mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
15f43a7af7
llvm-svn: 1518
247 lines
9.6 KiB
C++
247 lines
9.6 KiB
C++
//===-- TransformInternals.cpp - Implement shared functions for transforms --=//
|
|
//
|
|
// This file defines shared functions used by the different components of the
|
|
// Transforms library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TransformInternals.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/ConstantVals.h"
|
|
#include "llvm/Analysis/Expressions.h"
|
|
#include "llvm/iOther.h"
|
|
#include <algorithm>
|
|
|
|
// TargetData Hack: Eventually we will have annotations given to us by the
|
|
// backend so that we know stuff about type size and alignments. For now
|
|
// though, just use this, because it happens to match the model that GCC uses.
|
|
//
|
|
const TargetData TD("LevelRaise: Should be GCC though!");
|
|
|
|
// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
|
|
// with a value, then remove and delete the original instruction.
|
|
//
|
|
void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Value *V) {
|
|
Instruction *I = *BI;
|
|
// Replaces all of the uses of the instruction with uses of the value
|
|
I->replaceAllUsesWith(V);
|
|
|
|
// Remove the unneccesary instruction now...
|
|
BIL.remove(BI);
|
|
|
|
// Make sure to propogate a name if there is one already...
|
|
if (I->hasName() && !V->hasName())
|
|
V->setName(I->getName(), BIL.getParent()->getSymbolTable());
|
|
|
|
// Remove the dead instruction now...
|
|
delete I;
|
|
}
|
|
|
|
|
|
// ReplaceInstWithInst - Replace the instruction specified by BI with the
|
|
// instruction specified by I. The original instruction is deleted and BI is
|
|
// updated to point to the new instruction.
|
|
//
|
|
void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Instruction *I) {
|
|
assert(I->getParent() == 0 &&
|
|
"ReplaceInstWithInst: Instruction already inserted into basic block!");
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BI = BIL.insert(BI, I)+1;
|
|
|
|
// Replace all uses of the old instruction, and delete it.
|
|
ReplaceInstWithValue(BIL, BI, I);
|
|
|
|
// Reexamine the instruction just inserted next time around the cleanup pass
|
|
// loop.
|
|
--BI;
|
|
}
|
|
|
|
void ReplaceInstWithInst(Instruction *From, Instruction *To) {
|
|
BasicBlock *BB = From->getParent();
|
|
BasicBlock::InstListType &BIL = BB->getInstList();
|
|
BasicBlock::iterator BI = find(BIL.begin(), BIL.end(), From);
|
|
assert(BI != BIL.end() && "Inst not in it's parents BB!");
|
|
ReplaceInstWithInst(BIL, BI, To);
|
|
}
|
|
|
|
|
|
|
|
// getStructOffsetType - Return a vector of offsets that are to be used to index
|
|
// into the specified struct type to get as close as possible to index as we
|
|
// can. Note that it is possible that we cannot get exactly to Offset, in which
|
|
// case we update offset to be the offset we actually obtained. The resultant
|
|
// leaf type is returned.
|
|
//
|
|
// If StopEarly is set to true (the default), the first object with the
|
|
// specified type is returned, even if it is a struct type itself. In this
|
|
// case, this routine will not drill down to the leaf type. Set StopEarly to
|
|
// false if you want a leaf
|
|
//
|
|
const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
|
|
std::vector<Value*> &Offsets,
|
|
bool StopEarly = true) {
|
|
if (Offset == 0 && StopEarly && !Offsets.empty())
|
|
return Ty; // Return the leaf type
|
|
|
|
unsigned ThisOffset;
|
|
const Type *NextType;
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
assert(Offset < TD.getTypeSize(STy) && "Offset not in composite!");
|
|
const StructLayout *SL = TD.getStructLayout(STy);
|
|
|
|
// This loop terminates always on a 0 <= i < MemberOffsets.size()
|
|
unsigned i;
|
|
for (i = 0; i < SL->MemberOffsets.size()-1; ++i)
|
|
if (Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1])
|
|
break;
|
|
|
|
assert(Offset >= SL->MemberOffsets[i] &&
|
|
(i == SL->MemberOffsets.size()-1 || Offset <SL->MemberOffsets[i+1]));
|
|
|
|
// Make sure to save the current index...
|
|
Offsets.push_back(ConstantUInt::get(Type::UByteTy, i));
|
|
ThisOffset = SL->MemberOffsets[i];
|
|
NextType = STy->getElementTypes()[i];
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
assert(Offset < TD.getTypeSize(ATy) && "Offset not in composite!");
|
|
|
|
NextType = ATy->getElementType();
|
|
unsigned ChildSize = TD.getTypeSize(NextType);
|
|
Offsets.push_back(ConstantUInt::get(Type::UIntTy, Offset/ChildSize));
|
|
ThisOffset = (Offset/ChildSize)*ChildSize;
|
|
} else {
|
|
Offset = 0; // Return the offset that we were able to acheive
|
|
return Ty; // Return the leaf type
|
|
}
|
|
|
|
unsigned SubOffs = Offset - ThisOffset;
|
|
const Type *LeafTy = getStructOffsetType(NextType, SubOffs, Offsets);
|
|
Offset = ThisOffset + SubOffs;
|
|
return LeafTy;
|
|
}
|
|
|
|
// ConvertableToGEP - This function returns true if the specified value V is
|
|
// a valid index into a pointer of type Ty. If it is valid, Idx is filled in
|
|
// with the values that would be appropriate to make this a getelementptr
|
|
// instruction. The type returned is the root type that the GEP would point to
|
|
//
|
|
const Type *ConvertableToGEP(const Type *Ty, Value *OffsetVal,
|
|
std::vector<Value*> &Indices,
|
|
BasicBlock::iterator *BI = 0) {
|
|
const CompositeType *CompTy = dyn_cast<CompositeType>(Ty);
|
|
if (CompTy == 0) return 0;
|
|
|
|
// See if the cast is of an integer expression that is either a constant,
|
|
// or a value scaled by some amount with a possible offset.
|
|
//
|
|
analysis::ExprType Expr = analysis::ClassifyExpression(OffsetVal);
|
|
|
|
// Get the offset and scale now...
|
|
unsigned Offset = 0, Scale = Expr.Var != 0;
|
|
|
|
// Get the offset value if it exists...
|
|
if (Expr.Offset) {
|
|
int Val = getConstantValue(Expr.Offset);
|
|
if (Val < 0) return false; // Don't mess with negative offsets
|
|
Offset = (unsigned)Val;
|
|
}
|
|
|
|
// Get the scale value if it exists...
|
|
if (Expr.Scale) {
|
|
int Val = getConstantValue(Expr.Scale);
|
|
if (Val < 0) return false; // Don't mess with negative scales
|
|
Scale = (unsigned)Val;
|
|
}
|
|
|
|
// Loop over the Scale and Offset values, filling in the Indices vector for
|
|
// our final getelementptr instruction.
|
|
//
|
|
const Type *NextTy = CompTy;
|
|
do {
|
|
if (!isa<CompositeType>(NextTy))
|
|
return 0; // Type must not be ready for processing...
|
|
CompTy = cast<CompositeType>(NextTy);
|
|
|
|
if (const StructType *StructTy = dyn_cast<StructType>(CompTy)) {
|
|
unsigned ActualOffset = Offset;
|
|
NextTy = getStructOffsetType(StructTy, ActualOffset, Indices);
|
|
if (StructTy == NextTy && ActualOffset == 0) return 0; // No progress. :(
|
|
Offset -= ActualOffset;
|
|
} else {
|
|
const Type *ElTy = cast<SequentialType>(CompTy)->getElementType();
|
|
if (!ElTy->isSized()) return 0; // Type is unreasonable... escape!
|
|
unsigned ElSize = TD.getTypeSize(ElTy);
|
|
|
|
// See if the user is indexing into a different cell of this array...
|
|
if (Scale && Scale >= ElSize) {
|
|
// A scale n*ElSize might occur if we are not stepping through
|
|
// array by one. In this case, we will have to insert math to munge
|
|
// the index.
|
|
//
|
|
unsigned ScaleAmt = Scale/ElSize;
|
|
if (Scale-ScaleAmt*ElSize)
|
|
return 0; // Didn't scale by a multiple of element size, bail out
|
|
Scale = 0; // Scale is consumed
|
|
|
|
unsigned Index = Offset/ElSize; // is zero unless Offset > ElSize
|
|
Offset -= Index*ElSize; // Consume part of the offset
|
|
|
|
if (BI) { // Generate code?
|
|
BasicBlock *BB = (**BI)->getParent();
|
|
if (Expr.Var->getType() != Type::UIntTy) {
|
|
CastInst *IdxCast = new CastInst(Expr.Var, Type::UIntTy);
|
|
if (Expr.Var->hasName())
|
|
IdxCast->setName(Expr.Var->getName()+"-idxcast");
|
|
*BI = BB->getInstList().insert(*BI, IdxCast)+1;
|
|
Expr.Var = IdxCast;
|
|
}
|
|
|
|
if (ScaleAmt && ScaleAmt != 1) {
|
|
// If we have to scale up our index, do so now
|
|
Value *ScaleAmtVal = ConstantUInt::get(Type::UIntTy, ScaleAmt);
|
|
Instruction *Scaler = BinaryOperator::create(Instruction::Mul,
|
|
Expr.Var,ScaleAmtVal);
|
|
if (Expr.Var->hasName())
|
|
Scaler->setName(Expr.Var->getName()+"-scale");
|
|
|
|
*BI = BB->getInstList().insert(*BI, Scaler)+1;
|
|
Expr.Var = Scaler;
|
|
}
|
|
|
|
if (Index) { // Add an offset to the index
|
|
Value *IndexAmt = ConstantUInt::get(Type::UIntTy, Index);
|
|
Instruction *Offseter = BinaryOperator::create(Instruction::Add,
|
|
Expr.Var, IndexAmt);
|
|
if (Expr.Var->hasName())
|
|
Offseter->setName(Expr.Var->getName()+"-offset");
|
|
*BI = BB->getInstList().insert(*BI, Offseter)+1;
|
|
Expr.Var = Offseter;
|
|
}
|
|
}
|
|
|
|
Indices.push_back(Expr.Var);
|
|
} else if (Offset >= ElSize) {
|
|
// Calculate the index that we are entering into the array cell with
|
|
unsigned Index = Offset/ElSize;
|
|
Indices.push_back(ConstantUInt::get(Type::UIntTy, Index));
|
|
Offset -= Index*ElSize; // Consume part of the offset
|
|
|
|
} else if (!isa<PointerType>(CompTy) || CompTy == Ty) {
|
|
// Must be indexing a small amount into the first cell of the array
|
|
// Just index into element zero of the array here.
|
|
//
|
|
Indices.push_back(ConstantUInt::get(Type::UIntTy, 0));
|
|
} else {
|
|
return 0; // Hrm. wierd, can't handle this case. Bail
|
|
}
|
|
NextTy = ElTy;
|
|
}
|
|
} while (Offset || Scale); // Go until we're done!
|
|
|
|
return NextTy;
|
|
}
|