeConversion(Context, VT).first;
}
LegalizeTypeAction getTypeAction(MVT VT) const {
return ValueTypeActions.getTypeAction(VT);
}
/// For types supported by the target, this is an identity function. For
/// types that must be promoted to larger types, this returns the larger type
/// to promote to. For integer types that are larger than the largest integer
/// register, this contains one step in the expansion to get to the smaller
/// register. For illegal floating point types, this returns the integer type
/// to transform to.
EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
return getTypeConversion(Context, VT).second;
}
/// For types supported by the target, this is an identity function. For
/// types that must be expanded (i.e. integer types that are larger than the
/// largest integer register or illegal floating point types), this returns
/// the largest legal type it will be expanded to.
EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
assert(!VT.isVector());
while (true) {
switch (getTypeAction(Context, VT)) {
case TypeLegal:
return VT;
case TypeExpandInteger:
VT = getTypeToTransformTo(Context, VT);
break;
default:
llvm_unreachable("Type is not legal nor is it to be expanded!");
}
}
}
/// Vector types are broken down into some number of legal first class types.
/// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
/// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
/// turns into 4 EVT::i32 values with both PPC and X86.
///
/// This method returns the number of registers needed, and the VT for each
/// register. It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
EVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT) const;
/// Certain targets such as MIPS require that some types such as vectors are
/// always broken down into scalars in some contexts. This occurs even if the
/// vector type is legal.
virtual unsigned getVectorTypeBreakdownForCallingConv(
LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
unsigned &NumIntermediates, MVT &RegisterVT) const {
return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
RegisterVT);
}
struct IntrinsicInfo {
unsigned opc = 0; // target opcode
EVT memVT; // memory VT
// value representing memory location
PointerUnion<const Value *, const PseudoSourceValue *> ptrVal;
int offset = 0; // offset off of ptrVal
uint64_t size = 0; // the size of the memory location
// (taken from memVT if zero)
MaybeAlign align = Align(1); // alignment
MachineMemOperand::Flags flags = MachineMemOperand::MONone;
IntrinsicInfo() = default;
};
/// Given an intrinsic, checks if on the target the intrinsic will need to map
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
/// true and store the intrinsic information into the IntrinsicInfo that was
/// passed to the function.
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
MachineFunction &,
unsigned /*Intrinsic*/) const {
return false;
}
/// Returns true if the target can instruction select the specified FP
/// immediate natively. If false, the legalizer will materialize the FP
/// immediate as a load from a constant pool.
virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
bool ForCodeSize = false) const {
return false;
}
/// Targets can use this to indicate that they only support *some*
/// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
/// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
/// legal.
virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
return true;
}
/// Returns true if the operation can trap for the value type.
///
/// VT must be a legal type. By default, we optimistically assume most
/// operations don't trap except for integer divide and remainder.
virtual bool canOpTrap(unsigned Op, EVT VT) const;
/// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
/// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
/// constant pool entry.
virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/,
EVT /*VT*/) const {
return false;
}
/// Return how this operation should be treated: either it is legal, needs to
/// be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
if (VT.isExtended()) return Expand;
// If a target-specific SDNode requires legalization, require the target
// to provide custom legalization for it.
if (Op >= array_lengthof(OpActions[0])) return Custom;
return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
}
/// Custom method defined by each target to indicate if an operation which
/// may require a scale is supported natively by the target.
/// If not, the operation is illegal.
virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
unsigned Scale) const {
return false;
}
/// Some fixed point operations may be natively supported by the target but
/// only for specific scales. This method allows for checking
/// if the width is supported by the target for a given operation that may
/// depend on scale.
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT,
unsigned Scale) const {
auto Action = getOperationAction(Op, VT);
if (Action != Legal)
return Action;
// This operation is supported in this type but may only work on specific
// scales.
bool Supported;
switch (Op) {
default:
llvm_unreachable("Unexpected fixed point operation.");
case ISD::SMULFIX:
case ISD::SMULFIXSAT:
case ISD::UMULFIX:
case ISD::UMULFIXSAT:
case ISD::SDIVFIX:
case ISD::SDIVFIXSAT:
case ISD::UDIVFIX:
case ISD::UDIVFIXSAT:
Supported = isSupportedFixedPointOperation(Op, VT, Scale);
break;
}
return Supported ? Action : Expand;
}
// If Op is a strict floating-point operation, return the result
// of getOperationAction for the equivalent non-strict operation.
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const {
unsigned EqOpc;
switch (Op) {
default: llvm_unreachable("Unexpected FP pseudo-opcode");
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
#include "llvm/IR/ConstrainedOps.def"
}
return getOperationAction(EqOpc, VT);
}
/// Return true if the specified operation is legal on this target or can be
/// made legal with custom lowering. This is used to help guide high-level
/// lowering decisions. LegalOnly is an optional convenience for code paths
/// traversed pre and post legalisation.
bool isOperationLegalOrCustom(unsigned Op, EVT VT,
bool LegalOnly = false) const {
if (LegalOnly)
return isOperationLegal(Op, VT);
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Custom);
}
/// Return true if the specified operation is legal on this target or can be
/// made legal using promotion. This is used to help guide high-level lowering
/// decisions. LegalOnly is an optional convenience for code paths traversed
/// pre and post legalisation.
bool isOperationLegalOrPromote(unsigned Op, EVT VT,
bool LegalOnly = false) const {
if (LegalOnly)
return isOperationLegal(Op, VT);
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Promote);
}
/// Return true if the specified operation is legal on this target or can be
/// made legal with custom lowering or using promotion. This is used to help
/// guide high-level lowering decisions. LegalOnly is an optional convenience
/// for code paths traversed pre and post legalisation.
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT,
bool LegalOnly = false) const {
if (LegalOnly)
return isOperationLegal(Op, VT);
return (VT == MVT::Other || isTypeLegal(VT)) &&
(getOperationAction(Op, VT) == Legal ||
getOperationAction(Op, VT) == Custom ||
getOperationAction(Op, VT) == Promote);
}
/// Return true if the operation uses custom lowering, regardless of whether
/// the type is legal or not.
bool isOperationCustom(unsigned Op, EVT VT) const {
return getOperationAction(Op, VT) == Custom;
}
/// Return true if lowering to a jump table is allowed.
virtual bool areJTsAllowed(const Function *Fn) const {
if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
return false;
return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
}
/// Check whether the range [Low,High] fits in a machine word.
bool rangeFitsInWord(const APInt &Low, const APInt &High,
const DataLayout &DL) const {
// FIXME: Using the pointer type doesn't seem ideal.
uint64_t BW = DL.getIndexSizeInBits(0u);
uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
return Range <= BW;
}
/// Return true if lowering to a jump table is suitable for a set of case
/// clusters which may contain \p NumCases cases, \p Range range of values.
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
uint64_t Range, ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) const;
/// Return true if lowering to a bit test is suitable for a set of case
/// clusters which contains \p NumDests unique destinations, \p Low and
/// \p High as its lowest and highest case values, and expects \p NumCmps
/// case value comparisons. Check if the number of destinations, comparison
/// metric, and range are all suitable.
bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
const APInt &Low, const APInt &High,
const DataLayout &DL) const {
// FIXME: I don't think NumCmps is the correct metric: a single case and a
// range of cases both require only one branch to lower. Just looking at the
// number of clusters and destinations should be enough to decide whether to
// build bit tests.
// To lower a range with bit tests, the range must fit the bitwidth of a
// machine word.
if (!rangeFitsInWord(Low, High, DL))
return false;
// Decide whether it's profitable to lower this range with bit tests. Each
// destination requires a bit test and branch, and there is an overall range
// check branch. For a small number of clusters, separate comparisons might
// be cheaper, and for many destinations, splitting the range might be
// better.
return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
(NumDests == 3 && NumCmps >= 6);
}
/// Return true if the specified operation is illegal on this target or
/// unlikely to be made legal with custom lowering. This is used to help guide
/// high-level lowering decisions.
bool isOperationExpand(unsigned Op, EVT VT) const {
return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
}
/// Return true if the specified operation is legal on this target.
bool isOperationLegal(unsigned Op, EVT VT) const {
return (VT == MVT::Other || isTypeLegal(VT)) &&
getOperationAction(Op, VT) == Legal;
}
/// Return how this load with extension should be treated: either it is legal,
/// needs to be promoted to a larger size, needs to be expanded to some other
/// code sequence, or the target has a custom expander for it.
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
EVT MemVT) const {
if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::VALUETYPE_SIZE &&
MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
unsigned Shift = 4 * ExtType;
return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
}
/// Return true if the specified load with extension is legal on this target.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
}
/// Return true if the specified load with extension is legal or custom
/// on this target.
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
}
/// Return how this store with truncation should be treated: either it is
/// legal, needs to be promoted to a larger size, needs to be expanded to some
/// other code sequence, or the target has a custom expander for it.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
assert(ValI < MVT::VALUETYPE_SIZE && MemI < MVT::VALUETYPE_SIZE &&
"Table isn't big enough!");
return TruncStoreActions[ValI][MemI];
}
/// Return true if the specified store with truncation is legal on this
/// target.
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
}
/// Return true if the specified store with truncation has solution on this
/// target.
bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
return isTypeLegal(ValVT) &&
(getTruncStoreAction(ValVT, MemVT) == Legal ||
getTruncStoreAction(ValVT, MemVT) == Custom);
}
/// Return how the indexed load should be treated: either it is legal, needs
/// to be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
return getIndexedModeAction(IdxMode, VT, IMAB_Load);
}
/// Return true if the specified indexed load is legal on this target.
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// Return how the indexed store should be treated: either it is legal, needs
/// to be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
return getIndexedModeAction(IdxMode, VT, IMAB_Store);
}
/// Return true if the specified indexed load is legal on this target.
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// Return how the indexed load should be treated: either it is legal, needs
/// to be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
}
/// Return true if the specified indexed load is legal on this target.
bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// Return how the indexed store should be treated: either it is legal, needs
/// to be promoted to a larger size, needs to be expanded to some other code
/// sequence, or the target has a custom expander for it.
LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
}
/// Return true if the specified indexed load is legal on this target.
bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
return VT.isSimple() &&
(getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
}
/// Returns true if the index type for a masked gather/scatter requires
/// extending
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
// Returns true if VT is a legal index type for masked gathers/scatters
// on this target
virtual bool shouldRemoveExtendFromGSIndex(EVT VT) const { return false; }
/// Return how the condition code should be treated: either it is legal, needs
/// to be expanded to some other code sequence, or the target has a custom
/// expander for it.
LegalizeAction
getCondCodeAction(ISD::CondCode CC, MVT VT) const {
assert((unsigned)CC < array_lengthof(CondCodeActions) &&
((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) &&
"Table isn't big enough!");
// See setCondCodeAction for how this is encoded.
uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
assert(Action != Promote && "Can't promote condition code!");
return Action;
}
/// Return true if the specified condition code is legal on this target.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
return getCondCodeAction(CC, VT) == Legal;
}
/// Return true if the specified condition code is legal or custom on this
/// target.
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const {
return getCondCodeAction(CC, VT) == Legal ||
getCondCodeAction(CC, VT) == Custom;
}
/// If the action for this operation is to promote, this method returns the
/// ValueType to promote to.
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
assert(getOperationAction(Op, VT) == Promote &&
"This operation isn't promoted!");
// See if this has an explicit type specified.
std::map<std::pair<unsigned, MVT::SimpleValueType>,
MVT::SimpleValueType>::const_iterator PTTI =
PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
if (PTTI != PromoteToType.end()) return PTTI->second;
assert((VT.isInteger() || VT.isFloatingPoint()) &&
"Cannot autopromote this type, add it with AddPromotedToType.");
MVT NVT = VT;
do {
NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
"Didn't find type to promote to!");
} while (!isTypeLegal(NVT) ||
getOperationAction(Op, NVT) == Promote);
return NVT;
}
/// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
/// operations except for the pointer size. If AllowUnknown is true, this
/// will return MVT::Other for types with no EVT counterpart (e.g. structs),
/// otherwise it will assert.
EVT getValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const {
// Lower scalar pointers to native pointer types.
if (auto *PTy = dyn_cast<PointerType>(Ty))
return getPointerTy(DL, PTy->getAddressSpace());
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
Type *EltTy = VTy->getElementType();
// Lower vectors of pointers to native pointer types.
if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
EltTy = PointerTy.getTypeForEVT(Ty->getContext());
}
return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
VTy->getElementCount());
}
return EVT::getEVT(Ty, AllowUnknown);
}
EVT getMemValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const {
// Lower scalar pointers to native pointer types.
if (PointerType *PTy = dyn_cast<PointerType>(Ty))
return getPointerMemTy(DL, PTy->getAddressSpace());
else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
Type *Elm = VTy->getElementType();
if (PointerType *PT = dyn_cast<PointerType>(Elm)) {
EVT PointerTy(getPointerMemTy(DL, PT->getAddressSpace()));
Elm = PointerTy.getTypeForEVT(Ty->getContext());
}
return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
VTy->getElementCount());
}
return getValueType(DL, Ty, AllowUnknown);
}
/// Return the MVT corresponding to this LLVM type. See getValueType.
MVT getSimpleValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const {
return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
}
/// Return the desired alignment for ByVal or InAlloca aggregate function
/// arguments in the caller parameter area. This is the actual alignment, not
/// its logarithm.
virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
/// Return the type of registers that this ValueType will eventually require.
MVT getRegisterType(MVT VT) const {
assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
return RegisterTypeForVT[VT.SimpleTy];
}
/// Return the type of registers that this ValueType will eventually require.
MVT getRegisterType(LLVMContext &Context, EVT VT) const {
if (VT.isSimple()) {
assert((unsigned)VT.getSimpleVT().SimpleTy <
array_lengthof(RegisterTypeForVT));
return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
}
if (VT.isVector()) {
EVT VT1;
MVT RegisterVT;
unsigned NumIntermediates;
(void)getVectorTypeBreakdown(Context, VT, VT1,
NumIntermediates, RegisterVT);
return RegisterVT;
}
if (VT.isInteger()) {
return getRegisterType(Context, getTypeToTransformTo(Context, VT));
}
llvm_unreachable("Unsupported extended type!");
}
/// Return the number of registers that this ValueType will eventually
/// require.
///
/// This is one for any types promoted to live in larger registers, but may be
/// more than one for types (like i64) that are split into pieces. For types
/// like i140, which are first promoted then expanded, it is the number of
/// registers needed to hold all the bits of the original type. For an i140
/// on a 32 bit machine this means 5 registers.
///
/// RegisterVT may be passed as a way to override the default settings, for
/// instance with i128 inline assembly operands on SystemZ.
virtual unsigned
getNumRegisters(LLVMContext &Context, EVT VT,
Optional<MVT> RegisterVT = None) const {
if (VT.isSimple()) {
assert((unsigned)VT.getSimpleVT().SimpleTy <
array_lengthof(NumRegistersForVT));
return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
}
if (VT.isVector()) {
EVT VT1;
MVT VT2;
unsigned NumIntermediates;
return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
}
if (VT.isInteger()) {
unsigned BitWidth = VT.getSizeInBits();
unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
return (BitWidth + RegWidth - 1) / RegWidth;
}
llvm_unreachable("Unsupported extended type!");
}
/// Certain combinations of ABIs, Targets and features require that types
/// are legal for some operations and not for other operations.
/// For MIPS all vector types must be passed through the integer register set.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC, EVT VT) const {
return getRegisterType(Context, VT);
}
/// Certain targets require unusual breakdowns of certain types. For MIPS,
/// this occurs when a vector type is used, as vector are passed through the
/// integer register set.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
return getNumRegisters(Context, VT);
}
/// Certain targets have context sensitive alignment requirements, where one
/// type has the alignment requirement of another type.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy,
const DataLayout &DL) const {
return DL.getABITypeAlign(ArgTy);
}
/// If true, then instruction selection should seek to shrink the FP constant
/// of the specified type to a smaller type in order to save space and / or
/// reduce runtime.
virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
/// Return true if it is profitable to reduce a load to a smaller type.
/// Example: (i16 (trunc (i32 (load x))) -> i16 load x
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
EVT NewVT) const {
// By default, assume that it is cheaper to extract a subvector from a wide
// vector load rather than creating multiple narrow vector loads.
if (NewVT.isVector() && !Load->hasOneUse())
return false;
return true;
}
/// When splitting a value of the specified type into parts, does the Lo
/// or Hi part come first? This usually follows the endianness, except
/// for ppcf128, where the Hi part always comes first.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
return DL.isBigEndian() || VT == MVT::ppcf128;
}
/// If true, the target has custom DAG combine transformations that it can
/// perform for the specified node.
bool hasTargetDAGCombine(ISD::NodeType NT) const {
assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
}
unsigned getGatherAllAliasesMaxDepth() const {
return GatherAllAliasesMaxDepth;
}
/// Returns the size of the platform's va_list object.
virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
return getPointerTy(DL).getSizeInBits();
}
/// Get maximum # of store operations permitted for llvm.memset
///
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memset. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
unsigned getMaxStoresPerMemset(bool OptSize) const {
return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
}
/// Get maximum # of store operations permitted for llvm.memcpy
///
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memcpy. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
unsigned getMaxStoresPerMemcpy(bool OptSize) const {
return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
}
/// \brief Get maximum # of store operations to be glued together
///
/// This function returns the maximum number of store operations permitted
/// to glue together during lowering of llvm.memcpy. The value is set by
// the target at the performance threshold for such a replacement.
virtual unsigned getMaxGluedStoresPerMemcpy() const {
return MaxGluedStoresPerMemcpy;
}
/// Get maximum # of load operations permitted for memcmp
///
/// This function returns the maximum number of load operations permitted
/// to replace a call to memcmp. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp;
}
/// Get maximum # of store operations permitted for llvm.memmove
///
/// This function returns the maximum number of store operations permitted
/// to replace a call to llvm.memmove. The value is set by the target at the
/// performance threshold for such a replacement. If OptSize is true,
/// return the limit for functions that have OptSize attribute.
unsigned getMaxStoresPerMemmove(bool OptSize) const {
return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
}
/// Determine if the target supports unaligned memory accesses.
///
/// This function returns true if the target allows unaligned memory accesses
/// of the specified type in the given address space. If true, it also returns
/// whether the unaligned memory access is "fast" in the last argument by
/// reference. This is used, for example, in situations where an array
/// copy/move/set is converted to a sequence of store operations. Its use
/// helps to ensure that such replacements don't generate code that causes an
/// alignment error (trap) on the target machine.
virtual bool allowsMisalignedMemoryAccesses(
EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
bool * /*Fast*/ = nullptr) const {
return false;
}
/// LLT handling variant.
virtual bool allowsMisalignedMemoryAccesses(
LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
bool * /*Fast*/ = nullptr) const {
return false;
}
/// This function returns true if the memory access is aligned or if the
/// target allows this specific unaligned memory access. If the access is
/// allowed, the optional final parameter returns if the access is also fast
/// (as defined by the target).
bool allowsMemoryAccessForAlignment(
LLVMContext &Context, const DataLayout &DL, EVT VT,
unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
bool *Fast = nullptr) const;
/// Return true if the memory access of this type is aligned or if the target
/// allows this specific unaligned access for the given MachineMemOperand.
/// If the access is allowed, the optional final parameter returns if the
/// access is also fast (as defined by the target).
bool allowsMemoryAccessForAlignment(LLVMContext &Context,
const DataLayout &DL, EVT VT,
const MachineMemOperand &MMO,
bool *Fast = nullptr) const;
/// Return true if the target supports a memory access of this type for the
/// given address space and alignment. If the access is allowed, the optional
/// final parameter returns if the access is also fast (as defined by the
/// target).
virtual bool
allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
bool *Fast = nullptr) const;
/// Return true if the target supports a memory access of this type for the
/// given MachineMemOperand. If the access is allowed, the optional
/// final parameter returns if the access is also fast (as defined by the
/// target).
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
const MachineMemOperand &MMO,
bool *Fast = nullptr) const;
/// LLT handling variant.
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
const MachineMemOperand &MMO,
bool *Fast = nullptr) const;
/// Returns the target specific optimal type for load and store operations as
/// a result of memset, memcpy, and memmove lowering.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
virtual EVT
getOptimalMemOpType(const MemOp &Op,
const AttributeList & /*FuncAttributes*/) const {
return MVT::Other;
}
/// LLT returning variant.
virtual LLT
getOptimalMemOpLLT(const MemOp &Op,
const AttributeList & /*FuncAttributes*/) const {
return LLT();
}
/// Returns true if it's safe to use load / store of the specified type to
/// expand memcpy / memset inline.
///
/// This is mostly true for all types except for some special cases. For
/// example, on X86 targets without SSE2 f64 load / store are done with fldl /
/// fstpl which also does type conversion. Note the specified type doesn't
/// have to be legal as the hook is used before type legalization.
virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
/// Return lower limit for number of blocks in a jump table.
virtual unsigned getMinimumJumpTableEntries() const;
/// Return lower limit of the density in a jump table.
unsigned getMinimumJumpTableDensity(bool OptForSize) const;
/// Return upper limit for number of entries in a jump table.
/// Zero if no limit.
unsigned getMaximumJumpTableSize() const;
virtual bool isJumpTableRelative() const;
/// If a physical register, this specifies the register that
/// llvm.savestack/llvm.restorestack should save and restore.
Register getStackPointerRegisterToSaveRestore() const {
return StackPointerRegisterToSaveRestore;
}
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
virtual Register
getExceptionPointerRegister(const Constant *PersonalityFn) const {
return Register();
}
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
virtual Register
getExceptionSelectorRegister(const Constant *PersonalityFn) const {
return Register();
}
virtual bool needsFixedCatchObjects() const {
report_fatal_error("Funclet EH is not implemented for this target");
}
/// Return the minimum stack alignment of an argument.
Align getMinStackArgumentAlignment() const {
return MinStackArgumentAlignment;
}
/// Return the minimum function alignment.
Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
/// Return the preferred function alignment.
Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
/// Return the preferred loop alignment.
virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const {
return PrefLoopAlignment;
}
/// Should loops be aligned even when the function is marked OptSize (but not
/// MinSize).
virtual bool alignLoopsWithOptSize() const {
return false;
}
/// If the target has a standard location for the stack protector guard,
/// returns the address of that location. Otherwise, returns nullptr.
/// DEPRECATED: please override useLoadStackGuardNode and customize
/// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
/// Inserts necessary declarations for SSP (stack protection) purpose.
/// Should be used only when getIRStackGuard returns nullptr.
virtual void insertSSPDeclarations(Module &M) const;
/// Return the variable that's previously inserted by insertSSPDeclarations,
/// if any, otherwise return nullptr. Should be used only when
/// getIRStackGuard returns nullptr.
virtual Value *getSDagStackGuard(const Module &M) const;
/// If this function returns true, stack protection checks should XOR the
/// frame pointer (or whichever pointer is used to address locals) into the
/// stack guard value before checking it. getIRStackGuard must return nullptr
/// if this returns true.
virtual bool useStackGuardXorFP() const { return false; }
/// If the target has a standard stack protection check function that
/// performs validation and error handling, returns the function. Otherwise,
/// returns nullptr. Must be previously inserted by insertSSPDeclarations.
/// Should be used only when getIRStackGuard returns nullptr.
virtual Function *getSSPStackGuardCheck(const Module &M) const;
/// \returns true if a constant G_UBFX is legal on the target.
virtual bool isConstantUnsignedBitfieldExtactLegal(unsigned Opc, LLT Ty1,
LLT Ty2) const {
return false;
}
protected:
Value *getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
bool UseTLS) const;
public:
/// Returns the target-specific address of the unsafe stack pointer.
virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
/// Returns the name of the symbol used to emit stack probes or the empty
/// string if not applicable.
virtual bool hasStackProbeSymbol(MachineFunction &MF) const { return false; }
virtual bool hasInlineStackProbe(MachineFunction &MF) const { return false; }
virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const {
return "";
}
/// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
/// are happy to sink it into basic blocks. A cast may be free, but not
/// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
/// Return true if the pointer arguments to CI should be aligned by aligning
/// the object whose address is being passed. If so then MinSize is set to the
/// minimum size the object must be to be aligned and PrefAlign is set to the
/// preferred alignment.
virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
unsigned & /*PrefAlign*/) const {
return false;
}
//===--------------------------------------------------------------------===//
/// \name Helpers for TargetTransformInfo implementations
/// @{
/// Get the ISD node that corresponds to the Instruction class opcode.
int InstructionOpcodeToISD(unsigned Opcode) const;
/// Estimate the cost of type-legalization and the legalized type.
std::pair<InstructionCost, MVT> getTypeLegalizationCost(const DataLayout &DL,
Type *Ty) const;
/// @}
//===--------------------------------------------------------------------===//
/// \name Helpers for atomic expansion.
/// @{
/// Returns the maximum atomic operation size (in bits) supported by
/// the backend. Atomic operations greater than this size (as well
/// as ones that are not naturally aligned), will be expanded by
/// AtomicExpandPass into an __atomic_* library call.
unsigned getMaxAtomicSizeInBitsSupported() const {
return MaxAtomicSizeInBitsSupported;
}
/// Returns the size of the smallest cmpxchg or ll/sc instruction
/// the backend supports. Any smaller operations are widened in
/// AtomicExpandPass.
///
/// Note that *unlike* operations above the maximum size, atomic ops
/// are still natively supported below the minimum; they just
/// require a more complex expansion.
unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
/// Whether the target supports unaligned atomic operations.
bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
/// Whether AtomicExpandPass should automatically insert fences and reduce
/// ordering for this atomic. This should be true for most architectures with
/// weak memory ordering. Defaults to false.
virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
return false;
}
/// Perform a load-linked operation on Addr, returning a "Value *" with the
/// corresponding pointee type. This may entail some non-trivial operations to
/// truncate or reconstruct types that will be illegal in the backend. See
/// ARMISelLowering for an example implementation.
virtual Value *emitLoadLinked(IRBuilderBase &Builder, Value *Addr,
AtomicOrdering Ord) const {
llvm_unreachable("Load linked unimplemented on this target");
}
/// Perform a store-conditional operation to Addr. Return the status of the
/// store. This should be 0 if the store succeeded, non-zero otherwise.
virtual Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val,
Value *Addr, AtomicOrdering Ord) const {
llvm_unreachable("Store conditional unimplemented on this target");
}
/// Perform a masked atomicrmw using a target-specific intrinsic. This
/// represents the core LL/SC loop which will be lowered at a late stage by
/// the backend.
virtual Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
AtomicRMWInst *AI,
Value *AlignedAddr, Value *Incr,
Value *Mask, Value *ShiftAmt,
AtomicOrdering Ord) const {
llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
}
/// Perform a masked cmpxchg using a target-specific intrinsic. This
/// represents the core LL/SC loop which will be lowered at a late stage by
/// the backend.
virtual Value *emitMaskedAtomicCmpXchgIntrinsic(
IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
}
/// Inserts in the IR a target-specific intrinsic specifying a fence.
/// It is called by AtomicExpandPass before expanding an
/// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
/// if shouldInsertFencesForAtomic returns true.
///
/// Inst is the original atomic instruction, prior to other expansions that
/// may be performed.
///
/// This function should either return a nullptr, or a pointer to an IR-level
/// Instruction*. Even complex fence sequences can be represented by a
/// single Instruction* through an intrinsic to be lowered later.
/// Backends should override this method to produce target-specific intrinsic
/// for their fences.
/// FIXME: Please note that the default implementation here in terms of
/// IR-level fences exists for historical/compatibility reasons and is
/// *unsound* ! Fences cannot, in general, be used to restore sequential
/// consistency. For example, consider the following example:
/// atomic<int> x = y = 0;
/// int r1, r2, r3, r4;
/// Thread 0:
/// x.store(1);
/// Thread 1:
/// y.store(1);
/// Thread 2:
/// r1 = x.load();
/// r2 = y.load();
/// Thread 3:
/// r3 = y.load();
/// r4 = x.load();
/// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all
/// seq_cst. But if they are lowered to monotonic accesses, no amount of
/// IR-level fences can prevent it.
/// @{
virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
Instruction *Inst,
AtomicOrdering Ord) const;
virtual Instruction *emitTrailingFence(IRBuilderBase &Builder,
Instruction *Inst,
AtomicOrdering Ord) const;
/// @}
// Emits code that executes when the comparison result in the ll/sc
// expansion of a cmpxchg instruction is such that the store-conditional will
// not execute. This makes it possible to balance out the load-linked with
// a dedicated instruction, if desired.
// E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
// be unnecessarily held, except if clrex, inserted by this hook, is executed.
virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
/// Returns true if the given (atomic) store should be expanded by the
/// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input.
virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const {
return false;
}
/// Returns true if arguments should be sign-extended in lib calls.
virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
return IsSigned;
}
/// Returns true if arguments should be extended in lib calls.
virtual bool shouldExtendTypeInLibCall(EVT Type) const {
return true;
}
/// Returns how the given (atomic) load should be expanded by the
/// IR-level AtomicExpand pass.
virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const {
return AtomicExpansionKind::None;
}
/// Returns how the given atomic cmpxchg should be expanded by the IR-level
/// AtomicExpand pass.
virtual AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
return AtomicExpansionKind::None;
}
/// Returns how the IR-level AtomicExpand pass should expand the given
/// AtomicRMW, if at all. Default is to never expand.
virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
return RMW->isFloatingPointOperation() ?
AtomicExpansionKind::CmpXChg : AtomicExpansionKind::None;
}
/// On some platforms, an AtomicRMW that never actually modifies the value
/// (such as fetch_add of 0) can be turned into a fence followed by an
/// atomic load. This may sound useless, but it makes it possible for the
/// processor to keep the cacheline shared, dramatically improving
/// performance. And such idempotent RMWs are useful for implementing some
/// kinds of locks, see for example (justification + benchmarks):
/// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
/// This method tries doing that transformation, returning the atomic load if
/// it succeeds, and nullptr otherwise.
/// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
/// another round of expansion.
virtual LoadInst *
lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const {
return nullptr;
}
/// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
/// SIGN_EXTEND, or ANY_EXTEND).
virtual ISD::NodeType getExtendForAtomicOps() const {
return ISD::ZERO_EXTEND;
}
/// Returns how the platform's atomic compare and swap expects its comparison
/// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
/// separate from getExtendForAtomicOps, which is concerned with the
/// sign-extension of the instruction's output, whereas here we are concerned
/// with the sign-extension of the input. For targets with compare-and-swap
/// instructions (or sub-word comparisons in their LL/SC loop expansions),
/// the input can be ANY_EXTEND, but the output will still have a specific
/// extension.
virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const {
return ISD::ANY_EXTEND;
}
/// @}
/// Returns true if we should normalize
/// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
/// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
/// that it saves us from materializing N0 and N1 in an integer register.
/// Targets that are able to perform and/or on flags should return false here.
virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context,
EVT VT) const {
// If a target has multiple condition registers, then it likely has logical
// operations on those registers.
if (hasMultipleConditionRegisters())
return false;
// Only do the transform if the value won't be split into multiple
// registers.
LegalizeTypeAction Action = getTypeAction(Context, VT);
return Action != TypeExpandInteger && Action != TypeExpandFloat &&
Action != TypeSplitVector;
}
virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
/// Return true if a select of constants (select Cond, C1, C2) should be
/// transformed into simple math ops with the condition value. For example:
/// select Cond, C1, C1-1 --> add (zext Cond), C1-1
virtual bool convertSelectOfConstantsToMath(EVT VT) const {
return false;
}
/// Return true if it is profitable to transform an integer
/// multiplication-by-constant into simpler operations like shifts and adds.
/// This may be true if the target does not directly support the
/// multiplication operation for the specified type or the sequence of simpler
/// ops is faster than the multiply.
virtual bool decomposeMulByConstant(LLVMContext &Context,
EVT VT, SDValue C) const {
return false;
}
/// Return true if it is more correct/profitable to use strict FP_TO_INT
/// conversion operations - canonicalizing the FP source value instead of
/// converting all cases and then selecting based on value.
/// This may be true if the target throws exceptions for out of bounds
/// conversions or has fast FP CMOV.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
bool IsSigned) const {
return false;
}
//===--------------------------------------------------------------------===//
// TargetLowering Configuration Methods - These methods should be invoked by
// the derived class constructor to configure this object for the target.
//
protected:
/// Specify how the target extends the result of integer and floating point
/// boolean values from i1 to a wider type. See getBooleanContents.
void setBooleanContents(BooleanContent Ty) {
BooleanContents = Ty;
BooleanFloatContents = Ty;
}
/// Specify how the target extends the result of integer and floating point
/// boolean values from i1 to a wider type. See getBooleanContents.
void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) {
BooleanContents = IntTy;
BooleanFloatContents = FloatTy;
}
/// Specify how the target extends the result of a vector boolean value from a
/// vector of i1 to a wider type. See getBooleanContents.
void setBooleanVectorContents(BooleanContent Ty) {
BooleanVectorContents = Ty;
}
/// Specify the target scheduling preference.
void setSchedulingPreference(Sched::Preference Pref) {
SchedPreferenceInfo = Pref;
}
/// Indicate the minimum number of blocks to generate jump tables.
void setMinimumJumpTableEntries(unsigned Val);
/// Indicate the maximum number of entries in jump tables.
/// Set to zero to generate unlimited jump tables.
void setMaximumJumpTableSize(unsigned);
/// If set to a physical register, this specifies the register that
/// llvm.savestack/llvm.restorestack should save and restore.
void setStackPointerRegisterToSaveRestore(Register R) {
StackPointerRegisterToSaveRestore = R;
}
/// Tells the code generator that the target has multiple (allocatable)
/// condition registers that can be used to store the results of comparisons
/// for use by selects and conditional branches. With multiple condition
/// registers, the code generator will not aggressively sink comparisons into
/// the blocks of their users.
void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
HasMultipleConditionRegisters = hasManyRegs;
}
/// Tells the code generator that the target has BitExtract instructions.
/// The code generator will aggressively sink "shift"s into the blocks of
/// their users if the users will generate "and" instructions which can be
/// combined with "shift" to BitExtract instructions.
void setHasExtractBitsInsn(bool hasExtractInsn = true) {
HasExtractBitsInsn = hasExtractInsn;
}
/// Tells the code generator not to expand logic operations on comparison
/// predicates into separate sequences that increase the amount of flow
/// control.
void setJumpIsExpensive(bool isExpensive = true);
/// Tells the code generator which bitwidths to bypass.
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
}
/// Add the specified register class as an available regclass for the
/// specified value type. This indicates the selector can handle values of
/// that class natively.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
RegClassForVT[VT.SimpleTy] = RC;
}
/// Return the largest legal super-reg register class of the register class
/// for the specified type and its associated "cost".
virtual std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const;
/// Once all of the register classes are added, this allows us to compute
/// derived properties we expose.
void computeRegisterProperties(const TargetRegisterInfo *TRI);
/// Indicate that the specified operation does not work with the specified
/// type and indicate what to do about it. Note that VT may refer to either
/// the type of a result or that of an operand of Op.
void setOperationAction(unsigned Op, MVT VT,
LegalizeAction Action) {
assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
OpActions[(unsigned)VT.SimpleTy][Op] = Action;
}
/// Indicate that the specified load with extension does not work with the
/// specified type and indicate what to do about it.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
LegalizeAction Action) {
assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
MemVT.isValid() && "Table isn't big enough!");
assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
unsigned Shift = 4 * ExtType;
LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
}
/// Indicate that the specified truncating store does not work with the
/// specified type and indicate what to do about it.
void setTruncStoreAction(MVT ValVT, MVT MemVT,
LegalizeAction Action) {
assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
}
/// Indicate that the specified indexed load does or does not work with the
/// specified type and indicate what to do abort it.
///
/// NOTE: All indexed mode loads are initialized to Expand in
/// TargetLowering.cpp
void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
}
/// Indicate that the specified indexed store does or does not work with the
/// specified type and indicate what to do about it.
///
/// NOTE: All indexed mode stores are initialized to Expand in
/// TargetLowering.cpp
void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) {
setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
}
/// Indicate that the specified indexed masked load does or does not work with
/// the specified type and indicate what to do about it.
///
/// NOTE: All indexed mode masked loads are initialized to Expand in
/// TargetLowering.cpp
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
LegalizeAction Action) {
setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
}
/// Indicate that the specified indexed masked store does or does not work
/// with the specified type and indicate what to do about it.
///
/// NOTE: All indexed mode masked stores are initialized to Expand in
/// TargetLowering.cpp
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
LegalizeAction Action) {
setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
}
/// Indicate that the specified condition code is or isn't supported on the
/// target and indicate what to do about it.
void setCondCodeAction(ISD::CondCode CC, MVT VT,
LegalizeAction Action) {
assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) &&
"Table isn't big enough!");
assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
/// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit
/// value and the upper 29 bits index into the second dimension of the array
/// to select what 32-bit value to use.
uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
}
/// If Opc/OrigVT is specified as being promoted, the promotion code defaults
/// to trying a larger integer/fp until it can find one that works. If that
/// default is insufficient, this method can be used by the target to override
/// the default.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
}
/// Convenience method to set an operation to Promote and specify the type
/// in a single call.
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
setOperationAction(Opc, OrigVT, Promote);
AddPromotedToType(Opc, OrigVT, DestVT);
}
/// Targets should invoke this method for each target independent node that
/// they want to provide a custom DAG combiner for by implementing the
/// PerformDAGCombine virtual method.
void setTargetDAGCombine(ISD::NodeType NT) {
assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
}
/// Set the target's minimum function alignment.
void setMinFunctionAlignment(Align Alignment) {
MinFunctionAlignment = Alignment;
}
/// Set the target's preferred function alignment. This should be set if
/// there is a performance benefit to higher-than-minimum alignment
void setPrefFunctionAlignment(Align Alignment) {
PrefFunctionAlignment = Alignment;
}
/// Set the target's preferred loop alignment. Default alignment is one, it
/// means the target does not care about loop alignment. The target may also
/// override getPrefLoopAlignment to provide per-loop values.
void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
/// Set the minimum stack alignment of an argument.
void setMinStackArgumentAlignment(Align Alignment) {
MinStackArgumentAlignment = Alignment;
}
/// Set the maximum atomic operation size supported by the
/// backend. Atomic operations greater than this size (as well as
/// ones that are not naturally aligned), will be expanded by
/// AtomicExpandPass into an __atomic_* library call.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
MaxAtomicSizeInBitsSupported = SizeInBits;
}
/// Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
MinCmpXchgSizeInBits = SizeInBits;
}
/// Sets whether unaligned atomic operations are supported.
void setSupportsUnalignedAtomics(bool UnalignedSupported) {
SupportsUnalignedAtomics = UnalignedSupported;
}
public:
//===--------------------------------------------------------------------===//
// Addressing mode description hooks (used by LSR etc).
//
/// CodeGenPrepare sinks address calculations into the same BB as Load/Store
/// instructions reading the address. This allows as much computation as
/// possible to be done in the address mode for that operand. This hook lets
/// targets also pass back when this should be done on intrinsics which
/// load/store.
virtual bool getAddrModeArguments(IntrinsicInst * /*I*/,
SmallVectorImpl<Value*> &/*Ops*/,
Type *&/*AccessTy*/) const {
return false;
}
/// This represents an addressing mode of:
/// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
/// If BaseGV is null, there is no BaseGV.
/// If BaseOffs is zero, there is no base offset.
/// If HasBaseReg is false, there is no base register.
/// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
/// no scale.
struct AddrMode {
GlobalValue *BaseGV = nullptr;
int64_t BaseOffs = 0;
bool HasBaseReg = false;
int64_t Scale = 0;
AddrMode() = default;
};
/// Return true if the addressing mode represented by AM is legal for this
/// target, for a load/store of the specified type.
///
/// The type may be VoidTy, in which case only return true if the addressing
/// mode is legal for a load/store of any legal type. TODO: Handle
/// pre/postinc as well.
///
/// If the address space cannot be determined, it will be -1.
///
/// TODO: Remove default argument
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
Type *Ty, unsigned AddrSpace,
Instruction *I = nullptr) const;
/// Return the cost of the scaling factor used in the addressing mode
/// represented by AM for this target, for a load/store of the specified type.
///
/// If the AM is supported, the return value must be >= 0.
/// If the AM is not supported, it returns a negative value.
/// TODO: Handle pre/postinc as well.
/// TODO: Remove default argument
virtual InstructionCost getScalingFactorCost(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS = 0) const {
// Default: assume that any scaling factor used in a legal AM is free.
if (isLegalAddressingMode(DL, AM, Ty, AS))
return 0;
return -1;
}
/// Return true if the specified immediate is legal icmp immediate, that is
/// the target has icmp instructions which can compare a register against the
/// immediate without having to materialize the immediate into a register.
virtual bool isLegalICmpImmediate(int64_t) const {
return true;
}
/// Return true if the specified immediate is legal add immediate, that is the
/// target has add instructions which can add a register with the immediate
/// without having to materialize the immediate into a register.
virtual bool isLegalAddImmediate(int64_t) const {
return true;
}
/// Return true if the specified immediate is legal for the value input of a
/// store instruction.
virtual bool isLegalStoreImmediate(int64_t Value) const {
// Default implementation assumes that at least 0 works since it is likely
// that a zero register exists or a zero immediate is allowed.
return Value == 0;
}
/// Return true if it's significantly cheaper to shift a vector by a uniform
/// scalar than by an amount which will vary across each lane. On x86 before
/// AVX2 for example, there is a "psllw" instruction for the former case, but
/// no simple instruction for a general "a << b" operation on vectors.
/// This should also apply to lowering for vector funnel shifts (rotates).
virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
return false;
}
/// Given a shuffle vector SVI representing a vector splat, return a new
/// scalar type of size equal to SVI's scalar type if the new type is more
/// profitable. Returns nullptr otherwise. For example under MVE float splats
/// are converted to integer to prevent the need to move from SPR to GPR
/// registers.
virtual Type* shouldConvertSplatType(ShuffleVectorInst* SVI) const {
return nullptr;
}
/// Given a set in interconnected phis of type 'From' that are loaded/stored
/// or bitcast to type 'To', return true if the set should be converted to
/// 'To'.
virtual bool shouldConvertPhiType(Type *From, Type *To) const {
return (From->isIntegerTy() || From->isFloatingPointTy()) &&
(To->isIntegerTy() || To->isFloatingPointTy());
}
/// Returns true if the opcode is a commutative binary operation.
virtual bool isCommutativeBinOp(unsigned Opcode) const {
// FIXME: This should get its info from the td file.
switch (Opcode) {
case ISD::ADD:
case ISD::SMIN:
case ISD::SMAX:
case ISD::UMIN:
case ISD::UMAX:
case ISD::MUL:
case ISD::MULHU:
case ISD::MULHS:
case ISD::SMUL_LOHI:
case ISD::UMUL_LOHI:
case ISD::FADD:
case ISD::FMUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SADDO:
case ISD::UADDO:
case ISD::ADDC:
case ISD::ADDE:
case ISD::SADDSAT:
case ISD::UADDSAT:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE:
case ISD::FMINIMUM:
case ISD::FMAXIMUM:
return true;
default: return false;
}
}
/// Return true if the node is a math/logic binary operator.
virtual bool isBinOp(unsigned Opcode) const {
// A commutative binop must be a binop.
if (isCommutativeBinOp(Opcode))
return true;
// These are non-commutative binops.
switch (Opcode) {
case ISD::SUB:
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::SSUBSAT:
case ISD::USUBSAT:
case ISD::FSUB:
case ISD::FDIV:
case ISD::FREM:
return true;
default:
return false;
}
}
/// Return true if it's free to truncate a value of type FromTy to type
/// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
/// by referencing its sub-register AX.
/// Targets must return false when FromTy <= ToTy.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
return false;
}
/// Return true if a truncation from FromTy to ToTy is permitted when deciding
/// whether a call is in tail position. Typically this means that both results
/// would be assigned to the same register or stack slot, but it could mean
/// the target performs adequate checks of its own before proceeding with the
/// tail call. Targets must return false when FromTy <= ToTy.
virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
return false;
}
virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const {
return false;
}
virtual bool isProfitableToHoist(Instruction *I) const { return true; }
/// Return true if the extension represented by \p I is free.
/// Unlikely the is[Z|FP]ExtFree family which is based on types,
/// this method can use the context provided by \p I to decide
/// whether or not \p I is free.
/// This method extends the behavior of the is[Z|FP]ExtFree family.
/// In other words, if is[Z|FP]Free returns true, then this method
/// returns true as well. The converse is not true.
/// The target can perform the adequate checks by overriding isExtFreeImpl.
/// \pre \p I must be a sign, zero, or fp extension.
bool isExtFree(const Instruction *I) const {
switch (I->getOpcode()) {
case Instruction::FPExt:
if (isFPExtFree(EVT::getEVT(I->getType()),
EVT::getEVT(I->getOperand(0)->getType())))
return true;
break;
case Instruction::ZExt:
if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
return true;
break;
case Instruction::SExt:
break;
default:
llvm_unreachable("Instruction is not an extension");
}
return isExtFreeImpl(I);
}
/// Return true if \p Load and \p Ext can form an ExtLoad.
/// For example, in AArch64
/// %L = load i8, i8* %ptr
/// %E = zext i8 %L to i32
/// can be lowered into one load instruction
/// ldrb w0, [x0]
bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
const DataLayout &DL) const {
EVT VT = getValueType(DL, Ext->getType());
EVT LoadVT = getValueType(DL, Load->getType());
// If the load has other users and the truncate is not free, the ext
// probably isn't free.
if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
!isTruncateFree(Ext->getType(), Load->getType()))
return false;
// Check whether the target supports casts folded into loads.
unsigned LType;
if (isa<ZExtInst>(Ext))
LType = ISD::ZEXTLOAD;
else {
assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
LType = ISD::SEXTLOAD;
}
return isLoadExtLegal(LType, VT, LoadVT);
}
/// Return true if any actual instruction that defines a value of type FromTy
/// implicitly zero-extends the value to ToTy in the result register.
///
/// The function should return true when it is likely that the truncate can
/// be freely folded with an instruction defining a value of FromTy. If
/// the defining instruction is unknown (because you're looking at a
/// function argument, PHI, etc.) then the target may require an
/// explicit truncate, which is not necessarily free, but this function
/// does not deal with those cases.
/// Targets must return false when FromTy >= ToTy.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
return false;
}
virtual bool isZExtFree(EVT FromTy, EVT ToTy) const {
return false;
}
/// Return true if sign-extension from FromTy to ToTy is cheaper than
/// zero-extension.
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
return false;
}
/// Return true if sinking I's operands to the same basic block as I is
/// profitable, e.g. because the operands can be folded into a target
/// instruction during instruction selection. After calling the function
/// \p Ops contains the Uses to sink ordered by dominance (dominating users
/// come first).
virtual bool shouldSinkOperands(Instruction *I,
SmallVectorImpl<Use *> &Ops) const {
return false;
}
/// Return true if the target supplies and combines to a paired load
/// two loaded values of type LoadedType next to each other in memory.
/// RequiredAlignment gives the minimal alignment constraints that must be met
/// to be able to select this paired load.
///
/// This information is *not* used to generate actual paired loads, but it is
/// used to generate a sequence of loads that is easier to combine into a
/// paired load.
/// For instance, something like this:
/// a = load i64* addr
/// b = trunc i64 a to i32
/// c = lshr i64 a, 32
/// d = trunc i64 c to i32
/// will be optimized into:
/// b = load i32* addr1
/// d = load i32* addr2
/// Where addr1 = addr2 +/- sizeof(i32).
///
/// In other words, unless the target performs a post-isel load combining,
/// this information should not be provided because it will generate more
/// loads.
virtual bool hasPairedLoad(EVT /*LoadedType*/,
Align & /*RequiredAlignment*/) const {
return false;
}
/// Return true if the target has a vector blend instruction.
virtual bool hasVectorBlend() const { return false; }
/// Get the maximum supported factor for interleaved memory accesses.
/// Default to be the minimum interleave factor: 2.
virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
/// Lower an interleaved load to target specific intrinsics. Return
/// true on success.
///
/// \p LI is the vector load instruction.
/// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
/// \p Indices is the corresponding indices for each shufflevector.
/// \p Factor is the interleave factor.
virtual bool lowerInterleavedLoad(LoadInst *LI,
ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices,
unsigned Factor) const {
return false;
}
/// Lower an interleaved store to target specific intrinsics. Return
/// true on success.
///
/// \p SI is the vector store instruction.
/// \p SVI is the shufflevector to RE-interleave the stored vector.
/// \p Factor is the interleave factor.
virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
unsigned Factor) const {
return false;
}
/// Return true if zero-extending the specific node Val to type VT2 is free
/// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
/// because it's folded such as X86 zero-extending loads).
virtual bool isZExtFree(SDValue Val, EVT VT2) const {
return isZExtFree(Val.getValueType(), VT2);
}
/// Return true if an fpext operation is free (for instance, because
/// single-precision floating-point numbers are implicitly extended to
/// double-precision).
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
"invalid fpext types");
return false;
}
/// Return true if an fpext operation input to an \p Opcode operation is free
/// (for instance, because half-precision floating-point numbers are
/// implicitly extended to float-precision) for an FMA instruction.
virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
EVT DestVT, EVT SrcVT) const {
assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
"invalid fpext types");
return isFPExtFree(DestVT, SrcVT);
}
/// Return true if folding a vector load into ExtVal (a sign, zero, or any
/// extend node) is profitable.
virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
/// Return true if an fneg operation is free to the point where it is never
/// worthwhile to replace it with a bitwise operation.
virtual bool isFNegFree(EVT VT) const {
assert(VT.isFloatingPoint());
return false;
}
/// Return true if an fabs operation is free to the point where it is never
/// worthwhile to replace it with a bitwise operation.
virtual bool isFAbsFree(EVT VT) const {
assert(VT.isFloatingPoint());
return false;
}
/// Return true if an FMA operation is faster than a pair of fmul and fadd
/// instructions. fmuladd intrinsics will be expanded to FMAs when this method
/// returns true, otherwise fmuladd is expanded to fmul + fadd.
///
/// NOTE: This may be called before legalization on types for which FMAs are
/// not legal, but should return true if those types will eventually legalize
/// to types that support FMAs. After legalization, it will only be called on
/// types that support FMAs (via Legal or Custom actions)
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT) const {
return false;
}
/// IR version
virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
return false;
}
/// Returns true if be combined with to form an ISD::FMAD. \p N may be an
/// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
/// fadd/fsub.
virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
N->getOpcode() == ISD::FMUL) &&
"unexpected node in FMAD forming combine");
return isOperationLegal(ISD::FMAD, N->getValueType(0));
}
// Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
// than FMUL and ADD is delegated to the machine combiner.
virtual bool generateFMAsInMachineCombiner(EVT VT,
CodeGenOpt::Level OptLevel) const {
return false;
}
/// Return true if it's profitable to narrow operations of type VT1 to
/// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
/// i32 to i16.
virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
return false;
}
/// Return true if it is beneficial to convert a load of a constant to
/// just the constant itself.
/// On some targets it might be more efficient to use a combination of
/// arithmetic instructions to materialize the constant instead of loading it
/// from a constant pool.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
return false;
}
/// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
/// from this source type with this index. This is needed because
/// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
/// the first element, and only the target knows which lowering is cheap.
virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const {
return false;
}
/// Try to convert an extract element of a vector binary operation into an
/// extract element followed by a scalar operation.
virtual bool shouldScalarizeBinop(SDValue VecOp) const {
return false;
}
/// Return true if extraction of a scalar element from the given vector type
/// at the given index is cheap. For example, if scalar operations occur on
/// the same register file as vector operations, then an extract element may
/// be a sub-register rename rather than an actual instruction.
virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
return false;
}
/// Try to convert math with an overflow comparison into the corresponding DAG
/// node operation. Targets may want to override this independently of whether
/// the operation is legal/custom for the given type because it may obscure
/// matching of other patterns.
virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
bool MathUsed) const {
// TODO: The default logic is inherited from code in CodeGenPrepare.
// The opcode should not make a difference by default?
if (Opcode != ISD::UADDO)
return false;
// Allow the transform as long as we have an integer type that is not
// obviously illegal and unsupported and if the math result is used
// besides the overflow check. On some targets (e.g. SPARC), it is
// not profitable to form on overflow op if the math result has no
// concrete users.
if (VT.isVector())
return false;
return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
}
// Return true if it is profitable to use a scalar input to a BUILD_VECTOR
// even if the vector itself has multiple uses.
virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
return false;
}
// Return true if CodeGenPrepare should consider splitting large offset of a
// GEP to make the GEP fit into the addressing mode and can be sunk into the
// same blocks of its users.
virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
/// Return true if creating a shift of the type by the given
/// amount is not profitable.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
return false;
}
/// Does this target require the clearing of high-order bits in a register
/// passed to the fp16 to fp conversion library function.
virtual bool shouldKeepZExtForFP16Conv() const { return false; }
//===--------------------------------------------------------------------===//
// Runtime Library hooks
//
/// Rename the default libcall routine name for the specified libcall.
void setLibcallName(RTLIB::Libcall Call, const char *Name) {
LibcallRoutineNames[Call] = Name;
}
/// Get the libcall routine name for the specified libcall.
const char *getLibcallName(RTLIB::Libcall Call) const {
return LibcallRoutineNames[Call];
}
/// Override the default CondCode to be used to test the result of the
/// comparison libcall against zero.
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
CmpLibcallCCs[Call] = CC;
}
/// Get the CondCode that's to be used to test the result of the comparison
/// libcall against zero.
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
return CmpLibcallCCs[Call];
}
/// Set the CallingConv that should be used for the specified libcall.
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
LibcallCallingConvs[Call] = CC;
}
/// Get the CallingConv that should be used for the specified libcall.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
return LibcallCallingConvs[Call];
}
/// Execute target specific actions to finalize target lowering.
/// This is used to set extra flags in MachineFrameInformation and freezing
/// the set of reserved registers.
/// The default implementation just freezes the set of reserved registers.
virtual void finalizeLowering(MachineFunction &MF) const;
//===----------------------------------------------------------------------===//
// GlobalISel Hooks
//===----------------------------------------------------------------------===//
/// Check whether or not \p MI needs to be moved close to its uses.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
private:
const TargetMachine &TM;
/// Tells the code generator that the target has multiple (allocatable)
/// condition registers that can be used to store the results of comparisons
/// for use by selects and conditional branches. With multiple condition
/// registers, the code generator will not aggressively sink comparisons into
/// the blocks of their users.
bool HasMultipleConditionRegisters;
/// Tells the code generator that the target has BitExtract instructions.
/// The code generator will aggressively sink "shift"s into the blocks of
/// their users if the users will generate "and" instructions which can be
/// combined with "shift" to BitExtract instructions.
bool HasExtractBitsInsn;
/// Tells the code generator to bypass slow divide or remainder
/// instructions. For example, BypassSlowDivWidths[32,8] tells the code
/// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
/// div/rem when the operands are positive and less than 256.
DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
/// Tells the code generator that it shouldn't generate extra flow control
/// instructions and should attempt to combine flow control instructions via
/// predication.
bool JumpIsExpensive;
/// Information about the contents of the high-bits in boolean values held in
/// a type wider than i1. See getBooleanContents.
BooleanContent BooleanContents;
/// Information about the contents of the high-bits in boolean values held in
/// a type wider than i1. See getBooleanContents.
BooleanContent BooleanFloatContents;
/// Information about the contents of the high-bits in boolean vector values
/// when the element type is wider than i1. See getBooleanContents.
BooleanContent BooleanVectorContents;
/// The target scheduling preference: shortest possible total cycles or lowest
/// register usage.
Sched::Preference SchedPreferenceInfo;
/// The minimum alignment that any argument on the stack needs to have.
Align MinStackArgumentAlignment;
/// The minimum function alignment (used when optimizing for size, and to
/// prevent explicitly provided alignment from leading to incorrect code).
Align MinFunctionAlignment;
/// The preferred function alignment (used when alignment unspecified and
/// optimizing for speed).
Align PrefFunctionAlignment;
/// The preferred loop alignment (in log2 bot in bytes).
Align PrefLoopAlignment;
/// Size in bits of the maximum atomics size the backend supports.
/// Accesses larger than this will be expanded by AtomicExpandPass.
unsigned MaxAtomicSizeInBitsSupported;
/// Size in bits of the minimum cmpxchg or ll/sc operation the
/// backend supports.
unsigned MinCmpXchgSizeInBits;
/// This indicates if the target supports unaligned atomic operations.
bool SupportsUnalignedAtomics;
/// If set to a physical register, this specifies the register that
/// llvm.savestack/llvm.restorestack should save and restore.
Register StackPointerRegisterToSaveRestore;
/// This indicates the default register class to use for each ValueType the
/// target supports natively.
const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
/// This indicates the "representative" register class to use for each
/// ValueType the target supports natively. This information is used by the
/// scheduler to track register pressure. By default, the representative
/// register class is the largest legal super-reg register class of the
/// register class of the specified type. e.g. On x86, i8, i16, and i32's
/// representative class would be GR32.
const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE];
/// This indicates the "cost" of the "representative" register class for each
/// ValueType. The cost is used by the scheduler to approximate register
/// pressure.
uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
/// For any value types we are promoting or expanding, this contains the value
/// type that we are changing to. For Expanded types, this contains one step
/// of the expand (e.g. i64 -> i32), even if there are multiple steps required
/// (e.g. i64 -> i16). For types natively supported by the system, this holds
/// the same type (e.g. i32 -> i32).
MVT TransformToType[MVT::VALUETYPE_SIZE];
/// For each operation and each value type, keep a LegalizeAction that
/// indicates how instruction selection should deal with the operation. Most
/// operations are Legal (aka, supported natively by the target), but
/// operations that are not should be described. Note that operations on
/// non-legal value types are not described here.
LegalizeAction OpActions[MVT::VALUETYPE_SIZE][ISD::BUILTIN_OP_END];
/// For each load extension type and each value type, keep a LegalizeAction
/// that indicates how instruction selection should deal with a load of a
/// specific value type and extension type. Uses 4-bits to store the action
/// for each of the 4 load ext types.
uint16_t LoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
/// For each value type pair keep a LegalizeAction that indicates whether a
/// truncating store of a specific value type and truncating type is legal.
LegalizeAction TruncStoreActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
/// For each indexed mode and each value type, keep a quad of LegalizeAction
/// that indicates how instruction selection should deal with the load /
/// store / maskedload / maskedstore.
///
/// The first dimension is the value_type for the reference. The second
/// dimension represents the various modes for load store.
uint16_t IndexedModeActions[MVT::VALUETYPE_SIZE][ISD::LAST_INDEXED_MODE];
/// For each condition code (ISD::CondCode) keep a LegalizeAction that
/// indicates how instruction selection should deal with the condition code.
///
/// Because each CC action takes up 4 bits, we need to have the array size be
/// large enough to fit all of the value types. This can be done by rounding
/// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
ValueTypeActionImpl ValueTypeActions;
private:
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
/// Targets can specify ISD nodes that they would like PerformDAGCombine
/// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
/// array.
unsigned char
TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
/// For operations that must be promoted to a specific type, this holds the
/// destination type. This map should be sparse, so don't hold it as an
/// array.
///
/// Targets add entries to this map with AddPromotedToType(..), clients access
/// this with getTypeToPromoteTo(..).
std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
PromoteToType;
/// Stores the name each libcall.
const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
/// The ISD::CondCode that should be used to test the result of each of the
/// comparison libcall against zero.
ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
/// Stores the CallingConv that should be used for each libcall.
CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
/// Set default libcall names and calling conventions.
void InitLibcalls(const Triple &TT);
/// The bits of IndexedModeActions used to store the legalisation actions
/// We store the data as | ML | MS | L | S | each taking 4 bits.
enum IndexedModeActionsBits {
IMAB_Store = 0,
IMAB_Load = 4,
IMAB_MaskedStore = 8,
IMAB_MaskedLoad = 12
};
void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
LegalizeAction Action) {
assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
(unsigned)Action < 0xf && "Table isn't big enough!");
unsigned Ty = (unsigned)VT.SimpleTy;
IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
}
LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
unsigned Shift) const {
assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
"Table isn't big enough!");
unsigned Ty = (unsigned)VT.SimpleTy;
return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
}
protected:
/// Return true if the extension represented by \p I is free.
/// \pre \p I is a sign, zero, or fp extension and
/// is[Z|FP]ExtFree of the related types is not true.
virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
/// Depth that GatherAllAliases should should continue looking for chain
/// dependencies when trying to find a more preferable chain. As an
/// approximation, this should be more than the number of consecutive stores
/// expected to be merged.
unsigned GatherAllAliasesMaxDepth;
/// \brief Specify maximum number of store instructions per memset call.
///
/// When lowering \@llvm.memset this field specifies the maximum number of
/// store operations that may be substituted for the call to memset. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memset will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
/// with 16-bit alignment would result in four 2-byte stores and one 1-byte
/// store. This only applies to setting a constant array of a constant size.
unsigned MaxStoresPerMemset;
/// Likewise for functions with the OptSize attribute.
unsigned MaxStoresPerMemsetOptSize;
/// \brief Specify maximum number of store instructions per memcpy call.
///
/// When lowering \@llvm.memcpy this field specifies the maximum number of
/// store operations that may be substituted for a call to memcpy. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memcpy will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
/// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
/// and one 1-byte store. This only applies to copying a constant array of
/// constant size.
unsigned MaxStoresPerMemcpy;
/// Likewise for functions with the OptSize attribute.
unsigned MaxStoresPerMemcpyOptSize;
/// \brief Specify max number of store instructions to glue in inlined memcpy.
///
/// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
/// of store instructions to keep together. This helps in pairing and
// vectorization later on.
unsigned MaxGluedStoresPerMemcpy = 0;
/// \brief Specify maximum number of load instructions per memcmp call.
///
/// When lowering \@llvm.memcmp this field specifies the maximum number of
/// pairs of load operations that may be substituted for a call to memcmp.
/// Targets must set this value based on the cost threshold for that target.
/// Targets should assume that the memcmp will be done using as many of the
/// largest load operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
/// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
/// and one 1-byte load. This only applies to copying a constant array of
/// constant size.
unsigned MaxLoadsPerMemcmp;
/// Likewise for functions with the OptSize attribute.
unsigned MaxLoadsPerMemcmpOptSize;
/// \brief Specify maximum number of store instructions per memmove call.
///
/// When lowering \@llvm.memmove this field specifies the maximum number of
/// store instructions that may be substituted for a call to memmove. Targets
/// must set this value based on the cost threshold for that target. Targets
/// should assume that the memmove will be done using as many of the largest
/// store operations first, followed by smaller ones, if necessary, per
/// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
/// with 8-bit alignment would result in nine 1-byte stores. This only
/// applies to copying a constant array of constant size.
unsigned MaxStoresPerMemmove;
/// Likewise for functions with the OptSize attribute.
unsigned MaxStoresPerMemmoveOptSize;
/// Tells the code generator that select is more expensive than a branch if
/// the branch is usually predicted right.
bool PredictableSelectIsExpensive;
/// \see enableExtLdPromotion.
bool EnableExtLdPromotion;
/// Return true if the value types that can be represented by the specified
/// register class are all legal.
bool isLegalRC(const TargetRegisterInfo &TRI,
const TargetRegisterClass &RC) const;
/// Replace/modify any TargetFrameIndex operands with a targte-dependent
/// sequence of memory operands that is recognized by PrologEpilogInserter.
MachineBasicBlock *emitPatchPoint(MachineInstr &MI,
MachineBasicBlock *MBB) const;
bool IsStrictFPEnabled;
};
/// This class defines information used to lower LLVM code to legal SelectionDAG
/// operators that the target instruction selector can accept natively.
///
/// This class also defines callbacks that targets must implement to lower
/// target-specific constructs to SelectionDAG operators.
class TargetLowering : public TargetLoweringBase {
public:
struct DAGCombinerInfo;
struct MakeLibCallOptions;
TargetLowering(const TargetLowering &) = delete;
TargetLowering &operator=(const TargetLowering &) = delete;
explicit TargetLowering(const TargetMachine &TM);
bool isPositionIndependent() const;
virtual bool isSDNodeSourceOfDivergence(const SDNode *N,
FunctionLoweringInfo *FLI,
LegacyDivergenceAnalysis *DA) const {
return false;
}
virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
return false;
}
/// Returns true by value, base pointer and offset pointer and addressing mode
/// by reference if the node's address can be legally represented as
/// pre-indexed load / store address.
virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
SDValue &/*Offset*/,
ISD::MemIndexedMode &/*AM*/,
SelectionDAG &/*DAG*/) const {
return false;
}
/// Returns true by value, base pointer and offset pointer and addressing mode
/// by reference if this node can be combined with a load / store to form a
/// post-indexed load / store.
virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
SDValue &/*Base*/,
SDValue &/*Offset*/,
ISD::MemIndexedMode &/*AM*/,
SelectionDAG &/*DAG*/) const {
return false;
}
/// Returns true if the specified base+offset is a legal indexed addressing
/// mode for this target. \p MI is the load or store instruction that is being
/// considered for transformation.
virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset,
bool IsPre, MachineRegisterInfo &MRI) const {
return false;
}
/// Return the entry encoding for a jump table in the current function. The
/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
virtual unsigned getJumpTableEncoding() const;
virtual const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
MCContext &/*Ctx*/) const {
llvm_unreachable("Need to implement this hook if target has custom JTIs");
}
/// Returns relocation base for the given PIC jumptable.
virtual SDValue getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const;
/// This returns the relocation base for the given PIC jumptable, the same as
/// getPICJumpTableRelocBase, but as an MCExpr.
virtual const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
unsigned JTI, MCContext &Ctx) const;
/// Return true if folding a constant offset with the given GlobalAddress is
/// legal. It is frequently not legal in PIC relocation models.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
SDValue &Chain) const;
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
SDValue &NewRHS, ISD::CondCode &CCCode,
const SDLoc &DL, const SDValue OldLHS,
const SDValue OldRHS) const;
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
SDValue &NewRHS, ISD::CondCode &CCCode,
const SDLoc &DL, const SDValue OldLHS,
const SDValue OldRHS, SDValue &Chain,
bool IsSignaling = false) const;
/// Returns a pair of (return value, chain).
/// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
EVT RetVT, ArrayRef<SDValue> Ops,
MakeLibCallOptions CallOptions,
const SDLoc &dl,
SDValue Chain = SDValue()) const;
/// Check whether parameters to a call that are passed in callee saved
/// registers are the same as from the calling function. This needs to be
/// checked for tail call eligibility.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI,
const uint32_t *CallerPreservedMask,
const SmallVectorImpl<CCValAssign> &ArgLocs,
const SmallVectorImpl<SDValue> &OutVals) const;
//===--------------------------------------------------------------------===//
// TargetLowering Optimization Methods
//
/// A convenience struct that encapsulates a DAG, and two SDValues for
/// returning information from TargetLowering to its clients that want to
/// combine.
struct TargetLoweringOpt {
SelectionDAG &DAG;
bool LegalTys;
bool LegalOps;
SDValue Old;
SDValue New;
explicit TargetLoweringOpt(SelectionDAG &InDAG,
bool LT, bool LO) :
DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
bool LegalTypes() const { return LegalTys; }
bool LegalOperations() const { return LegalOps; }
bool CombineTo(SDValue O, SDValue N) {
Old = O;
New = N;
return true;
}
};
/// Determines the optimal series of memory ops to replace the memset / memcpy.
/// Return true if the number of memory ops is below the threshold (Limit).
/// It returns the types of the sequence of memory ops to perform
/// memset / memcpy by reference.
bool findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
const MemOp &Op, unsigned DstAS, unsigned SrcAS,
const AttributeList &FuncAttributes) const;
/// Check to see if the specified operand of the specified instruction is a
/// constant integer. If so, check to see if there are any bits set in the
/// constant that are not demanded. If so, shrink the constant and return
/// true.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const;
/// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
TargetLoweringOpt &TLO) const;
// Target hook to do target-specific const optimization, which is called by
// ShrinkDemandedConstant. This function should return true if the target
// doesn't want ShrinkDemandedConstant to further optimize the constant.
virtual bool targetShrinkDemandedConstant(SDValue Op,
const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const {
return false;
}
/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
/// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
/// generalized for targets with other types of implicit widening casts.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
TargetLoweringOpt &TLO) const;
/// Look at Op. At this point, we know that only the DemandedBits bits of the
/// result of Op are ever used downstream. If we can use this information to
/// simplify Op, create a new simplified DAG node and return true, returning
/// the original and new nodes in Old and New. Otherwise, analyze the
/// expression and return a mask of KnownOne and KnownZero bits for the
/// expression (used to simplify the caller). The KnownZero/One bits may only
/// be accurate for those bits in the Demanded masks.
/// \p AssumeSingleUse When this parameter is true, this function will
/// attempt to simplify \p Op even if there are multiple uses.
/// Callers are responsible for correctly updating the DAG based on the
/// results of this function, because simply replacing replacing TLO.Old
/// with TLO.New will be incorrect when this parameter is true and TLO.Old
/// has multiple uses.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts, KnownBits &Known,
TargetLoweringOpt &TLO, unsigned Depth = 0,
bool AssumeSingleUse = false) const;
/// Helper wrapper around SimplifyDemandedBits, demanding all elements.
/// Adds Op back to the worklist upon success.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
KnownBits &Known, TargetLoweringOpt &TLO,
unsigned Depth = 0,
bool AssumeSingleUse = false) const;
/// Helper wrapper around SimplifyDemandedBits.
/// Adds Op back to the worklist upon success.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
DAGCombinerInfo &DCI) const;
/// More limited version of SimplifyDemandedBits that can be used to "look
/// through" ops that don't contribute to the DemandedBits/DemandedElts -
/// bitwise ops etc.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
SelectionDAG &DAG,
unsigned Depth) const;
/// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
/// elements.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits,
SelectionDAG &DAG,
unsigned Depth = 0) const;
/// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
/// bits from only some vector elements.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op,
const APInt &DemandedElts,
SelectionDAG &DAG,
unsigned Depth = 0) const;
/// Look at Vector Op. At this point, we know that only the DemandedElts
/// elements of the result of Op are ever used downstream. If we can use
/// this information to simplify Op, create a new simplified DAG node and
/// return true, storing the original and new nodes in TLO.
/// Otherwise, analyze the expression and return a mask of KnownUndef and
/// KnownZero elements for the expression (used to simplify the caller).
/// The KnownUndef/Zero elements may only be accurate for those bits
/// in the DemandedMask.
/// \p AssumeSingleUse When this parameter is true, this function will
/// attempt to simplify \p Op even if there are multiple uses.
/// Callers are responsible for correctly updating the DAG based on the
/// results of this function, because simply replacing replacing TLO.Old
/// with TLO.New will be incorrect when this parameter is true and TLO.Old
/// has multiple uses.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
APInt &KnownUndef, APInt &KnownZero,
TargetLoweringOpt &TLO, unsigned Depth = 0,
bool AssumeSingleUse = false) const;
/// Helper wrapper around SimplifyDemandedVectorElts.
/// Adds Op back to the worklist upon success.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
APInt &KnownUndef, APInt &KnownZero,
DAGCombinerInfo &DCI) const;
/// Determine which of the bits specified in Mask are known to be either zero
/// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
/// argument allows us to only collect the known bits that are shared by the
/// requested vector elements.
virtual void computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
/// Determine which of the bits specified in Mask are known to be either zero
/// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
/// argument allows us to only collect the known bits that are shared by the
/// requested vector elements. This is for GISel.
virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis,
Register R, KnownBits &Known,
const APInt &DemandedElts,
const MachineRegisterInfo &MRI,
unsigned Depth = 0) const;
/// Determine the known alignment for the pointer value \p R. This is can
/// typically be inferred from the number of low known 0 bits. However, for a
/// pointer with a non-integral address space, the alignment value may be
/// independent from the known low bits.
virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis,
Register R,
const MachineRegisterInfo &MRI,
unsigned Depth = 0) const;
/// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
/// Default implementation computes low bits based on alignment
/// information. This should preserve known bits passed into it.
virtual void computeKnownBitsForFrameIndex(int FIOp,
KnownBits &Known,
const MachineFunction &MF) const;
/// This method can be implemented by targets that want to expose additional
/// information about sign bits to the DAG Combiner. The DemandedElts
/// argument allows us to only collect the minimum sign bits that are shared
/// by the requested vector elements.
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
/// This method can be implemented by targets that want to expose additional
/// information about sign bits to GlobalISel combiners. The DemandedElts
/// argument allows us to only collect the minimum sign bits that are shared
/// by the requested vector elements.
virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis,
Register R,
const APInt &DemandedElts,
const MachineRegisterInfo &MRI,
unsigned Depth = 0) const;
/// Attempt to simplify any target nodes based on the demanded vector
/// elements, returning true on success. Otherwise, analyze the expression and
/// return a mask of KnownUndef and KnownZero elements for the expression
/// (used to simplify the caller). The KnownUndef/Zero elements may only be
/// accurate for those bits in the DemandedMask.
virtual bool SimplifyDemandedVectorEltsForTargetNode(
SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
/// Attempt to simplify any target nodes based on the demanded bits/elts,
/// returning true on success. Otherwise, analyze the
/// expression and return a mask of KnownOne and KnownZero bits for the
/// expression (used to simplify the caller). The KnownZero/One bits may only
/// be accurate for those bits in the Demanded masks.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op,
const APInt &DemandedBits,
const APInt &DemandedElts,
KnownBits &Known,
TargetLoweringOpt &TLO,
unsigned Depth = 0) const;
/// More limited version of SimplifyDemandedBits that can be used to "look
/// through" ops that don't contribute to the DemandedBits/DemandedElts -
/// bitwise ops etc.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
SelectionDAG &DAG, unsigned Depth) const;
/// Tries to build a legal vector shuffle using the provided parameters
/// or equivalent variations. The Mask argument maybe be modified as the
/// function tries different variations.
/// Returns an empty SDValue if the operation fails.
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
SDValue N1, MutableArrayRef<int> Mask,
SelectionDAG &DAG) const;
/// This method returns the constant pool value that will be loaded by LD.
/// NOTE: You must check for implicit extensions of the constant by LD.
virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
/// If \p SNaN is false, \returns true if \p Op is known to never be any
/// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
/// NaN.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op,
const SelectionDAG &DAG,
bool SNaN = false,
unsigned Depth = 0) const;
struct DAGCombinerInfo {
void *DC; // The DAG Combiner object.
CombineLevel Level;
bool CalledByLegalizer;
public:
SelectionDAG &DAG;
DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
: DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
CombineLevel getDAGCombineLevel() { return Level; }
bool isCalledByLegalizer() const { return CalledByLegalizer; }
void AddToWorklist(SDNode *N);
SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
bool recursivelyDeleteUnusedNodes(SDNode *N);
void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
};
/// Return if the N is a constant or constant vector equal to the true value
/// from getBooleanContents().
bool isConstTrueVal(const SDNode *N) const;
/// Return if the N is a constant or constant vector equal to the false value
/// from getBooleanContents().
bool isConstFalseVal(const SDNode *N) const;
/// Return if \p N is a True value when extended to \p VT.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
/// Try to simplify a setcc built with the specified operands and cc. If it is
/// unable to simplify it, return a null SDValue.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
bool foldBooleans, DAGCombinerInfo &DCI,
const SDLoc &dl) const;
// For targets which wrap address, unwrap for analysis.
virtual SDValue unwrapAddress(SDValue N) const { return N; }
/// Returns true (and the GlobalValue and the offset) if the node is a
/// GlobalAddress + offset.
virtual bool
isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
/// This method will be invoked for all target nodes and for any
/// target-independent nodes that the target has registered with invoke it
/// for.
///
/// The semantics are as follows:
/// Return Value:
/// SDValue.Val == 0 - No change was made
/// SDValue.Val == N - N was replaced, is dead, and is already handled.
/// otherwise - N should be replaced by the returned Operand.
///
/// In addition, methods provided by DAGCombinerInfo may be used to perform
/// more complex transformations.
///
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
/// Return true if it is profitable to move this shift by a constant amount
/// though its operand, adjusting any immediate operands as necessary to
/// preserve semantics. This transformation may not be desirable if it
/// disrupts a particularly auspicious target-specific tree (e.g. bitfield
/// extraction in AArch64). By default, it returns true.
///
/// @param N the shift node
/// @param Level the current DAGCombine legalization level.
virtual bool isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const {
return true;
}
/// Return true if the target has native support for the specified value type
/// and it is 'desirable' to use the type for the given node type. e.g. On x86
/// i16 is legal, but undesirable since i16 instruction encodings are longer
/// and some i16 instructions are slow.
virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
// By default, assume all legal types are desirable.
return isTypeLegal(VT);
}
/// Return true if it is profitable for dag combiner to transform a floating
/// point op of specified opcode to a equivalent op of an integer
/// type. e.g. f32 load -> i32 load can be profitable on ARM.
virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
EVT /*VT*/) const {
return false;
}
/// This method query the target whether it is beneficial for dag combiner to
/// promote the specified node. If true, it should return the desired
/// promotion type by reference.
virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
return false;
}
/// Return true if the target supports swifterror attribute. It optimizes
/// loads and stores to reading and writing a specific register.
virtual bool supportSwiftError() const {
return false;
}
/// Return true if the target supports that a subset of CSRs for the given
/// machine function is handled explicitly via copies.
virtual bool supportSplitCSR(MachineFunction *MF) const {
return false;
}
/// Perform necessary initialization to handle a subset of CSRs explicitly
/// via copies. This function is called at the beginning of instruction
/// selection.
virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
llvm_unreachable("Not Implemented");
}
/// Insert explicit copies in entry and exit blocks. We copy a subset of
/// CSRs to virtual registers in the entry block, and copy them back to
/// physical registers in the exit blocks. This function is called at the end
/// of instruction selection.
virtual void insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
llvm_unreachable("Not Implemented");
}
/// Return the newly negated expression if the cost is not expensive and
/// set the cost in \p Cost to indicate that if it is cheaper or neutral to
/// do the negation.
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOps, bool OptForSize,
NegatibleCost &Cost,
unsigned Depth = 0) const;
/// This is the helper function to return the newly negated expression only
/// when the cost is cheaper.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOps, bool OptForSize,
unsigned Depth = 0) const {
NegatibleCost Cost = NegatibleCost::Expensive;
SDValue Neg =
getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
if (Neg && Cost == NegatibleCost::Cheaper)
return Neg;
// Remove the new created node to avoid the side effect to the DAG.
if (Neg && Neg.getNode()->use_empty())
DAG.RemoveDeadNode(Neg.getNode());
return SDValue();
}
/// This is the helper function to return the newly negated expression if
/// the cost is not expensive.
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
bool OptForSize, unsigned Depth = 0) const {
NegatibleCost Cost = NegatibleCost::Expensive;
return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
}
//===--------------------------------------------------------------------===//
// Lowering methods - These methods must be implemented by targets so that
// the SelectionDAGBuilder code knows how to lower these.
//
/// Target-specific splitting of values into parts that fit a register
/// storing a legal type
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL,
SDValue Val, SDValue *Parts,
unsigned NumParts, MVT PartVT,
Optional<CallingConv::ID> CC) const {
return false;
}
/// Target-specific combining of register parts into its original value
virtual SDValue
joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL,
const SDValue *Parts, unsigned NumParts,
MVT PartVT, EVT ValueVT,
Optional<CallingConv::ID> CC) const {
return SDValue();
}
/// This hook must be implemented to lower the incoming (formal) arguments,
/// described by the Ins array, into the specified DAG. The implementation
/// should fill in the InVals array with legal-type argument values, and
/// return the resulting token chain value.
virtual SDValue LowerFormalArguments(
SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
llvm_unreachable("Not Implemented");
}
/// This structure contains all information that is necessary for lowering
/// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
/// needs to lower a call, and targets will see this struct in their LowerCall
/// implementation.
struct CallLoweringInfo {
SDValue Chain;
Type *RetTy = nullptr;
bool RetSExt : 1;
bool RetZExt : 1;
bool IsVarArg : 1;
bool IsInReg : 1;
bool DoesNotReturn : 1;
bool IsReturnValueUsed : 1;
bool IsConvergent : 1;
bool IsPatchPoint : 1;
bool IsPreallocated : 1;
bool NoMerge : 1;
// IsTailCall should be modified by implementations of
// TargetLowering::LowerCall that perform tail call conversions.
bool IsTailCall = false;
// Is Call lowering done post SelectionDAG type legalization.
bool IsPostTypeLegalization = false;
unsigned NumFixedArgs = -1;
CallingConv::ID CallConv = CallingConv::C;
SDValue Callee;
ArgListTy Args;
SelectionDAG &DAG;
SDLoc DL;
const CallBase *CB = nullptr;
SmallVector<ISD::OutputArg, 32> Outs;
SmallVector<SDValue, 32> OutVals;
SmallVector<ISD::InputArg, 32> Ins;
SmallVector<SDValue, 4> InVals;
CallLoweringInfo(SelectionDAG &DAG)
: RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false),
IsPatchPoint(false), IsPreallocated(false), NoMerge(false),
DAG(DAG) {}
CallLoweringInfo &setDebugLoc(const SDLoc &dl) {
DL = dl;
return *this;
}
CallLoweringInfo &setChain(SDValue InChain) {
Chain = InChain;
return *this;
}
// setCallee with target/module-specific attributes
CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType,
SDValue Target, ArgListTy &&ArgsList) {
RetTy = ResultType;
Callee = Target;
CallConv = CC;
NumFixedArgs = ArgsList.size();
Args = std::move(ArgsList);
DAG.getTargetLoweringInfo().markLibCallAttributes(
&(DAG.getMachineFunction()), CC, Args);
return *this;
}
CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType,
SDValue Target, ArgListTy &&ArgsList) {
RetTy = ResultType;
Callee = Target;
CallConv = CC;
NumFixedArgs = ArgsList.size();
Args = std::move(ArgsList);
return *this;
}
CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy,
SDValue Target, ArgListTy &&ArgsList,
const CallBase &Call) {
RetTy = ResultType;
IsInReg = Call.hasRetAttr(Attribute::InReg);
DoesNotReturn =
Call.doesNotReturn() ||
(!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
IsVarArg = FTy->isVarArg();
IsReturnValueUsed = !Call.use_empty();
RetSExt = Call.hasRetAttr(Attribute::SExt);
RetZExt = Call.hasRetAttr(Attribute::ZExt);
NoMerge = Call.hasFnAttr(Attribute::NoMerge);
Callee = Target;
CallConv = Call.getCallingConv();
NumFixedArgs = FTy->getNumParams();
Args = std::move(ArgsList);
CB = &Call;
return *this;
}
CallLoweringInfo &setInRegister(bool Value = true) {
IsInReg = Value;
return *this;
}
CallLoweringInfo &setNoReturn(bool Value = true) {
DoesNotReturn = Value;
return *this;
}
CallLoweringInfo &setVarArg(bool Value = true) {
IsVarArg = Value;
return *this;
}
CallLoweringInfo &setTailCall(bool Value = true) {
IsTailCall = Value;
return *this;
}
CallLoweringInfo &setDiscardResult(bool Value = true) {
IsReturnValueUsed = !Value;
return *this;
}
CallLoweringInfo &setConvergent(bool Value = true) {
IsConvergent = Value;
return *this;
}
CallLoweringInfo &setSExtResult(bool Value = true) {
RetSExt = Value;
return *this;
}
CallLoweringInfo &setZExtResult(bool Value = true) {
RetZExt = Value;
return *this;
}
CallLoweringInfo &setIsPatchPoint(bool Value = true) {
IsPatchPoint = Value;
return *this;
}
CallLoweringInfo &setIsPreallocated(bool Value = true) {
IsPreallocated = Value;
return *this;
}
CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) {
IsPostTypeLegalization = Value;
return *this;
}
ArgListTy &getArgs() {
return Args;
}
};
/// This structure is used to pass arguments to makeLibCall function.
struct MakeLibCallOptions {
// By passing type list before soften to makeLibCall, the target hook
// shouldExtendTypeInLibCall can get the original type before soften.
ArrayRef<EVT> OpsVTBeforeSoften;
EVT RetVTBeforeSoften;
bool IsSExt : 1;
bool DoesNotReturn : 1;
bool IsReturnValueUsed : 1;
bool IsPostTypeLegalization : 1;
bool IsSoften : 1;
MakeLibCallOptions()
: IsSExt(false), DoesNotReturn(false), IsReturnValueUsed(true),
IsPostTypeLegalization(false), IsSoften(false) {}
MakeLibCallOptions &setSExt(bool Value = true) {
IsSExt = Value;
return *this;
}
MakeLibCallOptions &setNoReturn(bool Value = true) {
DoesNotReturn = Value;
return *this;
}
MakeLibCallOptions &setDiscardResult(bool Value = true) {
IsReturnValueUsed = !Value;
return *this;
}
MakeLibCallOptions &setIsPostTypeLegalization(bool Value = true) {
IsPostTypeLegalization = Value;
return *this;
}
MakeLibCallOptions &setTypeListBeforeSoften(ArrayRef<EVT> OpsVT, EVT RetVT,
bool Value = true) {
OpsVTBeforeSoften = OpsVT;
RetVTBeforeSoften = RetVT;
IsSoften = Value;
return *this;
}
};
/// This function lowers an abstract call to a function into an actual call.
/// This returns a pair of operands. The first element is the return value
/// for the function (if RetTy is not VoidTy). The second element is the
/// outgoing token chain. It calls LowerCall to do the actual lowering.
std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
/// This hook must be implemented to lower calls into the specified
/// DAG. The outgoing arguments to the call are described by the Outs array,
/// and the values to be returned by the call are described by the Ins
/// array. The implementation should fill in the InVals array with legal-type
/// return values from the call, and return the resulting token chain value.
virtual SDValue
LowerCall(CallLoweringInfo &/*CLI*/,
SmallVectorImpl<SDValue> &/*InVals*/) const {
llvm_unreachable("Not Implemented");
}
/// Target-specific cleanup for formal ByVal parameters.
virtual void HandleByVal(CCState *, unsigned &, Align) const {}
/// This hook should be implemented to check whether the return values
/// described by the Outs array can fit into the return registers. If false
/// is returned, an sret-demotion is performed.
virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
MachineFunction &/*MF*/, bool /*isVarArg*/,
const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
LLVMContext &/*Context*/) const
{
// Return true by default to get preexisting behavior.
return true;
}
/// This hook must be implemented to lower outgoing return values, described
/// by the Outs array, into the specified DAG. The implementation should
/// return the resulting token chain value.
virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
bool /*isVarArg*/,
const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
const SmallVectorImpl<SDValue> & /*OutVals*/,
const SDLoc & /*dl*/,
SelectionDAG & /*DAG*/) const {
llvm_unreachable("Not Implemented");
}
/// Return true if result of the specified node is used by a return node
/// only. It also compute and return the input chain for the tail call.
///
/// This is used to determine whether it is possible to codegen a libcall as
/// tail call at legalization time.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
return false;
}
/// Return true if the target may be able emit the call instruction as a tail
/// call. This is used by optimization passes to determine if it's profitable
/// to duplicate return instructions to enable tailcall optimization.
virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
return false;
}
/// Return the builtin name for the __builtin___clear_cache intrinsic
/// Default is to invoke the clear cache library call
virtual const char * getClearCacheBuiltinName() const {
return "__clear_cache";
}
/// Return the register ID of the name passed in. Used by named register
/// global variables extension. There is no target-independent behaviour
/// so the default action is to bail.
virtual Register getRegisterByName(const char* RegName, LLT Ty,
const MachineFunction &MF) const {
report_fatal_error("Named registers not implemented for this target");
}
/// Return the type that should be used to zero or sign extend a
/// zeroext/signext integer return value. FIXME: Some C calling conventions
/// require the return type to be promoted, but this is not true all the time,
/// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
/// conventions. The frontend should handle this and include all of the
/// necessary information.
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
ISD::NodeType /*ExtendKind*/) const {
EVT MinVT = getRegisterType(Context, MVT::i32);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
/// For some targets, an LLVM struct type must be broken down into multiple
/// simple types, but the calling convention specifies that the entire struct
/// must be passed in a block of consecutive registers.
virtual bool
functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv,
bool isVarArg,
const DataLayout &DL) const {
return false;
}
/// For most targets, an LLVM type must be broken down into multiple
/// smaller types. Usually the halves are ordered according to the endianness
/// but for some platform that would break. So this method will default to
/// matching the endianness but can be overridden.
virtual bool
shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const {
return DL.isLittleEndian();
}
/// Returns a 0 terminated array of registers that can be safely used as
/// scratch registers.
virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const {
return nullptr;
}
/// This callback is used to prepare for a volatile or atomic load.
/// It takes a chain node as input and returns the chain for the load itself.
///
/// Having a callback like this is necessary for targets like SystemZ,
/// which allows a CPU to reuse the result of a previous load indefinitely,
/// even if a cache-coherent store is performed by another CPU. The default
/// implementation does nothing.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL,
SelectionDAG &DAG) const {
return Chain;
}
/// Should SelectionDAG lower an atomic store of the given kind as a normal
/// StoreSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
/// eventually migrate all targets to the using StoreSDNodes, but porting is
/// being done target at a time.
virtual bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
assert(SI.isAtomic() && "violated precondition");
return false;
}
/// Should SelectionDAG lower an atomic load of the given kind as a normal
/// LoadSDNode (as opposed to an AtomicSDNode)? NOTE: The intention is to
/// eventually migrate all targets to the using LoadSDNodes, but porting is
/// being done target at a time.
virtual bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
assert(LI.isAtomic() && "violated precondition");
return false;
}
/// This callback is invoked by the type legalizer to legalize nodes with an
/// illegal operand type but legal result types. It replaces the
/// LowerOperation callback in the type Legalizer. The reason we can not do
/// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
/// use this callback.
///
/// TODO: Consider merging with ReplaceNodeResults.
///
/// The target places new result values for the node in Results (their number
/// and types must exactly match those of the original return values of
/// the node), or leaves Results empty, which indicates that the node is not
/// to be custom lowered after all.
/// The default implementation calls LowerOperation.
virtual void LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
/// This callback is invoked for operations that are unsupported by the
/// target, which are registered to use 'custom' lowering, and whose defined
/// values are all legal. If the target has no operations that require custom
/// lowering, it need not implement this. The default implementation of this
/// aborts.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// This callback is invoked when a node result type is illegal for the
/// target, and the operation was registered to use 'custom' lowering for that
/// result type. The target places new result values for the node in Results
/// (their number and types must exactly match those of the original return
/// values of the node), or leaves Results empty, which indicates that the
/// node is not to be custom lowered after all.
///
/// If the target has no operations that require custom lowering, it need not
/// implement this. The default implementation aborts.
virtual void ReplaceNodeResults(SDNode * /*N*/,
SmallVectorImpl<SDValue> &/*Results*/,
SelectionDAG &/*DAG*/) const {
llvm_unreachable("ReplaceNodeResults not implemented for this target!");
}
/// This method returns the name of a target specific DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
/// This method returns a target specific FastISel object, or null if the
/// target does not support "fast" ISel.
virtual FastISel *createFastISel(FunctionLoweringInfo &,
const TargetLibraryInfo *) const {
return nullptr;
}
bool verifyReturnAddressArgumentIsConstant(SDValue Op,
SelectionDAG &DAG) const;
//===--------------------------------------------------------------------===//
// Inline Asm Support hooks
//
/// This hook allows the target to expand an inline asm call to be explicit
/// llvm code if it wants to. This is useful for turning simple inline asms
/// into LLVM intrinsics, which gives the compiler more information about the
/// behavior of the code.
virtual bool ExpandInlineAsm(CallInst *) const {
return false;
}
enum ConstraintType {
C_Register, // Constraint represents specific register(s).
C_RegisterClass, // Constraint represents any of register(s) in class.
C_Memory, // Memory constraint.
C_Immediate, // Requires an immediate.
C_Other, // Something else.
C_Unknown // Unsupported constraint.
};
enum ConstraintWeight {
// Generic weights.
CW_Invalid = -1, // No match.
CW_Okay = 0, // Acceptable.
CW_Good = 1, // Good weight.
CW_Better = 2, // Better weight.
CW_Best = 3, // Best weight.
// Well-known weights.
CW_SpecificReg = CW_Okay, // Specific register operands.
CW_Register = CW_Good, // Register operands.
CW_Memory = CW_Better, // Memory operands.
CW_Constant = CW_Best, // Constant operand.
CW_Default = CW_Okay // Default or don't know type.
};
/// This contains information for each constraint that we are lowering.
struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
/// This contains the actual string for the code, like "m". TargetLowering
/// picks the 'best' code from ConstraintInfo::Codes that most closely
/// matches the operand.
std::string ConstraintCode;
/// Information about the constraint code, e.g. Register, RegisterClass,
/// Memory, Other, Unknown.
TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown;
/// If this is the result output operand or a clobber, this is null,
/// otherwise it is the incoming operand to the CallInst. This gets
/// modified as the asm is processed.
Value *CallOperandVal = nullptr;
/// The ValueType for the operand value.
MVT ConstraintVT = MVT::Other;
/// Copy constructor for copying from a ConstraintInfo.
AsmOperandInfo(InlineAsm::ConstraintInfo Info)
: InlineAsm::ConstraintInfo(std::move(Info)) {}
/// Return true of this is an input operand that is a matching constraint
/// like "4".
bool isMatchingInputConstraint() const;
/// If this is an input matching constraint, this method returns the output
/// operand it matches.
unsigned getMatchedOperand() const;
};
using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
/// Split up the constraint string from the inline assembly value into the
/// specific constraints and their prefixes, and also tie in the associated
/// operand values. If this returns an empty vector, and if the constraint
/// string itself isn't empty, there was an error parsing.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL,
const TargetRegisterInfo *TRI,
const CallBase &Call) const;
/// Examine constraint type and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getMultipleConstraintMatchWeight(
AsmOperandInfo &info, int maIndex) const;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
virtual ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
/// Determines the constraint code and constraint type to use for the specific
/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
/// If the actual operand being passed in is available, it can be passed in as
/// Op, otherwise an empty SDValue can be passed.
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
SDValue Op,
SelectionDAG *DAG = nullptr) const;
/// Given a constraint, return the type of constraint it is for this target.
virtual ConstraintType getConstraintType(StringRef Constraint) const;
/// Given a physical register constraint (e.g. {edx}), return the register
/// number and the register class for the register.
///
/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
///
/// This should only be used for C_Register constraints. On error, this
/// returns a register number of 0 and a null register class pointer.
virtual std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const;
virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const {
if (ConstraintCode == "m")
return InlineAsm::Constraint_m;
if (ConstraintCode == "o")
return InlineAsm::Constraint_o;
if (ConstraintCode == "X")
return InlineAsm::Constraint_X;
return InlineAsm::Constraint_Unknown;
}
/// Try to replace an X constraint, which matches anything, with another that
/// has more specific requirements based on the type of the corresponding
/// operand. This returns null if there is no replacement to make.
virtual const char *LowerXConstraint(EVT ConstraintVT) const;
/// Lower the specified operand into the Ops vector. If it is invalid, don't
/// add anything to Ops.
virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const;
// Lower custom output constraints. If invalid, return SDValue().
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
const SDLoc &DL,
const AsmOperandInfo &OpInfo,
SelectionDAG &DAG) const;
//===--------------------------------------------------------------------===//
// Div utility functions
//
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
SmallVectorImpl<SDNode *> &Created) const;
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
SmallVectorImpl<SDNode *> &Created) const;
/// Targets may override this function to provide custom SDIV lowering for
/// power-of-2 denominators. If the target returns an empty SDValue, LLVM
/// assumes SDIV is expensive and replaces it with a series of other integer
/// operations.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const;
/// Indicate whether this target prefers to combine FDIVs with the same
/// divisor. If the transform should never be done, return zero. If the
/// transform should be done, return the minimum number of divisor uses
/// that must exist.
virtual unsigned combineRepeatedFPDivisors() const {
return 0;
}
/// Hooks for building estimates in place of slower divisions and square
/// roots.
/// Return either a square root or its reciprocal estimate value for the input
/// operand.
/// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
/// 'Enabled' as set by a potential default override attribute.
/// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
/// refinement iterations required to generate a sufficient (though not
/// necessarily IEEE-754 compliant) estimate is returned in that parameter.
/// The boolean UseOneConstNR output is used to select a Newton-Raphson
/// algorithm implementation that uses either one or two constants.
/// The boolean Reciprocal is used to select whether the estimate is for the
/// square root of the input operand or the reciprocal of its square root.
/// A target may choose to implement its own refinement within this function.
/// If that's true, then return '0' as the number of RefinementSteps to avoid
/// any further refinement of the estimate.
/// An empty SDValue return means no estimate sequence can be created.
virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
int Enabled, int &RefinementSteps,
bool &UseOneConstNR, bool Reciprocal) const {
return SDValue();
}
/// Return a reciprocal estimate value for the input operand.
/// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
/// 'Enabled' as set by a potential default override attribute.
/// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
/// refinement iterations required to generate a sufficient (though not
/// necessarily IEEE-754 compliant) estimate is returned in that parameter.
/// A target may choose to implement its own refinement within this function.
/// If that's true, then return '0' as the number of RefinementSteps to avoid
/// any further refinement of the estimate.
/// An empty SDValue return means no estimate sequence can be created.
virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
int Enabled, int &RefinementSteps) const {
return SDValue();
}
/// Return a target-dependent comparison result if the input operand is
/// suitable for use with a square root estimate calculation. For example, the
/// comparison may check if the operand is NAN, INF, zero, normal, etc. The
/// result should be used as the condition operand for a select or branch.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
const DenormalMode &Mode) const;
/// Return a target-dependent result if the input operand is not suitable for
/// use with a square root estimate calculation.
virtual SDValue getSqrtResultForDenormInput(SDValue Operand,
SelectionDAG &DAG) const {
return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
}
//===--------------------------------------------------------------------===//
// Legalization utility functions
//
/// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
/// respectively, each computing an n/2-bit part of the result.
/// \param Result A vector that will be filled with the parts of the result
/// in little-endian order.
/// \param LL Low bits of the LHS of the MUL. You can use this parameter
/// if you want to control how low bits are extracted from the LHS.
/// \param LH High bits of the LHS of the MUL. See LL for meaning.
/// \param RL Low bits of the RHS of the MUL. See LL for meaning
/// \param RH High bits of the RHS of the MUL. See LL for meaning.
/// \returns true if the node has been expanded, false if it has not
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
SelectionDAG &DAG, MulExpansionKind Kind,
SDValue LL = SDValue(), SDValue LH = SDValue(),
SDValue RL = SDValue(), SDValue RH = SDValue()) const;
/// Expand a MUL into two nodes. One that computes the high bits of
/// the result and one that computes the low bits.
/// \param HiLoVT The value type to use for the Lo and Hi nodes.
/// \param LL Low bits of the LHS of the MUL. You can use this parameter
/// if you want to control how low bits are extracted from the LHS.
/// \param LH High bits of the LHS of the MUL. See LL for meaning.
/// \param RL Low bits of the RHS of the MUL. See LL for meaning
/// \param RH High bits of the RHS of the MUL. See LL for meaning.
/// \returns true if the node has been expanded. false if it has not
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
SelectionDAG &DAG, MulExpansionKind Kind,
SDValue LL = SDValue(), SDValue LH = SDValue(),
SDValue RL = SDValue(), SDValue RH = SDValue()) const;
/// Expand funnel shift.
/// \param N Node to expand
/// \param Result output after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandFunnelShift(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
/// Expand rotations.
/// \param N Node to expand
/// \param AllowVectorOps expand vector rotate, this should only be performed
/// if the legalization is happening outside of LegalizeVectorOps
/// \param Result output after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandROT(SDNode *N, bool AllowVectorOps, SDValue &Result,
SelectionDAG &DAG) const;
/// Expand shift-by-parts.
/// \param N Node to expand
/// \param Lo lower-output-part after conversion
/// \param Hi upper-output-part after conversion
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi,
SelectionDAG &DAG) const;
/// Expand float(f32) to SINT(i64) conversion
/// \param N Node to expand
/// \param Result output after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
/// Expand float to UINT conversion
/// \param N Node to expand
/// \param Result output after conversion
/// \param Chain output chain after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
SelectionDAG &DAG) const;
/// Expand UINT(i64) to double(f64) conversion
/// \param N Node to expand
/// \param Result output after conversion
/// \param Chain output chain after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
SelectionDAG &DAG) const;
/// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const;
/// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
/// \param N Node to expand
/// \returns The expansion result
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const;
/// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
/// vector nodes can only succeed if all operations are legal/custom.
/// \param N Node to expand
/// \param Result output after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandCTPOP(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
/// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
/// vector nodes can only succeed if all operations are legal/custom.
/// \param N Node to expand
/// \param Result output after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandCTLZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
/// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
/// vector nodes can only succeed if all operations are legal/custom.
/// \param N Node to expand
/// \param Result output after conversion
/// \returns True, if the expansion was successful, false otherwise
bool expandCTTZ(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
/// Expand ABS nodes. Expands vector/scalar ABS nodes,
/// vector nodes can only succeed if all operations are legal/custom.
/// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
/// \param N Node to expand
/// \param Result output after conversion
/// \param IsNegative indicate negated abs
/// \returns True, if the expansion was successful, false otherwise
bool expandABS(SDNode *N, SDValue &Result, SelectionDAG &DAG,
bool IsNegative = false) const;
/// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
/// scalar types. Returns SDValue() if expand fails.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
/// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
/// Returns SDValue() if expand fails.
/// \param N Node to expand
/// \returns The expansion result or SDValue() if it fails.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const;
/// Turn load of vector type into a load of the individual elements.
/// \param LD load to expand
/// \returns BUILD_VECTOR and TokenFactor nodes.
std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
SelectionDAG &DAG) const;
// Turn a store of a vector type into stores of the individual elements.
/// \param ST Store with a vector value type
/// \returns TokenFactor of the individual store chains.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const;
/// Expands an unaligned load to 2 half-size loads for an integer, and
/// possibly more for vectors.
std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
SelectionDAG &DAG) const;
/// Expands an unaligned store to 2 half-size stores for integer values, and
/// possibly more for vectors.
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const;
/// Increments memory address \p Addr according to the type of the value
/// \p DataVT that should be stored. If the data is stored in compressed
/// form, the memory address should be incremented according to the number of
/// the stored elements. This number is equal to the number of '1's bits
/// in the \p Mask.
/// \p DataVT is a vector type. \p Mask is a vector value.
/// \p DataVT and \p Mask have the same number of vector elements.
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL,
EVT DataVT, SelectionDAG &DAG,
bool IsCompressedMemory) const;
/// Get a pointer to vector element \p Idx located in memory for a vector of
/// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
/// bounds the returned pointer is unspecified, but will be within the vector
/// bounds.
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
SDValue Index) const;
/// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
/// in memory for a vector of type \p VecVT starting at a base address of
/// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
/// returned pointer is unspecified, but the value returned will be such that
/// the entire subvector would be within the vector bounds.
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT,
EVT SubVecVT, SDValue Index) const;
/// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
/// method accepts integers as its arguments.
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
/// method accepts integers as its arguments.
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[US]SHLSAT. This
/// method accepts integers as its arguments.
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
/// method accepts integers as its arguments.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
/// method accepts integers as its arguments.
/// Note: This method may fail if the division could not be performed
/// within the type. Clients must retry with a wider type if this happens.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
SDValue LHS, SDValue RHS,
unsigned Scale, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
/// always suceeds and populates the Result and Overflow arguments.
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
/// always suceeds and populates the Result and Overflow arguments.
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
/// expansion was successful and populates the Result and Overflow arguments.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
SelectionDAG &DAG) const;
/// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
/// only the first Count elements of the vector are used.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const;
/// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const;
/// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
/// Returns true if the expansion was successful.
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
/// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
/// method accepts vectors as its arguments.
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const;
/// Legalize a SETCC with given LHS and RHS and condition code CC on the
/// current target.
///
/// If the SETCC has been legalized using AND / OR, then the legalized node
/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
/// will be set to false.
///
/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
/// then the values of LHS and RHS will be swapped, CC will be set to the
/// new condition, and NeedInvert will be set to false.
///
/// If the SETCC has been legalized using the inverse condcode, then LHS and
/// RHS will be unchanged, CC will set to the inverted condcode, and
/// NeedInvert will be set to true. The caller must invert the result of the
/// SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to swap
/// the effect of a true/false result.
///
/// \returns true if the SetCC has been legalized, false if it hasn't.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS,
SDValue &RHS, SDValue &CC, bool &NeedInvert,
const SDLoc &dl, SDValue &Chain,
bool IsSignaling = false) const;
//===--------------------------------------------------------------------===//
// Instruction Emitting Hooks
//
/// This method should be implemented by targets that mark instructions with
/// the 'usesCustomInserter' flag. These instructions are special in various
/// ways, which require special support to insert. The specified MachineInstr
/// is created but not inserted into any basic blocks, and this method is
/// called to expand it into a sequence of instructions, potentially also
/// creating new basic blocks and control flow.
/// As long as the returned basic block is different (i.e., we created a new
/// one), the custom inserter is free to modify the rest of \p MBB.
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
/// This method should be implemented by targets that mark instructions with
/// the 'hasPostISelHook' flag. These instructions must be adjusted after
/// instruction selection by target hooks. e.g. To fill in optional defs for
/// ARM 's' setting instructions.
virtual void AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const;
/// If this function returns true, SelectionDAGBuilder emits a
/// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
virtual bool useLoadStackGuardNode() const {
return false;
}
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
const SDLoc &DL) const {
llvm_unreachable("not implemented for this target");
}
/// Lower TLS global address SDNode for target independent emulated TLS model.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
SelectionDAG &DAG) const;
/// Expands target specific indirect branch for the case of JumpTable
/// expanasion.
virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr,
SelectionDAG &DAG) const {
return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr);
}
// seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
// If we're comparing for equality to zero and isCtlzFast is true, expose the
// fact that this can be implemented as a ctlz/srl pair, so that the dag
// combiner can fold the new nodes.
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const;
/// Give targets the chance to reduce the number of distinct addresing modes.
ISD::MemIndexType getCanonicalIndexType(ISD::MemIndexType IndexType,
EVT MemVT, SDValue Offsets) const;
private:
SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
const SDLoc &DL, DAGCombinerInfo &DCI) const;
SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
const SDLoc &DL, DAGCombinerInfo &DCI) const;
SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
SDValue N1, ISD::CondCode Cond,
DAGCombinerInfo &DCI,
const SDLoc &DL) const;
// (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
DAGCombinerInfo &DCI, const SDLoc &DL) const;
SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
SDValue CompTargetNode, ISD::CondCode Cond,
DAGCombinerInfo &DCI, const SDLoc &DL,
SmallVectorImpl<SDNode *> &Created) const;
SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
ISD::CondCode Cond, DAGCombinerInfo &DCI,
const SDLoc &DL) const;
SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
SDValue CompTargetNode, ISD::CondCode Cond,
DAGCombinerInfo &DCI, const SDLoc &DL,
SmallVectorImpl<SDNode *> &Created) const;
SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
ISD::CondCode Cond, DAGCombinerInfo &DCI,
const SDLoc &DL) const;
};
/// Given an LLVM IR type and return type attributes, compute the return value
/// EVTs and flags, and optionally also the offsets, if the return value is
/// being lowered to memory.
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
SmallVectorImpl<ISD::OutputArg> &Outs,
const TargetLowering &TLI, const DataLayout &DL);
} // end namespace llvm
#endif // LLVM_CODEGEN_TARGETLOWERING_H