mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
6f3c7b46ee
llvm-svn: 22279
2288 lines
81 KiB
Plaintext
2288 lines
81 KiB
Plaintext
//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the bison parser for LLVM assembly languages files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
%{
|
|
#include "ParserInternals.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <list>
|
|
#include <utility>
|
|
|
|
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
|
|
int yylex(); // declaration" of xxx warnings.
|
|
int yyparse();
|
|
|
|
namespace llvm {
|
|
std::string CurFilename;
|
|
}
|
|
using namespace llvm;
|
|
|
|
static Module *ParserResult;
|
|
|
|
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
|
|
// relating to upreferences in the input stream.
|
|
//
|
|
//#define DEBUG_UPREFS 1
|
|
#ifdef DEBUG_UPREFS
|
|
#define UR_OUT(X) std::cerr << X
|
|
#else
|
|
#define UR_OUT(X)
|
|
#endif
|
|
|
|
#define YYERROR_VERBOSE 1
|
|
|
|
static bool ObsoleteVarArgs;
|
|
static bool NewVarArgs;
|
|
static BasicBlock* CurBB;
|
|
|
|
|
|
// This contains info used when building the body of a function. It is
|
|
// destroyed when the function is completed.
|
|
//
|
|
typedef std::vector<Value *> ValueList; // Numbered defs
|
|
static void
|
|
ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
|
|
std::map<const Type *,ValueList> *FutureLateResolvers = 0);
|
|
|
|
static struct PerModuleInfo {
|
|
Module *CurrentModule;
|
|
std::map<const Type *, ValueList> Values; // Module level numbered definitions
|
|
std::map<const Type *,ValueList> LateResolveValues;
|
|
std::vector<PATypeHolder> Types;
|
|
std::map<ValID, PATypeHolder> LateResolveTypes;
|
|
|
|
/// PlaceHolderInfo - When temporary placeholder objects are created, remember
|
|
/// how they were referenced and one which line of the input they came from so
|
|
/// that we can resolve them later and print error messages as appropriate.
|
|
std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
|
|
|
|
// GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
|
|
// references to global values. Global values may be referenced before they
|
|
// are defined, and if so, the temporary object that they represent is held
|
|
// here. This is used for forward references of GlobalValues.
|
|
//
|
|
typedef std::map<std::pair<const PointerType *,
|
|
ValID>, GlobalValue*> GlobalRefsType;
|
|
GlobalRefsType GlobalRefs;
|
|
|
|
void ModuleDone() {
|
|
// If we could not resolve some functions at function compilation time
|
|
// (calls to functions before they are defined), resolve them now... Types
|
|
// are resolved when the constant pool has been completely parsed.
|
|
//
|
|
ResolveDefinitions(LateResolveValues);
|
|
|
|
// Check to make sure that all global value forward references have been
|
|
// resolved!
|
|
//
|
|
if (!GlobalRefs.empty()) {
|
|
std::string UndefinedReferences = "Unresolved global references exist:\n";
|
|
|
|
for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
|
|
I != E; ++I) {
|
|
UndefinedReferences += " " + I->first.first->getDescription() + " " +
|
|
I->first.second.getName() + "\n";
|
|
}
|
|
ThrowException(UndefinedReferences);
|
|
}
|
|
|
|
Values.clear(); // Clear out function local definitions
|
|
Types.clear();
|
|
CurrentModule = 0;
|
|
}
|
|
|
|
|
|
// GetForwardRefForGlobal - Check to see if there is a forward reference
|
|
// for this global. If so, remove it from the GlobalRefs map and return it.
|
|
// If not, just return null.
|
|
GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
|
|
// Check to see if there is a forward reference to this global variable...
|
|
// if there is, eliminate it and patch the reference to use the new def'n.
|
|
GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
|
|
GlobalValue *Ret = 0;
|
|
if (I != GlobalRefs.end()) {
|
|
Ret = I->second;
|
|
GlobalRefs.erase(I);
|
|
}
|
|
return Ret;
|
|
}
|
|
} CurModule;
|
|
|
|
static struct PerFunctionInfo {
|
|
Function *CurrentFunction; // Pointer to current function being created
|
|
|
|
std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
|
|
std::map<const Type*, ValueList> LateResolveValues;
|
|
bool isDeclare; // Is this function a forward declararation?
|
|
|
|
/// BBForwardRefs - When we see forward references to basic blocks, keep
|
|
/// track of them here.
|
|
std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
|
|
std::vector<BasicBlock*> NumberedBlocks;
|
|
unsigned NextBBNum;
|
|
|
|
inline PerFunctionInfo() {
|
|
CurrentFunction = 0;
|
|
isDeclare = false;
|
|
}
|
|
|
|
inline void FunctionStart(Function *M) {
|
|
CurrentFunction = M;
|
|
NextBBNum = 0;
|
|
}
|
|
|
|
void FunctionDone() {
|
|
NumberedBlocks.clear();
|
|
|
|
// Any forward referenced blocks left?
|
|
if (!BBForwardRefs.empty())
|
|
ThrowException("Undefined reference to label " +
|
|
BBForwardRefs.begin()->first->getName());
|
|
|
|
// Resolve all forward references now.
|
|
ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
|
|
|
|
Values.clear(); // Clear out function local definitions
|
|
CurrentFunction = 0;
|
|
isDeclare = false;
|
|
}
|
|
} CurFun; // Info for the current function...
|
|
|
|
static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code to handle definitions of all the types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static int InsertValue(Value *V,
|
|
std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
|
|
if (V->hasName()) return -1; // Is this a numbered definition?
|
|
|
|
// Yes, insert the value into the value table...
|
|
ValueList &List = ValueTab[V->getType()];
|
|
List.push_back(V);
|
|
return List.size()-1;
|
|
}
|
|
|
|
static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
|
|
switch (D.Type) {
|
|
case ValID::NumberVal: // Is it a numbered definition?
|
|
// Module constants occupy the lowest numbered slots...
|
|
if ((unsigned)D.Num < CurModule.Types.size())
|
|
return CurModule.Types[(unsigned)D.Num];
|
|
break;
|
|
case ValID::NameVal: // Is it a named definition?
|
|
if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
|
|
D.destroy(); // Free old strdup'd memory...
|
|
return N;
|
|
}
|
|
break;
|
|
default:
|
|
ThrowException("Internal parser error: Invalid symbol type reference!");
|
|
}
|
|
|
|
// If we reached here, we referenced either a symbol that we don't know about
|
|
// or an id number that hasn't been read yet. We may be referencing something
|
|
// forward, so just create an entry to be resolved later and get to it...
|
|
//
|
|
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
|
|
|
|
|
|
if (inFunctionScope()) {
|
|
if (D.Type == ValID::NameVal)
|
|
ThrowException("Reference to an undefined type: '" + D.getName() + "'");
|
|
else
|
|
ThrowException("Reference to an undefined type: #" + itostr(D.Num));
|
|
}
|
|
|
|
std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
|
|
if (I != CurModule.LateResolveTypes.end())
|
|
return I->second;
|
|
|
|
Type *Typ = OpaqueType::get();
|
|
CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
|
|
return Typ;
|
|
}
|
|
|
|
static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) {
|
|
SymbolTable &SymTab =
|
|
inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() :
|
|
CurModule.CurrentModule->getSymbolTable();
|
|
return SymTab.lookup(Ty, Name);
|
|
}
|
|
|
|
// getValNonImprovising - Look up the value specified by the provided type and
|
|
// the provided ValID. If the value exists and has already been defined, return
|
|
// it. Otherwise return null.
|
|
//
|
|
static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
|
|
if (isa<FunctionType>(Ty))
|
|
ThrowException("Functions are not values and "
|
|
"must be referenced as pointers");
|
|
|
|
switch (D.Type) {
|
|
case ValID::NumberVal: { // Is it a numbered definition?
|
|
unsigned Num = (unsigned)D.Num;
|
|
|
|
// Module constants occupy the lowest numbered slots...
|
|
std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
|
|
if (VI != CurModule.Values.end()) {
|
|
if (Num < VI->second.size())
|
|
return VI->second[Num];
|
|
Num -= VI->second.size();
|
|
}
|
|
|
|
// Make sure that our type is within bounds
|
|
VI = CurFun.Values.find(Ty);
|
|
if (VI == CurFun.Values.end()) return 0;
|
|
|
|
// Check that the number is within bounds...
|
|
if (VI->second.size() <= Num) return 0;
|
|
|
|
return VI->second[Num];
|
|
}
|
|
|
|
case ValID::NameVal: { // Is it a named definition?
|
|
Value *N = lookupInSymbolTable(Ty, std::string(D.Name));
|
|
if (N == 0) return 0;
|
|
|
|
D.destroy(); // Free old strdup'd memory...
|
|
return N;
|
|
}
|
|
|
|
// Check to make sure that "Ty" is an integral type, and that our
|
|
// value will fit into the specified type...
|
|
case ValID::ConstSIntVal: // Is it a constant pool reference??
|
|
if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
|
|
ThrowException("Signed integral constant '" +
|
|
itostr(D.ConstPool64) + "' is invalid for type '" +
|
|
Ty->getDescription() + "'!");
|
|
return ConstantSInt::get(Ty, D.ConstPool64);
|
|
|
|
case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
|
|
if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
|
|
if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
|
|
ThrowException("Integral constant '" + utostr(D.UConstPool64) +
|
|
"' is invalid or out of range!");
|
|
} else { // This is really a signed reference. Transmogrify.
|
|
return ConstantSInt::get(Ty, D.ConstPool64);
|
|
}
|
|
} else {
|
|
return ConstantUInt::get(Ty, D.UConstPool64);
|
|
}
|
|
|
|
case ValID::ConstFPVal: // Is it a floating point const pool reference?
|
|
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
|
|
ThrowException("FP constant invalid for type!!");
|
|
return ConstantFP::get(Ty, D.ConstPoolFP);
|
|
|
|
case ValID::ConstNullVal: // Is it a null value?
|
|
if (!isa<PointerType>(Ty))
|
|
ThrowException("Cannot create a a non pointer null!");
|
|
return ConstantPointerNull::get(cast<PointerType>(Ty));
|
|
|
|
case ValID::ConstUndefVal: // Is it an undef value?
|
|
return UndefValue::get(Ty);
|
|
|
|
case ValID::ConstantVal: // Fully resolved constant?
|
|
if (D.ConstantValue->getType() != Ty)
|
|
ThrowException("Constant expression type different from required type!");
|
|
return D.ConstantValue;
|
|
|
|
default:
|
|
assert(0 && "Unhandled case!");
|
|
return 0;
|
|
} // End of switch
|
|
|
|
assert(0 && "Unhandled case!");
|
|
return 0;
|
|
}
|
|
|
|
// getVal - This function is identical to getValNonImprovising, except that if a
|
|
// value is not already defined, it "improvises" by creating a placeholder var
|
|
// that looks and acts just like the requested variable. When the value is
|
|
// defined later, all uses of the placeholder variable are replaced with the
|
|
// real thing.
|
|
//
|
|
static Value *getVal(const Type *Ty, const ValID &ID) {
|
|
if (Ty == Type::LabelTy)
|
|
ThrowException("Cannot use a basic block here");
|
|
|
|
// See if the value has already been defined.
|
|
Value *V = getValNonImprovising(Ty, ID);
|
|
if (V) return V;
|
|
|
|
if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
|
|
ThrowException("Invalid use of a composite type!");
|
|
|
|
// If we reached here, we referenced either a symbol that we don't know about
|
|
// or an id number that hasn't been read yet. We may be referencing something
|
|
// forward, so just create an entry to be resolved later and get to it...
|
|
//
|
|
V = new Argument(Ty);
|
|
|
|
// Remember where this forward reference came from. FIXME, shouldn't we try
|
|
// to recycle these things??
|
|
CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
|
|
llvmAsmlineno)));
|
|
|
|
if (inFunctionScope())
|
|
InsertValue(V, CurFun.LateResolveValues);
|
|
else
|
|
InsertValue(V, CurModule.LateResolveValues);
|
|
return V;
|
|
}
|
|
|
|
/// getBBVal - This is used for two purposes:
|
|
/// * If isDefinition is true, a new basic block with the specified ID is being
|
|
/// defined.
|
|
/// * If isDefinition is true, this is a reference to a basic block, which may
|
|
/// or may not be a forward reference.
|
|
///
|
|
static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
|
|
assert(inFunctionScope() && "Can't get basic block at global scope!");
|
|
|
|
std::string Name;
|
|
BasicBlock *BB = 0;
|
|
switch (ID.Type) {
|
|
default: ThrowException("Illegal label reference " + ID.getName());
|
|
case ValID::NumberVal: // Is it a numbered definition?
|
|
if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
|
|
CurFun.NumberedBlocks.resize(ID.Num+1);
|
|
BB = CurFun.NumberedBlocks[ID.Num];
|
|
break;
|
|
case ValID::NameVal: // Is it a named definition?
|
|
Name = ID.Name;
|
|
if (Value *N = CurFun.CurrentFunction->
|
|
getSymbolTable().lookup(Type::LabelTy, Name))
|
|
BB = cast<BasicBlock>(N);
|
|
break;
|
|
}
|
|
|
|
// See if the block has already been defined.
|
|
if (BB) {
|
|
// If this is the definition of the block, make sure the existing value was
|
|
// just a forward reference. If it was a forward reference, there will be
|
|
// an entry for it in the PlaceHolderInfo map.
|
|
if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
|
|
// The existing value was a definition, not a forward reference.
|
|
ThrowException("Redefinition of label " + ID.getName());
|
|
|
|
ID.destroy(); // Free strdup'd memory.
|
|
return BB;
|
|
}
|
|
|
|
// Otherwise this block has not been seen before.
|
|
BB = new BasicBlock("", CurFun.CurrentFunction);
|
|
if (ID.Type == ValID::NameVal) {
|
|
BB->setName(ID.Name);
|
|
} else {
|
|
CurFun.NumberedBlocks[ID.Num] = BB;
|
|
}
|
|
|
|
// If this is not a definition, keep track of it so we can use it as a forward
|
|
// reference.
|
|
if (!isDefinition) {
|
|
// Remember where this forward reference came from.
|
|
CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno);
|
|
} else {
|
|
// The forward declaration could have been inserted anywhere in the
|
|
// function: insert it into the correct place now.
|
|
CurFun.CurrentFunction->getBasicBlockList().remove(BB);
|
|
CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
|
|
}
|
|
ID.destroy();
|
|
return BB;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code to handle forward references in instructions
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This code handles the late binding needed with statements that reference
|
|
// values not defined yet... for example, a forward branch, or the PHI node for
|
|
// a loop body.
|
|
//
|
|
// This keeps a table (CurFun.LateResolveValues) of all such forward references
|
|
// and back patchs after we are done.
|
|
//
|
|
|
|
// ResolveDefinitions - If we could not resolve some defs at parsing
|
|
// time (forward branches, phi functions for loops, etc...) resolve the
|
|
// defs now...
|
|
//
|
|
static void
|
|
ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
|
|
std::map<const Type*,ValueList> *FutureLateResolvers) {
|
|
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
|
|
for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
|
|
E = LateResolvers.end(); LRI != E; ++LRI) {
|
|
ValueList &List = LRI->second;
|
|
while (!List.empty()) {
|
|
Value *V = List.back();
|
|
List.pop_back();
|
|
|
|
std::map<Value*, std::pair<ValID, int> >::iterator PHI =
|
|
CurModule.PlaceHolderInfo.find(V);
|
|
assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
|
|
|
|
ValID &DID = PHI->second.first;
|
|
|
|
Value *TheRealValue = getValNonImprovising(LRI->first, DID);
|
|
if (TheRealValue) {
|
|
V->replaceAllUsesWith(TheRealValue);
|
|
delete V;
|
|
CurModule.PlaceHolderInfo.erase(PHI);
|
|
} else if (FutureLateResolvers) {
|
|
// Functions have their unresolved items forwarded to the module late
|
|
// resolver table
|
|
InsertValue(V, *FutureLateResolvers);
|
|
} else {
|
|
if (DID.Type == ValID::NameVal)
|
|
ThrowException("Reference to an invalid definition: '" +DID.getName()+
|
|
"' of type '" + V->getType()->getDescription() + "'",
|
|
PHI->second.second);
|
|
else
|
|
ThrowException("Reference to an invalid definition: #" +
|
|
itostr(DID.Num) + " of type '" +
|
|
V->getType()->getDescription() + "'",
|
|
PHI->second.second);
|
|
}
|
|
}
|
|
}
|
|
|
|
LateResolvers.clear();
|
|
}
|
|
|
|
// ResolveTypeTo - A brand new type was just declared. This means that (if
|
|
// name is not null) things referencing Name can be resolved. Otherwise, things
|
|
// refering to the number can be resolved. Do this now.
|
|
//
|
|
static void ResolveTypeTo(char *Name, const Type *ToTy) {
|
|
ValID D;
|
|
if (Name) D = ValID::create(Name);
|
|
else D = ValID::create((int)CurModule.Types.size());
|
|
|
|
std::map<ValID, PATypeHolder>::iterator I =
|
|
CurModule.LateResolveTypes.find(D);
|
|
if (I != CurModule.LateResolveTypes.end()) {
|
|
((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
|
|
CurModule.LateResolveTypes.erase(I);
|
|
}
|
|
}
|
|
|
|
// setValueName - Set the specified value to the name given. The name may be
|
|
// null potentially, in which case this is a noop. The string passed in is
|
|
// assumed to be a malloc'd string buffer, and is free'd by this function.
|
|
//
|
|
static void setValueName(Value *V, char *NameStr) {
|
|
if (NameStr) {
|
|
std::string Name(NameStr); // Copy string
|
|
free(NameStr); // Free old string
|
|
|
|
if (V->getType() == Type::VoidTy)
|
|
ThrowException("Can't assign name '" + Name+"' to value with void type!");
|
|
|
|
assert(inFunctionScope() && "Must be in function scope!");
|
|
SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable();
|
|
if (ST.lookup(V->getType(), Name))
|
|
ThrowException("Redefinition of value named '" + Name + "' in the '" +
|
|
V->getType()->getDescription() + "' type plane!");
|
|
|
|
// Set the name.
|
|
V->setName(Name);
|
|
}
|
|
}
|
|
|
|
/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
|
|
/// this is a declaration, otherwise it is a definition.
|
|
static void ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
|
|
bool isConstantGlobal, const Type *Ty,
|
|
Constant *Initializer) {
|
|
if (isa<FunctionType>(Ty))
|
|
ThrowException("Cannot declare global vars of function type!");
|
|
|
|
const PointerType *PTy = PointerType::get(Ty);
|
|
|
|
std::string Name;
|
|
if (NameStr) {
|
|
Name = NameStr; // Copy string
|
|
free(NameStr); // Free old string
|
|
}
|
|
|
|
// See if this global value was forward referenced. If so, recycle the
|
|
// object.
|
|
ValID ID;
|
|
if (!Name.empty()) {
|
|
ID = ValID::create((char*)Name.c_str());
|
|
} else {
|
|
ID = ValID::create((int)CurModule.Values[PTy].size());
|
|
}
|
|
|
|
if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
|
|
// Move the global to the end of the list, from whereever it was
|
|
// previously inserted.
|
|
GlobalVariable *GV = cast<GlobalVariable>(FWGV);
|
|
CurModule.CurrentModule->getGlobalList().remove(GV);
|
|
CurModule.CurrentModule->getGlobalList().push_back(GV);
|
|
GV->setInitializer(Initializer);
|
|
GV->setLinkage(Linkage);
|
|
GV->setConstant(isConstantGlobal);
|
|
InsertValue(GV, CurModule.Values);
|
|
return;
|
|
}
|
|
|
|
// If this global has a name, check to see if there is already a definition
|
|
// of this global in the module. If so, merge as appropriate. Note that
|
|
// this is really just a hack around problems in the CFE. :(
|
|
if (!Name.empty()) {
|
|
// We are a simple redefinition of a value, check to see if it is defined
|
|
// the same as the old one.
|
|
if (GlobalVariable *EGV =
|
|
CurModule.CurrentModule->getGlobalVariable(Name, Ty)) {
|
|
// We are allowed to redefine a global variable in two circumstances:
|
|
// 1. If at least one of the globals is uninitialized or
|
|
// 2. If both initializers have the same value.
|
|
//
|
|
if (!EGV->hasInitializer() || !Initializer ||
|
|
EGV->getInitializer() == Initializer) {
|
|
|
|
// Make sure the existing global version gets the initializer! Make
|
|
// sure that it also gets marked const if the new version is.
|
|
if (Initializer && !EGV->hasInitializer())
|
|
EGV->setInitializer(Initializer);
|
|
if (isConstantGlobal)
|
|
EGV->setConstant(true);
|
|
EGV->setLinkage(Linkage);
|
|
return;
|
|
}
|
|
|
|
ThrowException("Redefinition of global variable named '" + Name +
|
|
"' in the '" + Ty->getDescription() + "' type plane!");
|
|
}
|
|
}
|
|
|
|
// Otherwise there is no existing GV to use, create one now.
|
|
GlobalVariable *GV =
|
|
new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
|
|
CurModule.CurrentModule);
|
|
InsertValue(GV, CurModule.Values);
|
|
}
|
|
|
|
// setTypeName - Set the specified type to the name given. The name may be
|
|
// null potentially, in which case this is a noop. The string passed in is
|
|
// assumed to be a malloc'd string buffer, and is freed by this function.
|
|
//
|
|
// This function returns true if the type has already been defined, but is
|
|
// allowed to be redefined in the specified context. If the name is a new name
|
|
// for the type plane, it is inserted and false is returned.
|
|
static bool setTypeName(const Type *T, char *NameStr) {
|
|
assert(!inFunctionScope() && "Can't give types function-local names!");
|
|
if (NameStr == 0) return false;
|
|
|
|
std::string Name(NameStr); // Copy string
|
|
free(NameStr); // Free old string
|
|
|
|
// We don't allow assigning names to void type
|
|
if (T == Type::VoidTy)
|
|
ThrowException("Can't assign name '" + Name + "' to the void type!");
|
|
|
|
// Set the type name, checking for conflicts as we do so.
|
|
bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
|
|
|
|
if (AlreadyExists) { // Inserting a name that is already defined???
|
|
const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
|
|
assert(Existing && "Conflict but no matching type?");
|
|
|
|
// There is only one case where this is allowed: when we are refining an
|
|
// opaque type. In this case, Existing will be an opaque type.
|
|
if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
|
|
// We ARE replacing an opaque type!
|
|
const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, this is an attempt to redefine a type. That's okay if
|
|
// the redefinition is identical to the original. This will be so if
|
|
// Existing and T point to the same Type object. In this one case we
|
|
// allow the equivalent redefinition.
|
|
if (Existing == T) return true; // Yes, it's equal.
|
|
|
|
// Any other kind of (non-equivalent) redefinition is an error.
|
|
ThrowException("Redefinition of type named '" + Name + "' in the '" +
|
|
T->getDescription() + "' type plane!");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code for handling upreferences in type names...
|
|
//
|
|
|
|
// TypeContains - Returns true if Ty directly contains E in it.
|
|
//
|
|
static bool TypeContains(const Type *Ty, const Type *E) {
|
|
return std::find(Ty->subtype_begin(), Ty->subtype_end(),
|
|
E) != Ty->subtype_end();
|
|
}
|
|
|
|
namespace {
|
|
struct UpRefRecord {
|
|
// NestingLevel - The number of nesting levels that need to be popped before
|
|
// this type is resolved.
|
|
unsigned NestingLevel;
|
|
|
|
// LastContainedTy - This is the type at the current binding level for the
|
|
// type. Every time we reduce the nesting level, this gets updated.
|
|
const Type *LastContainedTy;
|
|
|
|
// UpRefTy - This is the actual opaque type that the upreference is
|
|
// represented with.
|
|
OpaqueType *UpRefTy;
|
|
|
|
UpRefRecord(unsigned NL, OpaqueType *URTy)
|
|
: NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
|
|
};
|
|
}
|
|
|
|
// UpRefs - A list of the outstanding upreferences that need to be resolved.
|
|
static std::vector<UpRefRecord> UpRefs;
|
|
|
|
/// HandleUpRefs - Every time we finish a new layer of types, this function is
|
|
/// called. It loops through the UpRefs vector, which is a list of the
|
|
/// currently active types. For each type, if the up reference is contained in
|
|
/// the newly completed type, we decrement the level count. When the level
|
|
/// count reaches zero, the upreferenced type is the type that is passed in:
|
|
/// thus we can complete the cycle.
|
|
///
|
|
static PATypeHolder HandleUpRefs(const Type *ty) {
|
|
if (!ty->isAbstract()) return ty;
|
|
PATypeHolder Ty(ty);
|
|
UR_OUT("Type '" << Ty->getDescription() <<
|
|
"' newly formed. Resolving upreferences.\n" <<
|
|
UpRefs.size() << " upreferences active!\n");
|
|
|
|
// If we find any resolvable upreferences (i.e., those whose NestingLevel goes
|
|
// to zero), we resolve them all together before we resolve them to Ty. At
|
|
// the end of the loop, if there is anything to resolve to Ty, it will be in
|
|
// this variable.
|
|
OpaqueType *TypeToResolve = 0;
|
|
|
|
for (unsigned i = 0; i != UpRefs.size(); ++i) {
|
|
UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
|
|
<< UpRefs[i].second->getDescription() << ") = "
|
|
<< (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
|
|
if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
|
|
// Decrement level of upreference
|
|
unsigned Level = --UpRefs[i].NestingLevel;
|
|
UpRefs[i].LastContainedTy = Ty;
|
|
UR_OUT(" Uplevel Ref Level = " << Level << "\n");
|
|
if (Level == 0) { // Upreference should be resolved!
|
|
if (!TypeToResolve) {
|
|
TypeToResolve = UpRefs[i].UpRefTy;
|
|
} else {
|
|
UR_OUT(" * Resolving upreference for "
|
|
<< UpRefs[i].second->getDescription() << "\n";
|
|
std::string OldName = UpRefs[i].UpRefTy->getDescription());
|
|
UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
|
|
UR_OUT(" * Type '" << OldName << "' refined upreference to: "
|
|
<< (const void*)Ty << ", " << Ty->getDescription() << "\n");
|
|
}
|
|
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
|
|
--i; // Do not skip the next element...
|
|
}
|
|
}
|
|
}
|
|
|
|
if (TypeToResolve) {
|
|
UR_OUT(" * Resolving upreference for "
|
|
<< UpRefs[i].second->getDescription() << "\n";
|
|
std::string OldName = TypeToResolve->getDescription());
|
|
TypeToResolve->refineAbstractTypeTo(Ty);
|
|
}
|
|
|
|
return Ty;
|
|
}
|
|
|
|
|
|
// common code from the two 'RunVMAsmParser' functions
|
|
static Module * RunParser(Module * M) {
|
|
|
|
llvmAsmlineno = 1; // Reset the current line number...
|
|
ObsoleteVarArgs = false;
|
|
NewVarArgs = false;
|
|
|
|
CurModule.CurrentModule = M;
|
|
yyparse(); // Parse the file, potentially throwing exception
|
|
|
|
Module *Result = ParserResult;
|
|
ParserResult = 0;
|
|
|
|
//Not all functions use vaarg, so make a second check for ObsoleteVarArgs
|
|
{
|
|
Function* F;
|
|
if ((F = Result->getNamedFunction("llvm.va_start"))
|
|
&& F->getFunctionType()->getNumParams() == 0)
|
|
ObsoleteVarArgs = true;
|
|
if((F = Result->getNamedFunction("llvm.va_copy"))
|
|
&& F->getFunctionType()->getNumParams() == 1)
|
|
ObsoleteVarArgs = true;
|
|
}
|
|
|
|
if (ObsoleteVarArgs && NewVarArgs)
|
|
ThrowException("This file is corrupt: it uses both new and old style varargs");
|
|
|
|
if(ObsoleteVarArgs) {
|
|
if(Function* F = Result->getNamedFunction("llvm.va_start")) {
|
|
if (F->arg_size() != 0)
|
|
ThrowException("Obsolete va_start takes 0 argument!");
|
|
|
|
//foo = va_start()
|
|
// ->
|
|
//bar = alloca typeof(foo)
|
|
//va_start(bar)
|
|
//foo = load bar
|
|
|
|
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
|
|
const Type* ArgTy = F->getFunctionType()->getReturnType();
|
|
const Type* ArgTyPtr = PointerType::get(ArgTy);
|
|
Function* NF = Result->getOrInsertFunction("llvm.va_start",
|
|
RetTy, ArgTyPtr, 0);
|
|
|
|
while (!F->use_empty()) {
|
|
CallInst* CI = cast<CallInst>(F->use_back());
|
|
AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
|
|
new CallInst(NF, bar, "", CI);
|
|
Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
|
|
CI->replaceAllUsesWith(foo);
|
|
CI->getParent()->getInstList().erase(CI);
|
|
}
|
|
Result->getFunctionList().erase(F);
|
|
}
|
|
|
|
if(Function* F = Result->getNamedFunction("llvm.va_end")) {
|
|
if(F->arg_size() != 1)
|
|
ThrowException("Obsolete va_end takes 1 argument!");
|
|
|
|
//vaend foo
|
|
// ->
|
|
//bar = alloca 1 of typeof(foo)
|
|
//vaend bar
|
|
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
|
|
const Type* ArgTy = F->getFunctionType()->getParamType(0);
|
|
const Type* ArgTyPtr = PointerType::get(ArgTy);
|
|
Function* NF = Result->getOrInsertFunction("llvm.va_end",
|
|
RetTy, ArgTyPtr, 0);
|
|
|
|
while (!F->use_empty()) {
|
|
CallInst* CI = cast<CallInst>(F->use_back());
|
|
AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
|
|
new StoreInst(CI->getOperand(1), bar, CI);
|
|
new CallInst(NF, bar, "", CI);
|
|
CI->getParent()->getInstList().erase(CI);
|
|
}
|
|
Result->getFunctionList().erase(F);
|
|
}
|
|
|
|
if(Function* F = Result->getNamedFunction("llvm.va_copy")) {
|
|
if(F->arg_size() != 1)
|
|
ThrowException("Obsolete va_copy takes 1 argument!");
|
|
//foo = vacopy(bar)
|
|
// ->
|
|
//a = alloca 1 of typeof(foo)
|
|
//b = alloca 1 of typeof(foo)
|
|
//store bar -> b
|
|
//vacopy(a, b)
|
|
//foo = load a
|
|
|
|
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
|
|
const Type* ArgTy = F->getFunctionType()->getReturnType();
|
|
const Type* ArgTyPtr = PointerType::get(ArgTy);
|
|
Function* NF = Result->getOrInsertFunction("llvm.va_copy",
|
|
RetTy, ArgTyPtr, ArgTyPtr, 0);
|
|
|
|
while (!F->use_empty()) {
|
|
CallInst* CI = cast<CallInst>(F->use_back());
|
|
AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
|
|
AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
|
|
new StoreInst(CI->getOperand(1), b, CI);
|
|
new CallInst(NF, a, b, "", CI);
|
|
Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
|
|
CI->replaceAllUsesWith(foo);
|
|
CI->getParent()->getInstList().erase(CI);
|
|
}
|
|
Result->getFunctionList().erase(F);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RunVMAsmParser - Define an interface to this parser
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
|
|
set_scan_file(F);
|
|
|
|
CurFilename = Filename;
|
|
return RunParser(new Module(CurFilename));
|
|
}
|
|
|
|
Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
|
|
set_scan_string(AsmString);
|
|
|
|
CurFilename = "from_memory";
|
|
if (M == NULL) {
|
|
return RunParser(new Module (CurFilename));
|
|
} else {
|
|
return RunParser(M);
|
|
}
|
|
}
|
|
|
|
%}
|
|
|
|
%union {
|
|
llvm::Module *ModuleVal;
|
|
llvm::Function *FunctionVal;
|
|
std::pair<llvm::PATypeHolder*, char*> *ArgVal;
|
|
llvm::BasicBlock *BasicBlockVal;
|
|
llvm::TerminatorInst *TermInstVal;
|
|
llvm::Instruction *InstVal;
|
|
llvm::Constant *ConstVal;
|
|
|
|
const llvm::Type *PrimType;
|
|
llvm::PATypeHolder *TypeVal;
|
|
llvm::Value *ValueVal;
|
|
|
|
std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList;
|
|
std::vector<llvm::Value*> *ValueList;
|
|
std::list<llvm::PATypeHolder> *TypeList;
|
|
// Represent the RHS of PHI node
|
|
std::list<std::pair<llvm::Value*,
|
|
llvm::BasicBlock*> > *PHIList;
|
|
std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
|
|
std::vector<llvm::Constant*> *ConstVector;
|
|
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
int64_t SInt64Val;
|
|
uint64_t UInt64Val;
|
|
int SIntVal;
|
|
unsigned UIntVal;
|
|
double FPVal;
|
|
bool BoolVal;
|
|
|
|
char *StrVal; // This memory is strdup'd!
|
|
llvm::ValID ValIDVal; // strdup'd memory maybe!
|
|
|
|
llvm::Instruction::BinaryOps BinaryOpVal;
|
|
llvm::Instruction::TermOps TermOpVal;
|
|
llvm::Instruction::MemoryOps MemOpVal;
|
|
llvm::Instruction::OtherOps OtherOpVal;
|
|
llvm::Module::Endianness Endianness;
|
|
}
|
|
|
|
%type <ModuleVal> Module FunctionList
|
|
%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
|
|
%type <BasicBlockVal> BasicBlock InstructionList
|
|
%type <TermInstVal> BBTerminatorInst
|
|
%type <InstVal> Inst InstVal MemoryInst
|
|
%type <ConstVal> ConstVal ConstExpr
|
|
%type <ConstVector> ConstVector
|
|
%type <ArgList> ArgList ArgListH
|
|
%type <ArgVal> ArgVal
|
|
%type <PHIList> PHIList
|
|
%type <ValueList> ValueRefList ValueRefListE // For call param lists
|
|
%type <ValueList> IndexList // For GEP derived indices
|
|
%type <TypeList> TypeListI ArgTypeListI
|
|
%type <JumpTable> JumpTable
|
|
%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
|
|
%type <BoolVal> OptVolatile // 'volatile' or not
|
|
%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
|
|
%type <Linkage> OptLinkage
|
|
%type <Endianness> BigOrLittle
|
|
|
|
// ValueRef - Unresolved reference to a definition or BB
|
|
%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
|
|
%type <ValueVal> ResolvedVal // <type> <valref> pair
|
|
// Tokens and types for handling constant integer values
|
|
//
|
|
// ESINT64VAL - A negative number within long long range
|
|
%token <SInt64Val> ESINT64VAL
|
|
|
|
// EUINT64VAL - A positive number within uns. long long range
|
|
%token <UInt64Val> EUINT64VAL
|
|
%type <SInt64Val> EINT64VAL
|
|
|
|
%token <SIntVal> SINTVAL // Signed 32 bit ints...
|
|
%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
|
|
%type <SIntVal> INTVAL
|
|
%token <FPVal> FPVAL // Float or Double constant
|
|
|
|
// Built in types...
|
|
%type <TypeVal> Types TypesV UpRTypes UpRTypesV
|
|
%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
|
|
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
|
|
%token <PrimType> FLOAT DOUBLE TYPE LABEL
|
|
|
|
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
|
|
%type <StrVal> Name OptName OptAssign
|
|
|
|
|
|
%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
|
|
%token DECLARE GLOBAL CONSTANT VOLATILE
|
|
%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
|
|
%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG
|
|
%token DEPLIBS CALL TAIL
|
|
%token CC_TOK CCC_TOK FASTCC_TOK COLDCC_TOK
|
|
%type <UIntVal> OptCallingConv
|
|
|
|
// Basic Block Terminating Operators
|
|
%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
|
|
|
|
// Binary Operators
|
|
%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
|
|
%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
|
|
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators
|
|
|
|
// Memory Instructions
|
|
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
|
|
|
|
// Other Operators
|
|
%type <OtherOpVal> ShiftOps
|
|
%token <OtherOpVal> PHI_TOK CAST SELECT SHL SHR VAARG
|
|
%token VAARG_old VANEXT_old //OBSOLETE
|
|
|
|
|
|
%start Module
|
|
%%
|
|
|
|
// Handle constant integer size restriction and conversion...
|
|
//
|
|
INTVAL : SINTVAL;
|
|
INTVAL : UINTVAL {
|
|
if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
|
|
ThrowException("Value too large for type!");
|
|
$$ = (int32_t)$1;
|
|
};
|
|
|
|
|
|
EINT64VAL : ESINT64VAL; // These have same type and can't cause problems...
|
|
EINT64VAL : EUINT64VAL {
|
|
if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
|
|
ThrowException("Value too large for type!");
|
|
$$ = (int64_t)$1;
|
|
};
|
|
|
|
// Operations that are notably excluded from this list include:
|
|
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
|
|
//
|
|
ArithmeticOps: ADD | SUB | MUL | DIV | REM;
|
|
LogicalOps : AND | OR | XOR;
|
|
SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
|
|
|
|
ShiftOps : SHL | SHR;
|
|
|
|
// These are some types that allow classification if we only want a particular
|
|
// thing... for example, only a signed, unsigned, or integral type.
|
|
SIntType : LONG | INT | SHORT | SBYTE;
|
|
UIntType : ULONG | UINT | USHORT | UBYTE;
|
|
IntType : SIntType | UIntType;
|
|
FPType : FLOAT | DOUBLE;
|
|
|
|
// OptAssign - Value producing statements have an optional assignment component
|
|
OptAssign : Name '=' {
|
|
$$ = $1;
|
|
}
|
|
| /*empty*/ {
|
|
$$ = 0;
|
|
};
|
|
|
|
OptLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } |
|
|
LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } |
|
|
WEAK { $$ = GlobalValue::WeakLinkage; } |
|
|
APPENDING { $$ = GlobalValue::AppendingLinkage; } |
|
|
/*empty*/ { $$ = GlobalValue::ExternalLinkage; };
|
|
|
|
OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
|
|
CCC_TOK { $$ = CallingConv::C; } |
|
|
FASTCC_TOK { $$ = CallingConv::Fast; } |
|
|
COLDCC_TOK { $$ = CallingConv::Cold; } |
|
|
CC_TOK EUINT64VAL {
|
|
if ((unsigned)$2 != $2)
|
|
ThrowException("Calling conv too large!");
|
|
$$ = $2;
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Types includes all predefined types... except void, because it can only be
|
|
// used in specific contexts (function returning void for example). To have
|
|
// access to it, a user must explicitly use TypesV.
|
|
//
|
|
|
|
// TypesV includes all of 'Types', but it also includes the void type.
|
|
TypesV : Types | VOID { $$ = new PATypeHolder($1); };
|
|
UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
|
|
|
|
Types : UpRTypes {
|
|
if (!UpRefs.empty())
|
|
ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
|
|
$$ = $1;
|
|
};
|
|
|
|
|
|
// Derived types are added later...
|
|
//
|
|
PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ;
|
|
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL;
|
|
UpRTypes : OPAQUE {
|
|
$$ = new PATypeHolder(OpaqueType::get());
|
|
}
|
|
| PrimType {
|
|
$$ = new PATypeHolder($1);
|
|
};
|
|
UpRTypes : SymbolicValueRef { // Named types are also simple types...
|
|
$$ = new PATypeHolder(getTypeVal($1));
|
|
};
|
|
|
|
// Include derived types in the Types production.
|
|
//
|
|
UpRTypes : '\\' EUINT64VAL { // Type UpReference
|
|
if ($2 > (uint64_t)~0U) ThrowException("Value out of range!");
|
|
OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
|
|
UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
|
|
$$ = new PATypeHolder(OT);
|
|
UR_OUT("New Upreference!\n");
|
|
}
|
|
| UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
|
|
std::vector<const Type*> Params;
|
|
for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
|
|
E = $3->end(); I != E; ++I)
|
|
Params.push_back(*I);
|
|
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
|
|
if (isVarArg) Params.pop_back();
|
|
|
|
$$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
|
|
delete $3; // Delete the argument list
|
|
delete $1; // Delete the return type handle
|
|
}
|
|
| '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
|
|
$$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
|
|
delete $4;
|
|
}
|
|
| '<' EUINT64VAL 'x' UpRTypes '>' { // Packed array type?
|
|
const llvm::Type* ElemTy = $4->get();
|
|
if ((unsigned)$2 != $2) {
|
|
ThrowException("Unsigned result not equal to signed result");
|
|
}
|
|
if(!ElemTy->isPrimitiveType()) {
|
|
ThrowException("Elemental type of a PackedType must be primitive");
|
|
}
|
|
$$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2)));
|
|
delete $4;
|
|
}
|
|
| '{' TypeListI '}' { // Structure type?
|
|
std::vector<const Type*> Elements;
|
|
for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
|
|
E = $2->end(); I != E; ++I)
|
|
Elements.push_back(*I);
|
|
|
|
$$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
|
|
delete $2;
|
|
}
|
|
| '{' '}' { // Empty structure type?
|
|
$$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
|
|
}
|
|
| UpRTypes '*' { // Pointer type?
|
|
$$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
|
|
delete $1;
|
|
};
|
|
|
|
// TypeList - Used for struct declarations and as a basis for function type
|
|
// declaration type lists
|
|
//
|
|
TypeListI : UpRTypes {
|
|
$$ = new std::list<PATypeHolder>();
|
|
$$->push_back(*$1); delete $1;
|
|
}
|
|
| TypeListI ',' UpRTypes {
|
|
($$=$1)->push_back(*$3); delete $3;
|
|
};
|
|
|
|
// ArgTypeList - List of types for a function type declaration...
|
|
ArgTypeListI : TypeListI
|
|
| TypeListI ',' DOTDOTDOT {
|
|
($$=$1)->push_back(Type::VoidTy);
|
|
}
|
|
| DOTDOTDOT {
|
|
($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy);
|
|
}
|
|
| /*empty*/ {
|
|
$$ = new std::list<PATypeHolder>();
|
|
};
|
|
|
|
// ConstVal - The various declarations that go into the constant pool. This
|
|
// production is used ONLY to represent constants that show up AFTER a 'const',
|
|
// 'constant' or 'global' token at global scope. Constants that can be inlined
|
|
// into other expressions (such as integers and constexprs) are handled by the
|
|
// ResolvedVal, ValueRef and ConstValueRef productions.
|
|
//
|
|
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
ThrowException("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
const Type *ETy = ATy->getElementType();
|
|
int NumElements = ATy->getNumElements();
|
|
|
|
// Verify that we have the correct size...
|
|
if (NumElements != -1 && NumElements != (int)$3->size())
|
|
ThrowException("Type mismatch: constant sized array initialized with " +
|
|
utostr($3->size()) + " arguments, but has size of " +
|
|
itostr(NumElements) + "!");
|
|
|
|
// Verify all elements are correct type!
|
|
for (unsigned i = 0; i < $3->size(); i++) {
|
|
if (ETy != (*$3)[i]->getType())
|
|
ThrowException("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '"+
|
|
(*$3)[i]->getType()->getDescription() + "'.");
|
|
}
|
|
|
|
$$ = ConstantArray::get(ATy, *$3);
|
|
delete $1; delete $3;
|
|
}
|
|
| Types '[' ']' {
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
ThrowException("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
|
|
int NumElements = ATy->getNumElements();
|
|
if (NumElements != -1 && NumElements != 0)
|
|
ThrowException("Type mismatch: constant sized array initialized with 0"
|
|
" arguments, but has size of " + itostr(NumElements) +"!");
|
|
$$ = ConstantArray::get(ATy, std::vector<Constant*>());
|
|
delete $1;
|
|
}
|
|
| Types 'c' STRINGCONSTANT {
|
|
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
|
|
if (ATy == 0)
|
|
ThrowException("Cannot make array constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
|
|
int NumElements = ATy->getNumElements();
|
|
const Type *ETy = ATy->getElementType();
|
|
char *EndStr = UnEscapeLexed($3, true);
|
|
if (NumElements != -1 && NumElements != (EndStr-$3))
|
|
ThrowException("Can't build string constant of size " +
|
|
itostr((int)(EndStr-$3)) +
|
|
" when array has size " + itostr(NumElements) + "!");
|
|
std::vector<Constant*> Vals;
|
|
if (ETy == Type::SByteTy) {
|
|
for (char *C = $3; C != EndStr; ++C)
|
|
Vals.push_back(ConstantSInt::get(ETy, *C));
|
|
} else if (ETy == Type::UByteTy) {
|
|
for (char *C = $3; C != EndStr; ++C)
|
|
Vals.push_back(ConstantUInt::get(ETy, (unsigned char)*C));
|
|
} else {
|
|
free($3);
|
|
ThrowException("Cannot build string arrays of non byte sized elements!");
|
|
}
|
|
free($3);
|
|
$$ = ConstantArray::get(ATy, Vals);
|
|
delete $1;
|
|
}
|
|
| Types '<' ConstVector '>' { // Nonempty unsized arr
|
|
const PackedType *PTy = dyn_cast<PackedType>($1->get());
|
|
if (PTy == 0)
|
|
ThrowException("Cannot make packed constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
const Type *ETy = PTy->getElementType();
|
|
int NumElements = PTy->getNumElements();
|
|
|
|
// Verify that we have the correct size...
|
|
if (NumElements != -1 && NumElements != (int)$3->size())
|
|
ThrowException("Type mismatch: constant sized packed initialized with " +
|
|
utostr($3->size()) + " arguments, but has size of " +
|
|
itostr(NumElements) + "!");
|
|
|
|
// Verify all elements are correct type!
|
|
for (unsigned i = 0; i < $3->size(); i++) {
|
|
if (ETy != (*$3)[i]->getType())
|
|
ThrowException("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '"+
|
|
(*$3)[i]->getType()->getDescription() + "'.");
|
|
}
|
|
|
|
$$ = ConstantPacked::get(PTy, *$3);
|
|
delete $1; delete $3;
|
|
}
|
|
| Types '{' ConstVector '}' {
|
|
const StructType *STy = dyn_cast<StructType>($1->get());
|
|
if (STy == 0)
|
|
ThrowException("Cannot make struct constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
|
|
if ($3->size() != STy->getNumContainedTypes())
|
|
ThrowException("Illegal number of initializers for structure type!");
|
|
|
|
// Check to ensure that constants are compatible with the type initializer!
|
|
for (unsigned i = 0, e = $3->size(); i != e; ++i)
|
|
if ((*$3)[i]->getType() != STy->getElementType(i))
|
|
ThrowException("Expected type '" +
|
|
STy->getElementType(i)->getDescription() +
|
|
"' for element #" + utostr(i) +
|
|
" of structure initializer!");
|
|
|
|
$$ = ConstantStruct::get(STy, *$3);
|
|
delete $1; delete $3;
|
|
}
|
|
| Types '{' '}' {
|
|
const StructType *STy = dyn_cast<StructType>($1->get());
|
|
if (STy == 0)
|
|
ThrowException("Cannot make struct constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
|
|
if (STy->getNumContainedTypes() != 0)
|
|
ThrowException("Illegal number of initializers for structure type!");
|
|
|
|
$$ = ConstantStruct::get(STy, std::vector<Constant*>());
|
|
delete $1;
|
|
}
|
|
| Types NULL_TOK {
|
|
const PointerType *PTy = dyn_cast<PointerType>($1->get());
|
|
if (PTy == 0)
|
|
ThrowException("Cannot make null pointer constant with type: '" +
|
|
(*$1)->getDescription() + "'!");
|
|
|
|
$$ = ConstantPointerNull::get(PTy);
|
|
delete $1;
|
|
}
|
|
| Types UNDEF {
|
|
$$ = UndefValue::get($1->get());
|
|
delete $1;
|
|
}
|
|
| Types SymbolicValueRef {
|
|
const PointerType *Ty = dyn_cast<PointerType>($1->get());
|
|
if (Ty == 0)
|
|
ThrowException("Global const reference must be a pointer type!");
|
|
|
|
// ConstExprs can exist in the body of a function, thus creating
|
|
// GlobalValues whenever they refer to a variable. Because we are in
|
|
// the context of a function, getValNonImprovising will search the functions
|
|
// symbol table instead of the module symbol table for the global symbol,
|
|
// which throws things all off. To get around this, we just tell
|
|
// getValNonImprovising that we are at global scope here.
|
|
//
|
|
Function *SavedCurFn = CurFun.CurrentFunction;
|
|
CurFun.CurrentFunction = 0;
|
|
|
|
Value *V = getValNonImprovising(Ty, $2);
|
|
|
|
CurFun.CurrentFunction = SavedCurFn;
|
|
|
|
// If this is an initializer for a constant pointer, which is referencing a
|
|
// (currently) undefined variable, create a stub now that shall be replaced
|
|
// in the future with the right type of variable.
|
|
//
|
|
if (V == 0) {
|
|
assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
|
|
const PointerType *PT = cast<PointerType>(Ty);
|
|
|
|
// First check to see if the forward references value is already created!
|
|
PerModuleInfo::GlobalRefsType::iterator I =
|
|
CurModule.GlobalRefs.find(std::make_pair(PT, $2));
|
|
|
|
if (I != CurModule.GlobalRefs.end()) {
|
|
V = I->second; // Placeholder already exists, use it...
|
|
$2.destroy();
|
|
} else {
|
|
std::string Name;
|
|
if ($2.Type == ValID::NameVal) Name = $2.Name;
|
|
|
|
// Create the forward referenced global.
|
|
GlobalValue *GV;
|
|
if (const FunctionType *FTy =
|
|
dyn_cast<FunctionType>(PT->getElementType())) {
|
|
GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
|
|
CurModule.CurrentModule);
|
|
} else {
|
|
GV = new GlobalVariable(PT->getElementType(), false,
|
|
GlobalValue::ExternalLinkage, 0,
|
|
Name, CurModule.CurrentModule);
|
|
}
|
|
|
|
// Keep track of the fact that we have a forward ref to recycle it
|
|
CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
|
|
V = GV;
|
|
}
|
|
}
|
|
|
|
$$ = cast<GlobalValue>(V);
|
|
delete $1; // Free the type handle
|
|
}
|
|
| Types ConstExpr {
|
|
if ($1->get() != $2->getType())
|
|
ThrowException("Mismatched types for constant expression!");
|
|
$$ = $2;
|
|
delete $1;
|
|
}
|
|
| Types ZEROINITIALIZER {
|
|
const Type *Ty = $1->get();
|
|
if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
|
|
ThrowException("Cannot create a null initialized value of this type!");
|
|
$$ = Constant::getNullValue(Ty);
|
|
delete $1;
|
|
};
|
|
|
|
ConstVal : SIntType EINT64VAL { // integral constants
|
|
if (!ConstantSInt::isValueValidForType($1, $2))
|
|
ThrowException("Constant value doesn't fit in type!");
|
|
$$ = ConstantSInt::get($1, $2);
|
|
}
|
|
| UIntType EUINT64VAL { // integral constants
|
|
if (!ConstantUInt::isValueValidForType($1, $2))
|
|
ThrowException("Constant value doesn't fit in type!");
|
|
$$ = ConstantUInt::get($1, $2);
|
|
}
|
|
| BOOL TRUETOK { // Boolean constants
|
|
$$ = ConstantBool::True;
|
|
}
|
|
| BOOL FALSETOK { // Boolean constants
|
|
$$ = ConstantBool::False;
|
|
}
|
|
| FPType FPVAL { // Float & Double constants
|
|
if (!ConstantFP::isValueValidForType($1, $2))
|
|
ThrowException("Floating point constant invalid for type!!");
|
|
$$ = ConstantFP::get($1, $2);
|
|
};
|
|
|
|
|
|
ConstExpr: CAST '(' ConstVal TO Types ')' {
|
|
if (!$3->getType()->isFirstClassType())
|
|
ThrowException("cast constant expression from a non-primitive type: '" +
|
|
$3->getType()->getDescription() + "'!");
|
|
if (!$5->get()->isFirstClassType())
|
|
ThrowException("cast constant expression to a non-primitive type: '" +
|
|
$5->get()->getDescription() + "'!");
|
|
$$ = ConstantExpr::getCast($3, $5->get());
|
|
delete $5;
|
|
}
|
|
| GETELEMENTPTR '(' ConstVal IndexList ')' {
|
|
if (!isa<PointerType>($3->getType()))
|
|
ThrowException("GetElementPtr requires a pointer operand!");
|
|
|
|
// LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct
|
|
// indices to uint struct indices for compatibility.
|
|
generic_gep_type_iterator<std::vector<Value*>::iterator>
|
|
GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()),
|
|
GTE = gep_type_end($3->getType(), $4->begin(), $4->end());
|
|
for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
|
|
if (isa<StructType>(*GTI)) // Only change struct indices
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
|
|
if (CUI->getType() == Type::UByteTy)
|
|
(*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
|
|
|
|
const Type *IdxTy =
|
|
GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
|
|
if (!IdxTy)
|
|
ThrowException("Index list invalid for constant getelementptr!");
|
|
|
|
std::vector<Constant*> IdxVec;
|
|
for (unsigned i = 0, e = $4->size(); i != e; ++i)
|
|
if (Constant *C = dyn_cast<Constant>((*$4)[i]))
|
|
IdxVec.push_back(C);
|
|
else
|
|
ThrowException("Indices to constant getelementptr must be constants!");
|
|
|
|
delete $4;
|
|
|
|
$$ = ConstantExpr::getGetElementPtr($3, IdxVec);
|
|
}
|
|
| SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
|
|
if ($3->getType() != Type::BoolTy)
|
|
ThrowException("Select condition must be of boolean type!");
|
|
if ($5->getType() != $7->getType())
|
|
ThrowException("Select operand types must match!");
|
|
$$ = ConstantExpr::getSelect($3, $5, $7);
|
|
}
|
|
| ArithmeticOps '(' ConstVal ',' ConstVal ')' {
|
|
if ($3->getType() != $5->getType())
|
|
ThrowException("Binary operator types must match!");
|
|
// HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
|
|
// To retain backward compatibility with these early compilers, we emit a
|
|
// cast to the appropriate integer type automatically if we are in the
|
|
// broken case. See PR424 for more information.
|
|
if (!isa<PointerType>($3->getType())) {
|
|
$$ = ConstantExpr::get($1, $3, $5);
|
|
} else {
|
|
const Type *IntPtrTy = 0;
|
|
switch (CurModule.CurrentModule->getPointerSize()) {
|
|
case Module::Pointer32: IntPtrTy = Type::IntTy; break;
|
|
case Module::Pointer64: IntPtrTy = Type::LongTy; break;
|
|
default: ThrowException("invalid pointer binary constant expr!");
|
|
}
|
|
$$ = ConstantExpr::get($1, ConstantExpr::getCast($3, IntPtrTy),
|
|
ConstantExpr::getCast($5, IntPtrTy));
|
|
$$ = ConstantExpr::getCast($$, $3->getType());
|
|
}
|
|
}
|
|
| LogicalOps '(' ConstVal ',' ConstVal ')' {
|
|
if ($3->getType() != $5->getType())
|
|
ThrowException("Logical operator types must match!");
|
|
if (!$3->getType()->isIntegral())
|
|
ThrowException("Logical operands must have integral types!");
|
|
$$ = ConstantExpr::get($1, $3, $5);
|
|
}
|
|
| SetCondOps '(' ConstVal ',' ConstVal ')' {
|
|
if ($3->getType() != $5->getType())
|
|
ThrowException("setcc operand types must match!");
|
|
$$ = ConstantExpr::get($1, $3, $5);
|
|
}
|
|
| ShiftOps '(' ConstVal ',' ConstVal ')' {
|
|
if ($5->getType() != Type::UByteTy)
|
|
ThrowException("Shift count for shift constant must be unsigned byte!");
|
|
if (!$3->getType()->isInteger())
|
|
ThrowException("Shift constant expression requires integer operand!");
|
|
$$ = ConstantExpr::get($1, $3, $5);
|
|
};
|
|
|
|
|
|
// ConstVector - A list of comma separated constants.
|
|
ConstVector : ConstVector ',' ConstVal {
|
|
($$ = $1)->push_back($3);
|
|
}
|
|
| ConstVal {
|
|
$$ = new std::vector<Constant*>();
|
|
$$->push_back($1);
|
|
};
|
|
|
|
|
|
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
|
|
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Modules
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Module rule: Capture the result of parsing the whole file into a result
|
|
// variable...
|
|
//
|
|
Module : FunctionList {
|
|
$$ = ParserResult = $1;
|
|
CurModule.ModuleDone();
|
|
};
|
|
|
|
// FunctionList - A list of functions, preceeded by a constant pool.
|
|
//
|
|
FunctionList : FunctionList Function {
|
|
$$ = $1;
|
|
CurFun.FunctionDone();
|
|
}
|
|
| FunctionList FunctionProto {
|
|
$$ = $1;
|
|
}
|
|
| FunctionList IMPLEMENTATION {
|
|
$$ = $1;
|
|
}
|
|
| ConstPool {
|
|
$$ = CurModule.CurrentModule;
|
|
// Emit an error if there are any unresolved types left.
|
|
if (!CurModule.LateResolveTypes.empty()) {
|
|
const ValID &DID = CurModule.LateResolveTypes.begin()->first;
|
|
if (DID.Type == ValID::NameVal)
|
|
ThrowException("Reference to an undefined type: '"+DID.getName() + "'");
|
|
else
|
|
ThrowException("Reference to an undefined type: #" + itostr(DID.Num));
|
|
}
|
|
};
|
|
|
|
// ConstPool - Constants with optional names assigned to them.
|
|
ConstPool : ConstPool OptAssign TYPE TypesV {
|
|
// Eagerly resolve types. This is not an optimization, this is a
|
|
// requirement that is due to the fact that we could have this:
|
|
//
|
|
// %list = type { %list * }
|
|
// %list = type { %list * } ; repeated type decl
|
|
//
|
|
// If types are not resolved eagerly, then the two types will not be
|
|
// determined to be the same type!
|
|
//
|
|
ResolveTypeTo($2, *$4);
|
|
|
|
if (!setTypeName(*$4, $2) && !$2) {
|
|
// If this is a named type that is not a redefinition, add it to the slot
|
|
// table.
|
|
CurModule.Types.push_back(*$4);
|
|
}
|
|
|
|
delete $4;
|
|
}
|
|
| ConstPool FunctionProto { // Function prototypes can be in const pool
|
|
}
|
|
| ConstPool OptAssign OptLinkage GlobalType ConstVal {
|
|
if ($5 == 0) ThrowException("Global value initializer is not a constant!");
|
|
ParseGlobalVariable($2, $3, $4, $5->getType(), $5);
|
|
}
|
|
| ConstPool OptAssign EXTERNAL GlobalType Types {
|
|
ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, *$5, 0);
|
|
delete $5;
|
|
}
|
|
| ConstPool TARGET TargetDefinition {
|
|
}
|
|
| ConstPool DEPLIBS '=' LibrariesDefinition {
|
|
}
|
|
| /* empty: end of list */ {
|
|
};
|
|
|
|
|
|
|
|
BigOrLittle : BIG { $$ = Module::BigEndian; };
|
|
BigOrLittle : LITTLE { $$ = Module::LittleEndian; };
|
|
|
|
TargetDefinition : ENDIAN '=' BigOrLittle {
|
|
CurModule.CurrentModule->setEndianness($3);
|
|
}
|
|
| POINTERSIZE '=' EUINT64VAL {
|
|
if ($3 == 32)
|
|
CurModule.CurrentModule->setPointerSize(Module::Pointer32);
|
|
else if ($3 == 64)
|
|
CurModule.CurrentModule->setPointerSize(Module::Pointer64);
|
|
else
|
|
ThrowException("Invalid pointer size: '" + utostr($3) + "'!");
|
|
}
|
|
| TRIPLE '=' STRINGCONSTANT {
|
|
CurModule.CurrentModule->setTargetTriple($3);
|
|
free($3);
|
|
};
|
|
|
|
LibrariesDefinition : '[' LibList ']';
|
|
|
|
LibList : LibList ',' STRINGCONSTANT {
|
|
CurModule.CurrentModule->addLibrary($3);
|
|
free($3);
|
|
}
|
|
| STRINGCONSTANT {
|
|
CurModule.CurrentModule->addLibrary($1);
|
|
free($1);
|
|
}
|
|
| /* empty: end of list */ {
|
|
}
|
|
;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Function Headers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Name : VAR_ID | STRINGCONSTANT;
|
|
OptName : Name | /*empty*/ { $$ = 0; };
|
|
|
|
ArgVal : Types OptName {
|
|
if (*$1 == Type::VoidTy)
|
|
ThrowException("void typed arguments are invalid!");
|
|
$$ = new std::pair<PATypeHolder*, char*>($1, $2);
|
|
};
|
|
|
|
ArgListH : ArgListH ',' ArgVal {
|
|
$$ = $1;
|
|
$1->push_back(*$3);
|
|
delete $3;
|
|
}
|
|
| ArgVal {
|
|
$$ = new std::vector<std::pair<PATypeHolder*,char*> >();
|
|
$$->push_back(*$1);
|
|
delete $1;
|
|
};
|
|
|
|
ArgList : ArgListH {
|
|
$$ = $1;
|
|
}
|
|
| ArgListH ',' DOTDOTDOT {
|
|
$$ = $1;
|
|
$$->push_back(std::pair<PATypeHolder*,
|
|
char*>(new PATypeHolder(Type::VoidTy), 0));
|
|
}
|
|
| DOTDOTDOT {
|
|
$$ = new std::vector<std::pair<PATypeHolder*,char*> >();
|
|
$$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0));
|
|
}
|
|
| /* empty */ {
|
|
$$ = 0;
|
|
};
|
|
|
|
FunctionHeaderH : OptCallingConv TypesV Name '(' ArgList ')' {
|
|
UnEscapeLexed($3);
|
|
std::string FunctionName($3);
|
|
free($3); // Free strdup'd memory!
|
|
|
|
if (!(*$2)->isFirstClassType() && *$2 != Type::VoidTy)
|
|
ThrowException("LLVM functions cannot return aggregate types!");
|
|
|
|
std::vector<const Type*> ParamTypeList;
|
|
if ($5) { // If there are arguments...
|
|
for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
|
|
I != $5->end(); ++I)
|
|
ParamTypeList.push_back(I->first->get());
|
|
}
|
|
|
|
bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypeList.pop_back();
|
|
|
|
const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg);
|
|
const PointerType *PFT = PointerType::get(FT);
|
|
delete $2;
|
|
|
|
ValID ID;
|
|
if (!FunctionName.empty()) {
|
|
ID = ValID::create((char*)FunctionName.c_str());
|
|
} else {
|
|
ID = ValID::create((int)CurModule.Values[PFT].size());
|
|
}
|
|
|
|
Function *Fn = 0;
|
|
// See if this function was forward referenced. If so, recycle the object.
|
|
if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
|
|
// Move the function to the end of the list, from whereever it was
|
|
// previously inserted.
|
|
Fn = cast<Function>(FWRef);
|
|
CurModule.CurrentModule->getFunctionList().remove(Fn);
|
|
CurModule.CurrentModule->getFunctionList().push_back(Fn);
|
|
} else if (!FunctionName.empty() && // Merge with an earlier prototype?
|
|
(Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
|
|
// If this is the case, either we need to be a forward decl, or it needs
|
|
// to be.
|
|
if (!CurFun.isDeclare && !Fn->isExternal())
|
|
ThrowException("Redefinition of function '" + FunctionName + "'!");
|
|
|
|
// Make sure to strip off any argument names so we can't get conflicts.
|
|
if (Fn->isExternal())
|
|
for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
|
|
AI != AE; ++AI)
|
|
AI->setName("");
|
|
|
|
} else { // Not already defined?
|
|
Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
|
|
CurModule.CurrentModule);
|
|
InsertValue(Fn, CurModule.Values);
|
|
}
|
|
|
|
CurFun.FunctionStart(Fn);
|
|
Fn->setCallingConv($1);
|
|
|
|
// Add all of the arguments we parsed to the function...
|
|
if ($5) { // Is null if empty...
|
|
if (isVarArg) { // Nuke the last entry
|
|
assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&&
|
|
"Not a varargs marker!");
|
|
delete $5->back().first;
|
|
$5->pop_back(); // Delete the last entry
|
|
}
|
|
Function::arg_iterator ArgIt = Fn->arg_begin();
|
|
for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
|
|
I != $5->end(); ++I, ++ArgIt) {
|
|
delete I->first; // Delete the typeholder...
|
|
|
|
setValueName(ArgIt, I->second); // Insert arg into symtab...
|
|
InsertValue(ArgIt);
|
|
}
|
|
|
|
delete $5; // We're now done with the argument list
|
|
}
|
|
};
|
|
|
|
BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
|
|
|
|
FunctionHeader : OptLinkage FunctionHeaderH BEGIN {
|
|
$$ = CurFun.CurrentFunction;
|
|
|
|
// Make sure that we keep track of the linkage type even if there was a
|
|
// previous "declare".
|
|
$$->setLinkage($1);
|
|
};
|
|
|
|
END : ENDTOK | '}'; // Allow end of '}' to end a function
|
|
|
|
Function : BasicBlockList END {
|
|
$$ = $1;
|
|
};
|
|
|
|
FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH {
|
|
$$ = CurFun.CurrentFunction;
|
|
CurFun.FunctionDone();
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Rules to match Basic Blocks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConstValueRef : ESINT64VAL { // A reference to a direct constant
|
|
$$ = ValID::create($1);
|
|
}
|
|
| EUINT64VAL {
|
|
$$ = ValID::create($1);
|
|
}
|
|
| FPVAL { // Perhaps it's an FP constant?
|
|
$$ = ValID::create($1);
|
|
}
|
|
| TRUETOK {
|
|
$$ = ValID::create(ConstantBool::True);
|
|
}
|
|
| FALSETOK {
|
|
$$ = ValID::create(ConstantBool::False);
|
|
}
|
|
| NULL_TOK {
|
|
$$ = ValID::createNull();
|
|
}
|
|
| UNDEF {
|
|
$$ = ValID::createUndef();
|
|
}
|
|
| '<' ConstVector '>' { // Nonempty unsized packed vector
|
|
const Type *ETy = (*$2)[0]->getType();
|
|
int NumElements = $2->size();
|
|
|
|
PackedType* pt = PackedType::get(ETy, NumElements);
|
|
PATypeHolder* PTy = new PATypeHolder(
|
|
HandleUpRefs(
|
|
PackedType::get(
|
|
ETy,
|
|
NumElements)
|
|
)
|
|
);
|
|
|
|
// Verify all elements are correct type!
|
|
for (unsigned i = 0; i < $2->size(); i++) {
|
|
if (ETy != (*$2)[i]->getType())
|
|
ThrowException("Element #" + utostr(i) + " is not of type '" +
|
|
ETy->getDescription() +"' as required!\nIt is of type '" +
|
|
(*$2)[i]->getType()->getDescription() + "'.");
|
|
}
|
|
|
|
$$ = ValID::create(ConstantPacked::get(pt, *$2));
|
|
delete PTy; delete $2;
|
|
}
|
|
| ConstExpr {
|
|
$$ = ValID::create($1);
|
|
};
|
|
|
|
// SymbolicValueRef - Reference to one of two ways of symbolically refering to
|
|
// another value.
|
|
//
|
|
SymbolicValueRef : INTVAL { // Is it an integer reference...?
|
|
$$ = ValID::create($1);
|
|
}
|
|
| Name { // Is it a named reference...?
|
|
$$ = ValID::create($1);
|
|
};
|
|
|
|
// ValueRef - A reference to a definition... either constant or symbolic
|
|
ValueRef : SymbolicValueRef | ConstValueRef;
|
|
|
|
|
|
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
|
|
// type immediately preceeds the value reference, and allows complex constant
|
|
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
|
|
ResolvedVal : Types ValueRef {
|
|
$$ = getVal(*$1, $2); delete $1;
|
|
};
|
|
|
|
BasicBlockList : BasicBlockList BasicBlock {
|
|
$$ = $1;
|
|
}
|
|
| FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
|
|
$$ = $1;
|
|
};
|
|
|
|
|
|
// Basic blocks are terminated by branching instructions:
|
|
// br, br/cc, switch, ret
|
|
//
|
|
BasicBlock : InstructionList OptAssign BBTerminatorInst {
|
|
setValueName($3, $2);
|
|
InsertValue($3);
|
|
|
|
$1->getInstList().push_back($3);
|
|
InsertValue($1);
|
|
$$ = $1;
|
|
};
|
|
|
|
InstructionList : InstructionList Inst {
|
|
$1->getInstList().push_back($2);
|
|
$$ = $1;
|
|
}
|
|
| /* empty */ {
|
|
$$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
|
|
|
|
// Make sure to move the basic block to the correct location in the
|
|
// function, instead of leaving it inserted wherever it was first
|
|
// referenced.
|
|
Function::BasicBlockListType &BBL =
|
|
CurFun.CurrentFunction->getBasicBlockList();
|
|
BBL.splice(BBL.end(), BBL, $$);
|
|
}
|
|
| LABELSTR {
|
|
$$ = CurBB = getBBVal(ValID::create($1), true);
|
|
|
|
// Make sure to move the basic block to the correct location in the
|
|
// function, instead of leaving it inserted wherever it was first
|
|
// referenced.
|
|
Function::BasicBlockListType &BBL =
|
|
CurFun.CurrentFunction->getBasicBlockList();
|
|
BBL.splice(BBL.end(), BBL, $$);
|
|
};
|
|
|
|
BBTerminatorInst : RET ResolvedVal { // Return with a result...
|
|
$$ = new ReturnInst($2);
|
|
}
|
|
| RET VOID { // Return with no result...
|
|
$$ = new ReturnInst();
|
|
}
|
|
| BR LABEL ValueRef { // Unconditional Branch...
|
|
$$ = new BranchInst(getBBVal($3));
|
|
} // Conditional Branch...
|
|
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
|
|
$$ = new BranchInst(getBBVal($6), getBBVal($9), getVal(Type::BoolTy, $3));
|
|
}
|
|
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
|
|
SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), $8->size());
|
|
$$ = S;
|
|
|
|
std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
|
|
E = $8->end();
|
|
for (; I != E; ++I) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
|
|
S->addCase(CI, I->second);
|
|
else
|
|
ThrowException("Switch case is constant, but not a simple integer!");
|
|
}
|
|
delete $8;
|
|
}
|
|
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
|
|
SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), 0);
|
|
$$ = S;
|
|
}
|
|
| INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
|
|
TO LABEL ValueRef UNWIND LABEL ValueRef {
|
|
const PointerType *PFTy;
|
|
const FunctionType *Ty;
|
|
|
|
if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
|
|
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
|
|
// Pull out the types of all of the arguments...
|
|
std::vector<const Type*> ParamTypes;
|
|
if ($6) {
|
|
for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
|
|
I != E; ++I)
|
|
ParamTypes.push_back((*I)->getType());
|
|
}
|
|
|
|
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypes.pop_back();
|
|
|
|
Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
|
|
PFTy = PointerType::get(Ty);
|
|
}
|
|
|
|
Value *V = getVal(PFTy, $4); // Get the function we're calling...
|
|
|
|
BasicBlock *Normal = getBBVal($10);
|
|
BasicBlock *Except = getBBVal($13);
|
|
|
|
// Create the call node...
|
|
if (!$6) { // Has no arguments?
|
|
$$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
|
|
} else { // Has arguments?
|
|
// Loop through FunctionType's arguments and ensure they are specified
|
|
// correctly!
|
|
//
|
|
FunctionType::param_iterator I = Ty->param_begin();
|
|
FunctionType::param_iterator E = Ty->param_end();
|
|
std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
|
|
|
|
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
|
|
if ((*ArgI)->getType() != *I)
|
|
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
|
|
(*I)->getDescription() + "'!");
|
|
|
|
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
|
|
ThrowException("Invalid number of parameters detected!");
|
|
|
|
$$ = new InvokeInst(V, Normal, Except, *$6);
|
|
}
|
|
cast<InvokeInst>($$)->setCallingConv($2);
|
|
|
|
delete $3;
|
|
delete $6;
|
|
}
|
|
| UNWIND {
|
|
$$ = new UnwindInst();
|
|
}
|
|
| UNREACHABLE {
|
|
$$ = new UnreachableInst();
|
|
};
|
|
|
|
|
|
|
|
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
|
|
$$ = $1;
|
|
Constant *V = cast<Constant>(getValNonImprovising($2, $3));
|
|
if (V == 0)
|
|
ThrowException("May only switch on a constant pool value!");
|
|
|
|
$$->push_back(std::make_pair(V, getBBVal($6)));
|
|
}
|
|
| IntType ConstValueRef ',' LABEL ValueRef {
|
|
$$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
|
|
Constant *V = cast<Constant>(getValNonImprovising($1, $2));
|
|
|
|
if (V == 0)
|
|
ThrowException("May only switch on a constant pool value!");
|
|
|
|
$$->push_back(std::make_pair(V, getBBVal($5)));
|
|
};
|
|
|
|
Inst : OptAssign InstVal {
|
|
// Is this definition named?? if so, assign the name...
|
|
setValueName($2, $1);
|
|
InsertValue($2);
|
|
$$ = $2;
|
|
};
|
|
|
|
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
|
|
$$ = new std::list<std::pair<Value*, BasicBlock*> >();
|
|
$$->push_back(std::make_pair(getVal(*$1, $3), getBBVal($5)));
|
|
delete $1;
|
|
}
|
|
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
|
|
$$ = $1;
|
|
$1->push_back(std::make_pair(getVal($1->front().first->getType(), $4),
|
|
getBBVal($6)));
|
|
};
|
|
|
|
|
|
ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
|
|
$$ = new std::vector<Value*>();
|
|
$$->push_back($1);
|
|
}
|
|
| ValueRefList ',' ResolvedVal {
|
|
$$ = $1;
|
|
$1->push_back($3);
|
|
};
|
|
|
|
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
|
|
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
|
|
|
|
OptTailCall : TAIL CALL {
|
|
$$ = true;
|
|
}
|
|
| CALL {
|
|
$$ = false;
|
|
};
|
|
|
|
|
|
|
|
InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
|
|
if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
|
|
!isa<PackedType>((*$2).get()))
|
|
ThrowException(
|
|
"Arithmetic operator requires integer, FP, or packed operands!");
|
|
if (isa<PackedType>((*$2).get()) && $1 == Instruction::Rem)
|
|
ThrowException("Rem not supported on packed types!");
|
|
$$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
|
|
if ($$ == 0)
|
|
ThrowException("binary operator returned null!");
|
|
delete $2;
|
|
}
|
|
| LogicalOps Types ValueRef ',' ValueRef {
|
|
if (!(*$2)->isIntegral())
|
|
ThrowException("Logical operator requires integral operands!");
|
|
$$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
|
|
if ($$ == 0)
|
|
ThrowException("binary operator returned null!");
|
|
delete $2;
|
|
}
|
|
| SetCondOps Types ValueRef ',' ValueRef {
|
|
if(isa<PackedType>((*$2).get())) {
|
|
ThrowException(
|
|
"PackedTypes currently not supported in setcc instructions!");
|
|
}
|
|
$$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
|
|
if ($$ == 0)
|
|
ThrowException("binary operator returned null!");
|
|
delete $2;
|
|
}
|
|
| NOT ResolvedVal {
|
|
std::cerr << "WARNING: Use of eliminated 'not' instruction:"
|
|
<< " Replacing with 'xor'.\n";
|
|
|
|
Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
|
|
if (Ones == 0)
|
|
ThrowException("Expected integral type for not instruction!");
|
|
|
|
$$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
|
|
if ($$ == 0)
|
|
ThrowException("Could not create a xor instruction!");
|
|
}
|
|
| ShiftOps ResolvedVal ',' ResolvedVal {
|
|
if ($4->getType() != Type::UByteTy)
|
|
ThrowException("Shift amount must be ubyte!");
|
|
if (!$2->getType()->isInteger())
|
|
ThrowException("Shift constant expression requires integer operand!");
|
|
$$ = new ShiftInst($1, $2, $4);
|
|
}
|
|
| CAST ResolvedVal TO Types {
|
|
if (!$4->get()->isFirstClassType())
|
|
ThrowException("cast instruction to a non-primitive type: '" +
|
|
$4->get()->getDescription() + "'!");
|
|
$$ = new CastInst($2, *$4);
|
|
delete $4;
|
|
}
|
|
| SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
|
|
if ($2->getType() != Type::BoolTy)
|
|
ThrowException("select condition must be boolean!");
|
|
if ($4->getType() != $6->getType())
|
|
ThrowException("select value types should match!");
|
|
$$ = new SelectInst($2, $4, $6);
|
|
}
|
|
| VAARG ResolvedVal ',' Types {
|
|
NewVarArgs = true;
|
|
$$ = new VAArgInst($2, *$4);
|
|
delete $4;
|
|
}
|
|
| VAARG_old ResolvedVal ',' Types {
|
|
ObsoleteVarArgs = true;
|
|
const Type* ArgTy = $2->getType();
|
|
Function* NF = CurModule.CurrentModule->
|
|
getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, 0);
|
|
|
|
//b = vaarg a, t ->
|
|
//foo = alloca 1 of t
|
|
//bar = vacopy a
|
|
//store bar -> foo
|
|
//b = vaarg foo, t
|
|
AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
|
|
CurBB->getInstList().push_back(foo);
|
|
CallInst* bar = new CallInst(NF, $2);
|
|
CurBB->getInstList().push_back(bar);
|
|
CurBB->getInstList().push_back(new StoreInst(bar, foo));
|
|
$$ = new VAArgInst(foo, *$4);
|
|
delete $4;
|
|
}
|
|
| VANEXT_old ResolvedVal ',' Types {
|
|
ObsoleteVarArgs = true;
|
|
const Type* ArgTy = $2->getType();
|
|
Function* NF = CurModule.CurrentModule->
|
|
getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, 0);
|
|
|
|
//b = vanext a, t ->
|
|
//foo = alloca 1 of t
|
|
//bar = vacopy a
|
|
//store bar -> foo
|
|
//tmp = vaarg foo, t
|
|
//b = load foo
|
|
AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
|
|
CurBB->getInstList().push_back(foo);
|
|
CallInst* bar = new CallInst(NF, $2);
|
|
CurBB->getInstList().push_back(bar);
|
|
CurBB->getInstList().push_back(new StoreInst(bar, foo));
|
|
Instruction* tmp = new VAArgInst(foo, *$4);
|
|
CurBB->getInstList().push_back(tmp);
|
|
$$ = new LoadInst(foo);
|
|
delete $4;
|
|
}
|
|
| PHI_TOK PHIList {
|
|
const Type *Ty = $2->front().first->getType();
|
|
if (!Ty->isFirstClassType())
|
|
ThrowException("PHI node operands must be of first class type!");
|
|
$$ = new PHINode(Ty);
|
|
((PHINode*)$$)->reserveOperandSpace($2->size());
|
|
while ($2->begin() != $2->end()) {
|
|
if ($2->front().first->getType() != Ty)
|
|
ThrowException("All elements of a PHI node must be of the same type!");
|
|
cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
|
|
$2->pop_front();
|
|
}
|
|
delete $2; // Free the list...
|
|
}
|
|
| OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
|
|
const PointerType *PFTy;
|
|
const FunctionType *Ty;
|
|
|
|
if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
|
|
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
|
|
// Pull out the types of all of the arguments...
|
|
std::vector<const Type*> ParamTypes;
|
|
if ($6) {
|
|
for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
|
|
I != E; ++I)
|
|
ParamTypes.push_back((*I)->getType());
|
|
}
|
|
|
|
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
|
|
if (isVarArg) ParamTypes.pop_back();
|
|
|
|
if (!(*$3)->isFirstClassType() && *$3 != Type::VoidTy)
|
|
ThrowException("LLVM functions cannot return aggregate types!");
|
|
|
|
Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
|
|
PFTy = PointerType::get(Ty);
|
|
}
|
|
|
|
Value *V = getVal(PFTy, $4); // Get the function we're calling...
|
|
|
|
// Create the call node...
|
|
if (!$6) { // Has no arguments?
|
|
// Make sure no arguments is a good thing!
|
|
if (Ty->getNumParams() != 0)
|
|
ThrowException("No arguments passed to a function that "
|
|
"expects arguments!");
|
|
|
|
$$ = new CallInst(V, std::vector<Value*>());
|
|
} else { // Has arguments?
|
|
// Loop through FunctionType's arguments and ensure they are specified
|
|
// correctly!
|
|
//
|
|
FunctionType::param_iterator I = Ty->param_begin();
|
|
FunctionType::param_iterator E = Ty->param_end();
|
|
std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
|
|
|
|
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
|
|
if ((*ArgI)->getType() != *I)
|
|
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
|
|
(*I)->getDescription() + "'!");
|
|
|
|
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
|
|
ThrowException("Invalid number of parameters detected!");
|
|
|
|
$$ = new CallInst(V, *$6);
|
|
}
|
|
cast<CallInst>($$)->setTailCall($1);
|
|
cast<CallInst>($$)->setCallingConv($2);
|
|
delete $3;
|
|
delete $6;
|
|
}
|
|
| MemoryInst {
|
|
$$ = $1;
|
|
};
|
|
|
|
|
|
// IndexList - List of indices for GEP based instructions...
|
|
IndexList : ',' ValueRefList {
|
|
$$ = $2;
|
|
} | /* empty */ {
|
|
$$ = new std::vector<Value*>();
|
|
};
|
|
|
|
OptVolatile : VOLATILE {
|
|
$$ = true;
|
|
}
|
|
| /* empty */ {
|
|
$$ = false;
|
|
};
|
|
|
|
|
|
|
|
MemoryInst : MALLOC Types {
|
|
$$ = new MallocInst(*$2);
|
|
delete $2;
|
|
}
|
|
| MALLOC Types ',' UINT ValueRef {
|
|
$$ = new MallocInst(*$2, getVal($4, $5));
|
|
delete $2;
|
|
}
|
|
| ALLOCA Types {
|
|
$$ = new AllocaInst(*$2);
|
|
delete $2;
|
|
}
|
|
| ALLOCA Types ',' UINT ValueRef {
|
|
$$ = new AllocaInst(*$2, getVal($4, $5));
|
|
delete $2;
|
|
}
|
|
| FREE ResolvedVal {
|
|
if (!isa<PointerType>($2->getType()))
|
|
ThrowException("Trying to free nonpointer type " +
|
|
$2->getType()->getDescription() + "!");
|
|
$$ = new FreeInst($2);
|
|
}
|
|
|
|
| OptVolatile LOAD Types ValueRef {
|
|
if (!isa<PointerType>($3->get()))
|
|
ThrowException("Can't load from nonpointer type: " +
|
|
(*$3)->getDescription());
|
|
if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
|
|
ThrowException("Can't load from pointer of non-first-class type: " +
|
|
(*$3)->getDescription());
|
|
$$ = new LoadInst(getVal(*$3, $4), "", $1);
|
|
delete $3;
|
|
}
|
|
| OptVolatile STORE ResolvedVal ',' Types ValueRef {
|
|
const PointerType *PT = dyn_cast<PointerType>($5->get());
|
|
if (!PT)
|
|
ThrowException("Can't store to a nonpointer type: " +
|
|
(*$5)->getDescription());
|
|
const Type *ElTy = PT->getElementType();
|
|
if (ElTy != $3->getType())
|
|
ThrowException("Can't store '" + $3->getType()->getDescription() +
|
|
"' into space of type '" + ElTy->getDescription() + "'!");
|
|
|
|
$$ = new StoreInst($3, getVal(*$5, $6), $1);
|
|
delete $5;
|
|
}
|
|
| GETELEMENTPTR Types ValueRef IndexList {
|
|
if (!isa<PointerType>($2->get()))
|
|
ThrowException("getelementptr insn requires pointer operand!");
|
|
|
|
// LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct
|
|
// indices to uint struct indices for compatibility.
|
|
generic_gep_type_iterator<std::vector<Value*>::iterator>
|
|
GTI = gep_type_begin($2->get(), $4->begin(), $4->end()),
|
|
GTE = gep_type_end($2->get(), $4->begin(), $4->end());
|
|
for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
|
|
if (isa<StructType>(*GTI)) // Only change struct indices
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
|
|
if (CUI->getType() == Type::UByteTy)
|
|
(*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
|
|
|
|
if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
|
|
ThrowException("Invalid getelementptr indices for type '" +
|
|
(*$2)->getDescription()+ "'!");
|
|
$$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
|
|
delete $2; delete $4;
|
|
};
|
|
|
|
|
|
%%
|
|
int yyerror(const char *ErrorMsg) {
|
|
std::string where
|
|
= std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
|
|
+ ":" + utostr((unsigned) llvmAsmlineno) + ": ";
|
|
std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading ";
|
|
if (yychar == YYEMPTY || yychar == 0)
|
|
errMsg += "end-of-file.";
|
|
else
|
|
errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'";
|
|
ThrowException(errMsg);
|
|
return 0;
|
|
}
|